
KMP Based Pattern Matching Algorithms for
Multi-Track Strings

Diptarama, Yohei Ueki, Kazuyuki Narisawa, and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Japan
{diptarama@shino.,yohei ueki@shino.,narisawa@,ayumi@}ecei.tohoku.ac.jp

Abstract. Multi-track string is an N -tuple strings of length n. For two
multi-track strings T = (t1, t2, . . . , tN) of length n and P = (p1, p2, ..., pM)
of length m, permuted pattern matching is a problem to find all positions
i such that P is permuted match with T[i : i+M]. We propose three new
algorithms for permuted pattern matching based on the KMP algorithm.
The first algorithm is an exact matching algorithm that runs in O(nN)
time after O(mM)-time preprocessing. The second and third algorithms
are filtering algorithms that run in O(n(N + σ)) after O(m(M + σ))-
time preprocessing, where σ is the size of alphabet. Experiments show
that our algorithms run faster than AC automaton based algorithm that
proposed by Katsura et al. [5].

Keywords: string matching, multi-track, KMP algorithm

1 Introduction

Pattern matching problem on strings is defined as finding all occurences of
a pattern string in a text string. Many of pattern matching algorithms can find
occurences of the pattern fast by preprocessing the pattern such as AC automa-
ton [1], and KMP algorithm [7], or by constructing data structure from the text
such as suffix tree [13], suffix array [9], and position heap [2].

Katsura et al. [5, 6] defined a set (or tuple) of strings be a multi-track string,
and formulated the pattern matching problem on multi-track strings, called per-
muted pattern matching. In order to solve this problem, they proposed permuted
pattern matching algorithms by constructing data structure from text such as
multi-track suffix tree [5], multi-track position heap [6], or by preprocessing the
the pattern such as AC automaton based algorithm [5].

In this paper, we propose three new algorithms for multi-track pattern match-
ing problem, based on KMP algorithm [7]1. The first one is a full-permuted pat-
tern matching algorithm, that we call it MTKMP for short. Second and third are
filtering algorithms for multi-track full- and sub- permuted matching problem,
respectively. For short, we call them Filter-MTKMP-Full and Filter-MTKMP,
respectively. Different with AC automaton based algorithm [5] that constructs

1 We implement MP algorithm for the first algorithm and KMP algorithm for the
second and third algorithms.

KMP Based Pattern Matching Algorithms ... 101

failure functions for each track of the pattern, our algorithms only construct
one failure function for a multi-track pattern. Also, our algorithms match the
whole tracks of the pattern to the text instead of matching each track of the
text independently.

We show that MTKMP runs inO(mM) time for constructing the failure func-
tion, and O(nN) for matching. Both Filter-MTKMP-Full and Filter-MTKMP
run in O(m(M +σ)) time for constructing the failure function, O(n(N +σ)) for
filtering, and O(mM) to verify each candidate. Moreover, the experiment results
show that proposed algorithms run faster than AC automaton based multi-track
pattern matching algorithm [5] for full-permuted matching, and Filter-MTKMP
works faster on sub-permuted-matching when the alphabet size and the track
count of the pattern are large.

2 Preliminaries

Let w ∈ Σn be a string of length n over an alphabet Σ, and σ = |Σ| be the
alphabet size. |w| denotes the length of w and w[i] denotes i-th character of w.
The substring of w that begins at position i and ends at position j is denoted
by w[i : j] for 1 ≤ i ≤ j ≤ |w|. In addition, w[: i] = w[1 : i] and w[i :] = w[i : |w|]
denotes a prefix and a suffix of w, respectively. For two strings x and y, x ≺ y
denotes that x is lexicographically smaller than y, and x ≼ y denotes that either
x equals to y or x ≺ y.

A multi-track string (or multi-track for short) W = (w1, w2, ..., wN) is an
N -tuple of strings wi ∈ Σn, and each wi is called the i-th track of W. The
length n of a multi-track is denoted by |W|len . The number N of tracks in
a multi-track is called track count and denoted by |W|num . For two multi-tracks
X = (x1, x2, .., xN) and Y = (y1, y2, .., yN), we write X = Y if xi = yi for
1 ≤ i ≤ N . W[i] denotes (w1[i], w2[i], ...wN [i]), and W[i : j] denotes (w1[i :
j], w2[i : j], . . . , wN [i : j]) for 1 ≤ i ≤ j ≤ |W|len . Moreover, the prefix and suffix
of W are denoted by W[: i] = W[1 : i] and W[i :] = W[i : |W|len], respectively.

Let r = (r1, r2, . . . , rM) be a partial permutation of (1, 2, . . . , N) for M ≤ N .
For a multi-track W = (w1, w2, . . . , wN), a permuted multi-track of W is denoted
by either W⟨r1, r2, . . . , rM ⟩ or W⟨r⟩. Sorted index of a multi track SI(W) =
(r1, r2, . . . , rN) is defined as a permutation such that wri ≼ wrj for any 1 ≤ i ≤
j ≤ N . For two multi-tracks X = (x1, x2, . . . , xM) and Y = (y1, y2, . . . , yN), X
permuted-matches Y, denoted by X ◃▹

⊑ Y, if ∃r.X = Y⟨r⟩, and X full-permuted-
matches Y, denoted by X ◃▹

= Y, if M = N and ∃r.X = Y⟨r⟩.
Throughout the paper, we assume that P is a pattern with |P|num = M and

|P|len = m, and T is a text with |T|num = N and |T|len = n. The pattern
matching problem on multi-tracks are defined as follows.

Problem 1 (Permuted pattern matching). Given a multi-tracks text T and
a multi-track pattern P, output all positions i that satisfy P ◃▹

⊑ T[i : i+m− 1].

Moreover, we call it full-permuted pattern matching if M = N , and sub-permuted
pattern matching if M < N .

102 Diptarama, et al.

Algorithm 1: MTKMP pattern matching algorithm

Input: Multi-track T, Multi-track P
Output: match positions
compute SI (T[i :]) for 1 ≤ i ≤ n and SI (P[i :]) for 1 ≤ i ≤ m;1

constructFailureFunction();2

i = 1; j = 1;3

while i ≤ n do4

while j > 0 and T[i]⟨SI (T[i− j + 1 :])⟩ ̸= P[j]⟨SI (P[1 :])⟩ do j = F [j];5

i = i+ 1; j = j + 1;6

if j > m then7

output (i− j + 1);8

j = F [j];9

Function constructFailureFunction()10

i = 1; j = 1; F [1] = 0;11

while i ≤ m do12

while j > 0 and P[j]⟨SI (P[1 :])⟩ ̸= P[i]⟨SI (T[i− j + 1 :])⟩ do j = F [j];13

i = i+ 1; j = j + 1;14

F [i] = j;15

In this section, we propose an algorithm for full-permuted pattern match-
ing that based on KMP algorithm, named multi-track KMP algorithm (shortly
MTKMP). In a similar manner to the original KMP algorithm, MTKMP con-
structs the failure function from the pattern, then uses it to shift the pattern
when mismatch occurs. The MTKMP algorithm is described in Algorithm 1.

The failure function F [i] for 1 ≤ i ≤ m+1 in MTKMP is defined as the length
of the longest proper suffix of P[1 : i−1] that permuted-matches with a prefix of
P, except F [1] = 0 and F [2] = 1. In order to construct the failure function, first
MTKMP finds the value of sorted index SI (P[i : m]) for all 1 ≤ i ≤ m. Then
permuted-matching of suffix P[j : i] and prefix P[1 : i − j + 1] is performed by
using SI (P[1 :]) and SI (P[j :]).

MTKMP performs permuted pattern matching from left to right of the pat-
tern and the text. Sorted indexes of the text and the pattern are used to perform
permuted-matching between the pattern and a substring of the text. If characters
on text and pattern are mismatched, then we shift the position of the pattern by
using the failure function. If the pattern matches a substring of the text, then
MTKMP outputs the position of the text and shifts the pattern according to
the failure function.

The MTKMP algorithm runs in O(mM) time for constructing the failure
function and O(nN) time for matching. Suffix index SI (P[i :]) for 1 ≤ i ≤ m
and SI (T[i :]) for 1 ≤ i ≤ n can be computed in O(mM) and O(nN) respectively
by using suffix tree [3, 10, 12, 13] or suffix array [4, 8, 9, 11]. Next, both the outer
while loop and the inner while loop are called O(m) times, since the i − j ≤
i ≤ m+ 1 and the value of i always increase each time the outer loop is called,
and the value of i− j always increases each time the inner loop is called. Since

KMP Based Pattern Matching Algorithms ... 103

Algorithm 2: Filter-MTKMP-Full pattern matching algorithm

Input: Multi-track T, Multi-track P
Output: match position
T′ = func(T); P′ = func(P);1

constructFailureFunction();2

i = 1, j = 1;3

while i ≤ n do4

while j > 0 and T′[i] ̸= P′[j] do j = F [j];5

i = i+ 1; j = j + 1;6

if j > m then7

if T[i− j + 1 : i− 1]
◃▹

⊑ P then output (i− j + 1);8

j = F [j];9

Function constructFailureFunction()10

i = 1; j = 1; F [1] = 0;11

while i ≤ m do12

while j > 0 and P′[i] ̸= P′[j] do j = F [j];13

i = i+ 1; j = j + 1;14

if i ≤ m and P′[i] = P′[j] then F [j] = F [i]; else F [j] = i;15

a comparison of P[j]⟨SI (P[1 :])⟩ and P[i]⟨SI (T[i−j+1 :])⟩ consumes O(M) time,
constructFailureFunction function runs in O(Mm) time. In a similar way, the
search algorithm of MTKMP runs in O(Nn) time.

3 KMP Algorithm for Filtering on Multi-Track String

In this section we propose two filtering algorithms that can outperform MTKMP
for permuted pattern matching problems. Instead of the suffix index, we use
simple functions to transforms the multi-track string, that can be computed
faster than the suffix index. Then, by transforming the pattern and the text,
the KMP algorithm can be applied to find candidates of permuted-matching
positions. Finally, every candidate position is checked whether or not the pattern
is permuted-matched in each position.

The first algorithm is an algorithm for full-permuted pattern matching prob-
lem called Filter-MTKMP-Full. We use two functions in this algorithm. Ge-
nerally, we can implement another function that has a false positive property.
The second algorithm, Filter-MTKMP is an algorithm for both full- and sub-
permuted pattern matching problems. Filter-MTKMP transforms multi-track
into alphabet bucket and implements KMP algorithm to it.

3.1 Full-Permuted Pattern Matching Algorithm

The Filter-MTKMP-Full algorithm is described in Algorithm 2. First, we trans-
form P by a function func() that has a false-positive property, that is if X ◃▹

= Y
then func(X) = func(Y). We propose two functions, sort() and bucket().

104 Diptarama, et al.

Definition 1. For Z = (z1, z2, . . . , zN), sort(Z) = Z′ = (z′1, z
′
2, . . . , z

′
N) such

that ∃r.Z′[i] = Z[i]⟨r⟩ and z′j [i] ≼ z′j+1[i] for 1 ≤ i ≤ |Z|len and 1 ≤ j < N .

Definition 2. For Z = (z1, z2, . . . , zN), bucket(Z) = (b1, b2, . . . , bσ) such that
bj [i] is the number of the lexicographical j-th character in Z[i].

For example, for a multi-track Z = (abab, bbac, aabb, cabb, abba), the sort(Z)
and bucket(Z) are defined as follows,

Z =

a b a b

b b a c

a a b b

c a b b

a b b a

 , sort(Z) =

a a a a

a a a b

a b b b

b b b b

c b b c

 , bucket(Z) =

3 2 2 1
1 3 3 3
1 0 0 1

 .

For a multi-track Z, sort(Z) can be computed in O(n(N + σ)) by using the
bucket sorting algorithm, and bucket(Z) can be computed in O(nN) time by
counting all characters in Z even if naively.

Next, Filter-MTKMP-Full constructs the failure function F of the trans-
formed multi-track P′ by similar algorithm as the KMP algorithm.

Pattern matching in Filter-MTKMP-Full is performed on P′ and T′. When
unmatched is occurred, the pattern is shifted by using the failure function. If
P′ matches to T′[i : j], then the algorithm checks whether the pattern P is
permuted-matched with T[i : j] or not, and outputs it if the pattern is permuted-
matched.

In the same way as described in MTKMP, the failure function can be con-
structed in O(m(M + σ)) time and the filtering algorithm runs in O(n(N + σ))
time, since sort() and bucket() needs O(M) and O(σ) time for each compari-
son, respectively. Also, the Filter-MTKMP-Full algorithm runs in O(m(M +σ))
time for constructing the failure function. In addition, Filter-MTKMP-Full need
O(cmM) time for checking the candidates, where c is the number of candidates.

3.2 Permuted Pattern Matching Algorithm

Filter-MTKMP algorithm is an extended version of the Filter-MTKMP-Full al-
gorithm that can be applied to the sub-permuted pattern matching problem.
This algorithm uses bucket() to transforms the pattern and the text, and imple-
ment the KMP algorithm to the transformed pattern and text. Moreover, this
algorithm uses diff (X,Y) function instead of X ̸= Y to loosen the condition,
thus sub-permuted pattern matching can be performed.

Algorithm 3 shows a pseudocode of the Filter-MTKMP algorithm. First, it
transforms P to multi-track bucket P′ and constructs the failure function F of the
multi-track bucket by using a function diff (X,Y) =

∑σ
i=1 max(0, Y [i] − X[i])

for two integer vectors X and Y . Then, it finds candidates of matched position
by using the failure function.

Last, in the similar way as Filter-MTKMP-Full, the Filter-MTKMP algo-
rithm runs in O(m(M +σ)) time for constructing the failure function, O(n(N +

KMP Based Pattern Matching Algorithms ... 105

Algorithm 3: Filter-MTKMP pattern matching algorithm

Input: Multi-track T, Multi-track P
Output: match position
T′ = bucket(T); P′ = bucket(P);1

constructFailureFunction();2

i = 1; j = 1;3

while i ≤ n do4

while j > 0 and diff (P′[j],T′[i]) > 0 do j = F [j];5

i = i+ 1; j = j + 1;6

if j > m then7

if T[i− j + 1 : i− 1]
◃▹

⊑ P then output (i− j + 1);8

j = F [j];9

Function constructFailureFunction()10

i = 1; j = 1; F [1] = 0;11

while i ≤ m do12

while j > 0 and diff (P′[i],P′[j]) > N −M do j = F [j];13

i = i+ 1; j = j + 1;14

if i ≤ m and P′[i] = P′[j] then F [j] = F [i]; else F [j] = i;15

Function diff (Vector X, Vector Y)16

Int sum = 0;17

for k = 1 to |X| do18

sum = sum +max(0, Y [k]−X[k]);19

return sum;20

σ)) time for finding candidates, and O(cmM) time for checking the candidates,
where c is the number of candidates.

4 Experiments

In order to evaluate the performance of proposed algorithms, we conduct experi-
ments and compare the running time of proposed algorithms with AC automaton
based algorithm [5].

In the first experiment, we compare running time of the algorithms for solving
full-permuted pattern matching. We change one of the parameters while keeping
other parameters constant. We set constant parameter as follows, n = 100000,
m = 10, N = M = 1000, and σ = 2. We use random text and pattern with 50
occurrences of the pattern inserted to the text. Figure 1 (a)-(d) show running
time of the algorithms when one of the parameters n, N , m, and σ is changed
respectively. We can see that the proposed algorithms are faster than AC au-
tomaton based algorithm. However, many false positive candidates are found
when the length of the pattern is short, and filtering algorithms need lots of
time to verify them.

106 Diptarama, et al.

Fig. 1. Running time of the algorithms on full-permuted pattern matching with respect
to (a) text length, (b) track count, (c) pattern length, and (d) alphabet size.

The second experiment measures the running time of Filter-MTKMP on sub-
permuted pattern matching, and compares it with AC automaton algorithm. We
set n = 10000, N = 1000, m = 10, M = 600, and σ = 26 as constant parameters.
Figure 2 (a) and (b) show that running time of Filter-MTKMP is decreased when
the track count of the pattern and the alphabet size are increased, because the
number of false-positive candidates are decreased if the track count is increased.
We can conclude that Filter-MTKMP performs better if the difference between

Fig. 2. Running time of the algorithms on sub-permuted pattern matching with respect
to (a) pattern track and (b) alphabet size.

KMP Based Pattern Matching Algorithms ... 107

track count of the text and track count of the pattern is small, also when the
alphabet size is large.

5 Conclusion

We proposed three algorithms based on the KMP algorithm, that are MTKMP,
Filter-MTKMP-Full and Filter-MTKMP. These algorithms can solve the per-
muted pattern matching problem in linear time. We also conducted compu-
tational experiments, and showed that proposed algorithms work faster than
AC-automaton based algorithm.

Acknowledgments. This work was partly supported by KAKENHI Grant
Numbers 15H05706, 25560067 and 25240003. This work was also supported by
research grant and scholarship from Tohoku University Division for International
Advanced Research and Education.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Communications of the ACM 18(6) 333–340 (1975)

2. Ehrenfeucht, A., McConnell, R.M., Osheim, N., Woo, S.W.: Position heaps:
A simple and dynamic text indexing data structure. Journal of Discrete Algo-
rithms 9(1) 100–121 (2011)

3. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS.
137–143 (1997)

4. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
ICALP. 943–955 (2003)

5. Katsura, T., Narisawa, K., Shinohara, A., Bannai, H., Inenaga, S.: Permuted
pattern matching on multi-track strings. In: SOFSEM. 280–291 (2013)

6. Katsura, T., Otomo, Y., Narisawa, K., Shinohara, A.: Position heaps for permuted
pattern matching on multi-track strings. In: Proceedings of Student Research
Forum Papers and Posters at SOFSEM 2015. 41–531 (2015)

7. Knuth, D.E., Jr., J.H.M., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(2) 323–350 (1977)

8. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: CPM.
200–210 (2003)

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22(5) 935–948 (1993)

10. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the ACM 23(2) 262–272 (1976)

11. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: Data Compression Conference. 193–202 (2009)

12. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3) 249–260
(1995)

13. Weiner, P.: Linear pattern matching algorithms. In: SWAT. 1–11 (1973)

