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Abstract. The Linked Open Data (LOD) cloud can act as a source of remote 

multidimensional datasets which are seemingly disparate, but are modeled un-

der common directives and thus often share a common meta-model, dimensions 

and measures, as well as external codelists. This gives them a latent measure of 

relatedness that is independent of the publishers’ initial intentions, but a deriva-

tive of the motivations behind LOD. In this paper we identify the constituents 

of relatedness between multidimensional LOD data points (observations) mod-

eled with the Data Cube vocabulary, that often exhibit overlapping values both 

at the schema and at the data level. Treating hierarchies as first-class citizens, 

we consider observation relatedness in two aspects, namely containment and 

complementarity, for which we provide formal definitions and representational 

semantics. Finally, we present a methodology for computing these types of re-

latedness and we provide an evaluation over real-world datasets. 
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1 Introduction 

Recently, more and more bodies such as governments, statistical authorities, public 

and private organizations, research and health centers publish information in the form 

of multidimensional Linked Open Data (LOD) [2][3] in very different domains, such 

as census and statistical data, socioeconomic and demographic indicators, clinical 

trials and health data, environmental and finance data.  The abundance of such da-

tasets enable third parties to have access, exploit and combine published data eventu-

ally leading to the generation of new quantifiable insights and knowledge, capable of 

influencing policy-building and decision-making. 

Modelling-wise, multidimensional data are traditionally represented as cubes of 

observations that are instantiated over a fixed set of dimensions and measures. In the 

LOD paradigm, W3C has proposed the Data Cube Vocabulary [2], a recommendation 

for modelling and publishing multidimensional datasets. However, one difference 

between closed-world multidimensional data stores, such as OLAP databases, and 

LOD datasets is that proper LOD publishing techniques across remote data providers 

will lead to the existence of common or shared terms between seemingly independent 

multidimensional datasets, given that reusability and interoperability are prime drivers 
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in the semantic web. Practically, this means that ontologies, codelists and hierarchies 

that are commonly used in the LOD cloud are likely to appear across different and 

disparate LOD multidimensional datasets.  

 
 

Figure 1: Candidate relationships between observations 

Currently there is little work on definitions and techniques to enable the discovery, 

representation and exploitation of relationships between individual observations in the 

web of data [14][2]. An analyst needs to know how observations from different 

sources are related, e.g., if an observation contains aggregated data with respect to 

other observations, or if two observations that measure different phenomena can be 

combined, and exploit such relationships. Consider the motivating example of Fig 1, 

with 3 multidimensional datasets D1…D3 coming from different web sources that 

measure the population in major global cities, the unemployment and poverty in EU 

countries and the unemployment in EU cities, respectively. The analyst wishes to 

explore and annotate the possible interconnection between two observations and spe-

cifically detect whether an observation contains an aggregated measurement of anoth-

er, or whether an observation can be compared with another based on the common 

dimension values. Current vocabulary and techniques do not allow for users to quick-

ly validate whether or not two observations are hierarchically related, and if so in 

what level and under what context. In our example, observation o11 shares the same 

dimension values with o31, but they measure two different facts. On the other hand, 

observation o21 that measures unemployment in Greece contains observation o32 that 

measures unemployment in Athens for a sub-period of the same year, although o21 

measures poverty as well. This knowledge can give insights on how rollups can be 

performed in order to navigate a data web cube online, or make the two observations 

comparable. Finding related observations based on one or more similarity factors can 

help the analyst with exploration, discovery and online browsing of multidimensional 

datasets  

Approach Overview. These points raise issues that we attempt to approach in the 

context of this paper. Namely, we provide semantics and techniques to measure con-

tainment- and schema-based similarities between multidimensional observations com-

ing from different sources with varying degrees of LOD-imposed term overlaps. More 

specifically, given an observation og, and a set of observations   from different 

sources, we define two relatedness properties, namely observation containment and 

complementarity. Containment captures whether an observation measures an aggre-

gated phenomenon with respect to other observations. It compares and determines 

whether values from the dimensions of og contain fully or partially (i.e. are hierar-

chical ancestors of) values of the dimensions of another observation. Complementari-

ty refers to characterizing two observations based on their ability to be combined and 

 

 

 

 

 refArea refPeriod ex:Unemployment  

o31 Athens 2001 10% 

o32 Athens Jan2011 30% 

o33 Rome Feb2011 7% 

 refArea refPeriod sex ex:Population 

o11 Athens 2001 Total 5M 

o12 Austin 2011 Male 5.5M 

 refArea refPeriod ex:Unemployment ex:Poverty 

o21 Greece 2011 26% 15% 

o22 Italy 2011 20% 10% 

D1 

D3 

D2 



provide extended/enriched information. More specifically, we extend the notion of 

schema complement, defined in [15] and apply it at the instance level of observations 

in order to annotate whether two observations can complement each other’s infor-

mation. Then, we provide a technique for computing these properties as follows: first 

all observations are placed in an occurrence matrix that represents them as data vec-

tors in a multidimensional feature space encoding both schema and data information 

along with dimension hierarchies. The occurrence matrix is used to compute the com-

plementarity matrix, which enables us to derive complementarity between observa-

tions. Then, the occurrence matrix is transformed to a set of k |O|×|O| containment 

matrices, where k is the distinct number of dimensions. Full and partial containment 

for all pairs of observations are given by adding all matrices together. 

Contributions. In short, the contributions of this work are as follows: (a) We de-

fine new relationships between individual observations and extend the Data Cube 

terms with properties for representing: full and partial observation containment be-

tween two observations as derivatives of the hierarchical relationships between their 

dimension values, and observation complementarity as a means of comparison and 

correlation of different measures; (b) we provide an efficient technique of computing 

these properties based on occurrence and similarity matrices; finally (c) we evaluate 

our techniques over real-world multidimensional datasets. 

This paper is structured as follows: section 2 provides background knowledge and 

related work, section 3 defines the new properties, section 4 provides the techniques 

for computing them, while section 5 proposes possible extensions to Data Cube Vo-

cabulary. Finally, section 6 presents an evaluation of our approach and section 7 con-

cludes the paper and presents future directions of this work. 

2 Related Work 

Generally, the problem of finding related multidimensional observations has been 

addressed within the contexts of Linked Data and Online Analytical Processing 

(OLAP) [10] [11]. Data mining techniques in OLAP are known as Online Analytical 

Mining (OLAM) [7]. OLAM research works study problems such as cluster-

ing/classifying OLAP cubes [9], detecting outliers [8], performing intelligent aggrega-

tions [5] and building recommender systems for OLAP sessions based on either query 

formulation or observation similarity [1][16]. Applications of these approaches aim to 

enable discovery of latent knowledge, promote exploratory analysis [6], improve 

OLAP query efficiency [9] and so on. In this context, Aligon et al. [1] study the prob-

lem of finding similarities between OLAP sessions, i.e sequences of queries that are 

applied online. To this end they define similarity functions by conducting user-based 

analysis and they compute similarity of sessions by decomposing the session queries’ 

features and then using the Levenshtein distance, Dice’s coefficient, term frequency-

inverse document frequency (tf-idf) and the Smith-Waterman algorithm. They find 

the latter to be the best performing measure for their purposes.  

Baikousi et al. [16] provide distance functions categorized over their relation with 

the hierarchy space. Similarly to our approach, they consider hierarchies to be of 



prime importance in the problem and base their distance functions on hierarchies. 

Finally, they summarize the hierarchical distances with two approaches, simple sum-

mation and the Hausdorff distance and they find that both approaches are equally 

effective. Hsu et al [4] apply multidimensional scaling methods (MDS) and hierar-

chical clustering (HC) in order to find similarity between OLAP reports of the same 

cube. They formally define the problem and its constraints, such as identifying when 

two OLAP reports are comparable, and conclude that a combination of MDS and HC 

yields the best results. 

In the context of Linked Data, similarity or relatedness between entities has been a 

main component of entity resolution, record linkage and interlinking [17][18][19]. 

These approaches deal with discovering links between RDF nodes from different 

datasets in efficient ways by using distance-based techniques. Statistical linked open 

data have been addressed by [13] in the context of online analysis and exploration, 

and in [14] as a use case scenario for data source contextualization. To the best of our 

knowledge, this is the first work that addresses the definition, representation and 

computation of relationships between individual multidimensional LOD observations.  

3 Problem definition 

We consider that the problem space is composed by n datasets modeled and validated 

by the integrity constraints imposed by the Data Cube Vocabulary.  A dataset is com-

posed of its schema (i.e. dimensions, measures and attribute definitions), and its data 

(i.e. observations). The values in dimensions are provided by a fixed set of coded lists 

(code-value pairs) that are hierarchically structured in levels. Flat coded lists, i.e., 

simple enumerations, are considered to be hierarchies with exactly one level. These 

are presented formally in the following: 

Definition 1 (Cube Structure): Let D={D1, …, Dn} be the set of all input datasets. 

A dataset Di   D is composed by the set of observations, Oi, and the set of schema 

definitions, Si, and O={O1, …, On} and S={S1, …, Sn} are the sets of all observations 

and schema definitions in D. Furthermore, a schema Si consists of the sets of dimen-

sion Pi and measure properties Mi defined in Di, i.e., Si={Pi,Mi}. Let P=⋃   
 
  

             and M=⋃                
 
  be the set of all k distinct dimensions 

and l measure properties in D. Any pj P, mj M can belong to more than one Si, as 

dimension and measure properties are reused among sources. An observation o Oi is 

an entity that instantiates all dimension and measure properties defined in Si. The 

value that observation oi has for dimension pj is  
 
. 

Definition 2 (Coded list terms): Each dimension property pj P takes values from a 

fixed coded list, i.e. a set of code – value pairs, C(pj)={c(pj)1, … c(pj)m}, j=1..k, (for 

simplicity we write cji instead of c(pj)i). The coded list defines a hierarchy such that 

when cji ⥼ cjm, then cji is an ancestor of cjm. Furthermore, we define cjroot as the top 

concept in the code list of pj , i.e., an ancestor of all other terms in the coded list, such 

that            ⥼    . Every coded list term is an ancestor of itself, i.e.         ⥼    . 

In Figure 2, we present sample coded lists for the dimensions present in motivating 

example of Fig. 1. 
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Fig. 2. Hierarchical coded list for the dimensions in Fig 1 

Next we provide the definitions for containment and complementarity properties. 

Similarly to [14] [15], we apply the notion of complementarity between two observa-

tions for denoting whether these are comparable, i.e., they have the same dimension 

values but measure different phenomena. This is represented by the following. 

Definition 3 (Observation Complement): Given two observations oa and ob and 

their dimensions Pa and Pb,  oa is observation complement to ob when: 

(     )  (            
    

 )  (            
 
       ) 

We denote this relationship with Compl(oa, ob) or equivalently oa Compl ob. Def. 1 

states that the dimensions in ob must be a superset of the dimensions in oa and the 

common dimensions must have the same values. All other dimension values of ob 

must be equal to the root of the dimension hierarchy, thus providing no further spe-

cialization. For example, an observation measuring poverty in Greece per year is ob-

servation complement with an observation measuring the population in Greece per 

year for all genders.  

Furthermore, a containment relationship captures whether an observation measure 

is an aggregation of the measures of the contained observations. For example, an ob-

servation measuring the population of Greece implicitly contains all observations 

measuring the population of sub-regions of Greece. We distinguish between full and 

partial containment. The former denotes that all contained observations can be com-

bined in a roll-up operation for being observation complement with the containing 

one, while the latter denotes that both contained and containing observation must be 

rolled-up on their disjoint dimensions for being observation complement. These are 

presented in the following definition. 

Definition 4 (Partial and full containment):  Given two observations oa and ob, 

their dimensions Pa and Pb  and their measures Ma and Mb, partial containment be-

tween oa and ob exists when: 

(         )   (      )   (             
 ⥼   

 ) 

An observation oa partially contains ob when (i) there is one Mi shared between oa and 

ob, (ii) the dimensions of oa are a subset of the dimensions of ob and (iii) there exists at 

least one dimension whose value for oa is a hierarchical ancestor of the respective 

dimension value for ob. We denote this as Contpartial(oa, ob) or equivalently oa Contpartial 
ob. Similarly, full containment between oa and ob exists when:  



(         )   (      )   (             
 ⥼   

 )  

That is, an observation oa fully contains ob when (i) there is one Mi shared between oa 

and ob, (ii) the dimensions of oa are a subset of the dimensions of ob and (iii) values of 

all dimensions for oa are hierarchical ancestors of the respective dimension values for 

ob. We denote this with Contfull(oa, ob) or equivalently oa Contfull ob. Observe by defi-

nition that the containment property is not symmetric and that given oa Contfull ob we 

cannot derive that ob Contfull oa. Based on the above definitions, our problem can be 

outlined as follows. 

Problem: Given a set of source datasets D, and O the set of observations in D, for 

each pair of observations oi, oj   O, i≠j, assess whether a) oi Contfull oj , b) oi Contpartial 
oj  and c) oi OC oj. In the following section, we provide our techniques for computing 

these properties.  

4 Computing containment and complementarity properties 

Our technique for computing containment and complementarity properties considers 

that observations are data vectors in a multidimensional feature space composed of all 

schema definitions and coded list values in D. In addition, the feature set is enriched 

with all ancestor values in the hierarchy of each coded list, up to the higher common 

ancestor of all values in D. This is represented by an occurrence matrix that captures 

occurrence (1 or 0) of a dimension, measure definition and coded list value in the set 

of observations. The occurrence matrix is used for calculating complementarity prop-

erties between two observations. It is, then, used for constructing containment matri-

ces that are used for calculating containment properties.  

4.1 Constructing the Occurrence Matrix 

Each oi defines a bit vector oi of |C|+|P|+|M| dimensions and all oi O yield a 

|O|x|C+P+M| occurrence matrix OM that consists of the following sub-matrices:  

 OMC is the |O|x|C| matrix defined by the occurrences of coded list values in the 

respective dimension values of all observations. Each value cji  Cj corresponding 

to dimension pj is treated as a feature, i.e., a column in OMC. Hierarchical con-

tainment is encoded into OMC using a bottom-up algorithm that places a value of 1 

in column cji if the value   
 
 of the dimension pj of oa  is equal to the feature cji and 

then gives the value of 1 to all columns corresponding to the parents of cji. Finally, 

we fill with 1’s the cjroot of all observations that do not contain pj in their schema. 

 OMP and OMM are the |O|x|P| and |O|x|M| matrices defined by the occurrences of 

dimension and measure properties in each observation. Each dimension and meas-

ure definition is considered as a feature and is marked with 1 if oa contains it and 0 

if not. The measure values are not taken into account. Therefore, OM= [OMC, 

OMP, OMM]. 



The OCC of the example of Fig. 1, given the hierarchies shown in Figure 2, is shown 

in Table 2. The sub-matrix OMC can be further broken down in separate sub matrices 

for each coded list, i.e., OMC = [OMC1, …, OMCk] where OMCi is a sub-matrix that 

represents occurrences for all values of dimension pi and k=|C|. Therefore OM becomes 

[OMC1,…, OMCk, OMP, OMM].  

 refArea  refPeriod  sex 

 
WLD EUR AM GR IT Ath Rom US TX Aus ALL 2001 2011 Jan11 Feb1

1 
M F T 

obs11 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 
obs12 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 
obs21 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 
obs22 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 
obs31 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 
obs32 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 
obs33 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 

Table 1: Sub-matrix OMC for the example of Fig 1. 

4.2 Pair-wise observation containment 

Containment matrices. A containment matrix CMi is a |O|x|O| bit-vector matrix that 

captures pair-wise containment relationships between observations, for each dimen-

sion pi. If cell CMi[oa,ob]   0 then observations oa and ob are hierarchically related for 

dimension pi P (e.g. oa refers to Greece and ob refers to Europe), while CMi[oa,ob]  0 

holds otherwise. 

Computation of containment matrices. To compute a containment matrix CMi, we 

first take each bit array OMCi in OMC and we apply a containment function sf for all 

pairs of observations oa and ob by considering the rows of oa and ob in OMCi as two 

bit vectors, a and b, respectively. Then, two observations are hierarchically related if 

the bit-wise AND operation between their corresponding bit vectors yields one of the 

two bit vectors as shown in [12]. Given this, we define sf for a pair of observations oa, 

ob and their bit-vectors a,b resp. in OMCi as the following conditional function: 

  (     )       {
      
      

(       )   

         
 

  (     )    means that we apply sf for oa and ob in OMCi and if the AND between a 

and b gives the bit vector b, then oa is contained by ob. If a=b then the relationship still 

holds. By applying this function for each sub matrix in OCC we acquire a set of k 

containment matrices of |O|x|O| dimensions, CM1, …, CMk, each capturing contain-

ment information for a given dimension property. Then, addition of all CMi yields the 

Overall Containment Matrix OCM, which holds full and partial relationships in the 

form of normalized similarities between pairs of observations as follows: 

     
∑      
 
   

∑   
 
   

  

OCM retains values in the range of [0,1]. Full containment is given when two obser-

vations have similarity 1, i.e., oa Contfull ob iff cell OCM[oa, ob]=1. Partial containment 

is given when two observations have similarity between 0 and 1, i.e., oa Contpartial ob 



iff OCM[oa, ob]>0. Finally, no containment between observations exists when 

OCM[oa, ob]=0.  

4.3 Pair-wise observation complementarity 

Following the definition of observation complementarity, we use OM to assess 

whether the dimension values between pairs of observations are the same, given that 

       holds. To check if         is true between two observations oa and ob we 

apply a bit-wise AND to the bit vectors a, b of oa and ob the same way as when trying 

to compute CM matrices, by using function sf(oa, ob). This is because values in OMP 

capture whether an observation has a dimension in its schema. Given this, we want to 

assess whether two bit vectors in OMP are related via a containment property, which 

justifies the use of function sf, this time on the matrix of the dimension properties. 

Then, we check if the dimension values of the two observations are equal: 

  (     )     {
   
   
    
(  (     )    )     (   )

         
 

  (     )   means that we apply sf for oa and ob in OMP, while a and b are the bit 

vectors in OMC. This results in a |O|x|O| Complementarity matrix that gives the value 

of 1 for complementary observations and 0 otherwise, i.e., oa Compl ob iff Comple-
mentarity [oa, ob]>0.  

Observe that the time complexity of computing containment and complementarity 

matrices for N observations is O(N
2
), further optimization is left as future work. Two 

approaches to improve running time are (i) parallelism and (ii) reducing the search 

space by taking into account characteristics of the incoming schemata. For example, if 

we can conclude that there can be no containment and/or complementarity between 

observations of Di and Dj just by examining their schema, we do not need to perform 

any computations on observation pairs between Di and Dj. 

5 Complementarity and containment properties in Data Cube 

We propose simple extensions to the Data Cube Vocabulary such that complementari-

ty and containment, full and partial, between observations can be represented. We 

define three properties, containment, partialContainment and fullContainment, where 

partialContainment is a sub-property of the generic containment property, and full-

Containment is a sub-property of partialContainment, which reflects the fact that full 

containment is a specialization of partial containment. As an example, a relationship 

Contpartial(oa, ob) is then modelled as shown in the top part of Figure 3. The contain-

ment relationship becomes a blank node of the appropriate type and is reified to in-

clude information on ob and other possible metadata on the relationship. Similarly, 

complementarity is denoted with the property imis:complement, as shown in the bot-

tom part of Figure 3. 



ex:obs_a

ex:obs_b

_:bnimis:partialContainment

imis:observation

_:bn2

imis:complement

ex:obs_c
imis:observation

 

Fig. 3. oa partially contains ob. Also, oa complements oc. 

6 Experimental Evaluation and Discussion 

In this section we present the evaluation of our approach over real-world statistical 

datasets. Our experiments were performed using Java and Apache Jena for handling 

the RDF models and creating the matrices, and R for computations on the matrices, 

application of the functions sf and cf and so on. 

Datasets. Four datasets have been used. D1 and D2 measure poverty in two differ-

ent sets of EU sub-regions and periods, D3 measure population in three EU countries 

and their first-level sub-regions and D4 measure households with internet access in 

seven EU countries and their sub-regions. They exhibit an overlap of 5 dimensions 

(location, time, sex, unit and age) and 3 measures (poverty, population and house-

holds with internet access). The mappings between the coded lists for the common 

dimension values have been manually created. Observe that creating the mappings for 

different dimension values is an orthogonal work to our approach; many approaches 

from the fields of entity resolution and LOD interlinking can be applied. The datasets 

are either downloaded as RDF or converted using a conversion script written in Java. 

Eurostat Linked Data Wrapper
1
, the Eurostat database

2
 and World Bank

3
 were used as 

sources. The datasets where pre-processed to include data about EU countries, as well 

as selected sub-regions based on official EU geo classifications (NUTS
4
), for various 

time periods, taken from the Gregorian calendar classification of data.gov.uk
5
.  The 

dataset structures are summarized in Table 2. 

 

#of obs. refArea  refPeriod sex unit age poverty internet population 

D1 (539) 85 regions,20 countries 2004-2011 N/A Yes Yes Yes N/A N/A 

D2 (1693) 293 regions, 33 countries 2003-2010 N/A Yes N/A Yes N/A N/A 

D3 (629) 42 regions, 3 countries 2009-2013 M, F, Total Yes N/A N/A N/A Yes 

                                                           
1  http://estatwrap.ontologycentral.com/ 
2  http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database 
3  http://data.worldbank.org/ 
4  http://nuts.geovocab.org/ 
5  http://datahub.io/dataset/data-gov-uk-time-intervals 



D4 (316) 65 regions,7 countries 2009-2013 N/A N/A N/A N/A Yes N/A 

Table 2: Dimensions and measures of the input datasets. Measures are marked in grey 

Computing containment and complementarity properties over the observations of 

the four datasets resulted in the creation of multiple relationships summed up in Table 

3. The results do not include self-containing or self-complementing observations. We 

have defined three metrics, full, partial and compl. For a pair of datasets Di and Dj, 

they measure the total number of pairs that exhibit full containment, partial contain-

ment and observation complementarity respectively, as a percentage of the total pos-

sible number of pairs in the given two datasets, minus the diagonal. As can be seen, 

most new relationships are partial containments, which is a reasonable result given 

that it is the most weakly defined relationship in terms of its prerequisites. The strict-

est relationship, observation complementarity, resulted in linking 0.03% of the total 

possible observation pairs. Sample observations participating in the newly created 

relationships can be seen in fig 4. The created links are modeled after our proposed 

vocabulary and uploaded in RDF form in an Openlink Virtuoso store
6
. 

 

 D1 D2 D3 D4 

D1 647 (0.31%)  full 

34.3k (16.32%) partial 

N/A compl 

N/A full 

N/A partial 

N/A compl 

N/A full 

N/A partial 

N/A compl 

N/A full 

N/A partial 

N/A compl 

D2 605 (0.02%)  full 

605k (14.83%) partial 

1238 (0.04%) compl 

3370 (0.14%) full 

378k (14.83%) partial 

N/A (complement 

N/A full 

N/A partial 

204 (0.004%) compl 

N/A full 

N/A partial 

N/A compl 

D3 N/A full 

N/A partial 

N/A compl 

N/A full 

N/A partial 

N/A compl 

1k (0.26%)  full 

261k (65.9%) partial 

N/A compl 

N/A full 

N/A partial 

N/A compl 

D4 N/A full 

N/A partial 

328 (0.05%) compl 

N/A full 

N/A partial 

218 (0.005%) compl 

N/A full 

N/A partial 

592 (0.07%) compl 

437 (0.17%) full 

22.2k (22.3%) partial 

N/A compl 

Table 3:  Results of new relationships for test datasets D1...D4. Each cell [i,j] contains in-

formation on the total number of pairs exhibiting each relationship, as well as the percentage 

over all possible pair-wise combinations of observations for the combination 

Discussion. The relatedness properties that we have defined yield interesting in-

formation on how existing observations can be combined across datasets as well as in 

the same source dataset. The advantages of this work are two-fold, first it creates new 

information by combining existing facts (complementarity) and second it creates a 

containment graph among observations that helps exploration, aggregation and dis-

covery of nearby multidimensional observations. The definitions that we have provid-

ed can also be studied in terms of their impact at the dataset level, for example, D3 has 

65.9% partial containment in itself, with only 0.26% full containment. This hints that 

the structure of the dataset’s hierarchies is such that there are a few top level concepts 

                                                           
6  http://83.212.121.252/sparql 



in comparison to lower-level concepts, and that also the depth of the hierarchies is not 

very large. As a matter of fact, this is true for D3 as it addresses 3 countries and 42 

sub-regions, all of them lying on the same level. Figure 4 shows an example of an 

observation _:b134 that exhibits both complementarity and containment with _:b432 

and _:b135 resp. Complementarity shows that we can combine the measures of two 

observations set on the same dimension values in order to complement their infor-

mation. Two complementary observations can be joined on their common dimension 

values and combined into a new observation, whose schema contains the union of 

their dimension and measure sets. Figure 4 shows how we can combine population 

and households with internet access because they are both set on region EL1 in 2010 

although _:b432 does not involve gender dimension. 

_:b134 a qb:Observation ; 
qb:dataSet _:population ;
sdmx-dimension:sex sex:Total ;
sdmx-dimension:refArea nuts2008:EL1 ;
sdmx-dimension:refPeriod uk:2010 ;
sdmx-measure:obsValue  3,590,447  . _:b135 a qb:Observation ; 

qb:dataSet _:population ;
sdmx-dimension:sex sex:Male ;
sdmx-dimension:refArea nuts2008:EL11 ;
sdmx-dimension:refPeriod uk:2010 ;
sdmx-measure:obsValue  302,855  .

fullContainment

_:b432 a qb:Observation ; 
qb:dataSet _:internetHouseholds ;
sdmx-dimension:refArea nuts2008:EL1 ;
sdmx-dimension:refPeriod uk:2010 ;
sdmx-measure:obsValue  31.5  .

observation
complement

Fig. 4. Containment and complementarity relationship samples of the test results. Both relation-

ships originate from the same observation _:b134. 

7 Conclusions and Future Work 

In this paper, we have presented a novel approach for identifying and modeling rela-

tionships between observations of multidimensional linked open data. We have de-

fined three new properties, namely full and partial observation containment and ob-

servation complementarity between two observations as derivatives of the hierarchical 

relationships between their dimension values, and as a means of comparison and cor-

relation of their different measures. We have proposed a possible extension on the 

Data Cube terms for representing these properties and we have provided an evaluation 

of our approach over real-world statistical datasets.  

A future direction concerns techniques for grouping and combining observations 

into new datasets based on their containment and complementarity properties. Anoth-

er direction is the incorporation of the Data Cube attributes in our algorithms as these 

often represent valuable information like units of measure, observation status or fold-

ed dimensions and can be used for creating dimension value mappings at the pre-

processing stage. Finally, we will explore techniques for optimizing the computation 

time and scale up the overall performance of our approach. 
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