
Executable models for Embedded Controllers
Development — A Cloud Based Development

Framework
Fernando Pereira∗†‡, Filipe Moutinho∗, João Paulo Barros∗§, Aniko Costa∗‡, and Luı́s Gomes∗‡

∗ UNINOVA - CTS, Portugal
† ISEL, Instituto Superior de Engenharia de Lisboa, Portugal

‡ Universidade Nova de Lisboa - Faculdade de Ciências e Tecnologia, Portugal
§ Instituto Politécnico de Beja, ESTIG, Portugal

Email: fjp@deea.isel.ipl.pt, {fcm, jpb, akc, lugo}@uninova.pt

Abstract—We present IOPT-Tools, a tool framework for the
development of digital controllers based on graphical executable
models. The framework supports edition, simulation, verification
through state-space querying, and code generation for several
hardware platforms, most notably microcontrollers (e.g. Arduino,
PIC, and Raspberry Pi) and FPGAs. The tool framework uses a
class of Petri nets and is cloud based: the development process
is performed using a browser.

I. MOTIVATION AND GOALS

Digital controllers are often developed and programmed
using textual languages. Due to the well-known suitability
of Petri nets to graphically specify sequence, concurrency,
and synchronizations, specific classes of Petri nets have been
designed to support the specification of this type of systems
(e.g., [1]–[4]). Yet, somehow surprisingly, the ”Petri Nets Tool
Database” [5] shows a notable scarcity of tools able to support
the design and, especially, the generation of code for digital
controllers.

This work presents a web tool framework that provides
a higher level language for the development of digital con-
trollers. It is based on graphical executable Petri net models
that use a non-autonomous class of Petri net. Besides support-
ing the modeling, simulation, state space exploration, and code
generation for digital controllers, the framework is totally web
based, thus providing multi-platform support and avoiding the
need to install software.

II. NON-AUTONOMOUS PETRI NETS

Petri nets have their origin in the PhD. Thesis of Carl Adam
Petri [6]. Yet, numerous Petri net classes exist, some of them
with associated tools [5]. These classes of nets usually share
a small set of base characteristics that we summarize next:

• Petri nets are directed graphs with two types of nodes:
places and transitions;

• Places are the ”passive” part, are represented by circles or
ellipses, and are typically associated to states, resources,
or conditions;

• Transitions are the ”active” part, are represented by bars
or rectangles, and are typically associated to changes

of state, actions, message passing, or consumption of
resources;

• Places can only be connected to transitions, and vice-
versa;

• Places and transitions can have any quantity of input
and/or output arcs.

In its most well-known form (Place/Transition nets or P/T
nets [7]) Petri nets provide support for very abstract models,
which are autonomous in the sense that they do not depend
on external entities. Yet, it is a well-established fact that an
effective modeling of digital controllers requires or benefits
very significantly from the addition of non-autonomous con-
cepts, namely the explicit modeling of external input and
output signals and events. Additionally, as P/T nets are non-
deterministic, the designer must have a way to remove non-
determinism from the models. To that end, as presented
next, the IOPT nets class adds priorities to transitions, thus
providing a way to remove effective conflicts.

IOPT-Tools [8] is based on a non-autonomous class of Petri
nets, which adds several well-known and established concepts
to P/T nets. The net class is named Input-Output Place-
Transition Petri nets, a name that emphasizes the supported
explicit specification of input and output signals and events
in the net models. The precise syntax and semantics of this
net class are presented elsewhere [9], [10]. Here, we briefly
present the main additions to P/T nets. Compared to P/T nets,
IOPT nets add the following constructs:

• Explicit modeling of external input and output signals
and events;

• Guards (function of input signals) and priorities in tran-
sitions;

• Test arcs;
• Input and Output events in transitions;
• Output actions in places, as well as in transitions.

The metamodel for the Input-Output Place-Transition nets
reuses many of the elements of the PNML metamodel for
Place/Transition nets, such as places, transitions, and arcs, and
extends it to include specific concepts. The IOPT metamodel is

described in RelaxNG, as well as in MOF and Ecore formats,
putting IOPT in the context of MDA artifacts and allowing
one to take benefit from the MDA infrastructure [10].

IOPT nets have a single server maximal step cycle accurate
semantics, which together with priorities in transitions, allows
the development of deterministic models. In this semantics,
all transitions that can fire will fire. To that end each fireable
transition has to be enabled (sufficient tokens in input places)
and ready (external signals and events allow the transition to
fire).

III. THE IOPT-TOOLS FRAMEWORK

IOPT-Tools is a framework that integrates a set of tools
supporting the development of digital controllers. The frame-
work is also being used for teaching [11], which serves as a
validation of its usability and simplicity. Presently, it integrates
the following tools in a web-based interface allowing cloud
based storage of the Petri net models being created [12]:

• Edit Model — Enter in the IOPT Model Editor tool;
• Simulate the models — executing the ”token game” [13];
• Generate C Code — Invoke the automatic software C

code generator [14] ;
• Synthesize VHDL — Invoke the automatic hardware

VHDL code generator [15];
• Generate State Space — Execute the State-space gener-

ation tool;
• Query Editor — Open the Query-editor tool to specify

state-space queries;
• Query Results — View query results after the end of

state- space calculation;
• Download Model File — Download the current model

file to the users PC;
• Export Snoopy C — Convert the current model to the

Snoopy/IOPT editor file format, using C syntax for math
expressions;

• Export Snoopy VHDL — Convert the current model to
the Snoopy/IOPT editor file format, using VHDL syntax
for math expressions;

• Decompose GALS — Decompose the selected model into
several sub-models according to specified GALS time-
domains [16], [17];

• Model List — Select other model from the list of models
stored in the server’s user account.

Each model (component) can be seen as a sub-model to
be mapped into an hardware or software platform assuming
hardware-software co-design techniques and specific metrics,
as power consumption, performance, among others. FPGAs
have been used in conjunction with IOPT-Tools framework
allowing exploring and exercising solutions in hardware-
software solution space. This allows the development of glob-
ally asynchronous, locally synchronous (GALS) systems.

Figure 1 shows the login web page. After, Figure 2 shows an
IOPT net model for a quad encoder model, ready to be selected
among several available, and Figure 3 shows the screen for the
simulator tool.

Fig. 1. Login window.

Fig. 2. Selecting one model to open, while presenting the one currently
selected.

Fig. 3. Simulation tool window.

For the generation of the state-space, the user specifies
the initial marking and the state-space is generated using the
maximal step semantics of IOPT nets, taking in consideration
the values of input signals and events. The state space can
then be queried. Each query is a logical expression that can
use place markings and event output signals associated to
transitions. These queries allow the verification of some forms
of reachability.

Listing 1 and Listing 2 show part of the generated C and
VHDL code, respectively, which can be directly deployed
into implementation platforms, such as FPGAs for VHDL
descriptions, and current popular platforms (e.g., Arduino and
Raspberry PI) for C based implementations.

Listing 1. Part of the generated C code
25 /∗ Net quad encode r − IOPT ∗ /
26 /∗ Automat ic code g e n e r a t e d by IOPT2C XSLT

t r a n s f o r m a t i o n . ∗ /
27

28 # i n c l u d e < s t d l i b . h>
29 # i n c l u d e ” n e t t y p e s . h ”
30

31 i n t t r a c e c o n t r o l = TRACE CONT RUN;
32

33 e x t e r n vo id w e b S e r v e r i n i t () ;
34 e x t e r n vo id w e b S e r v e r g e t R e q u e s t () ;
35 e x t e r n vo id webServe r sendResponse () ;
36 e x t e r n vo id w e b S e r v e r d i s c o n n e c t C l i e n t () ;
37 e x t e r n vo id w e b S e r v e r c h e c k B r e a k P o i n t s () ;
38

39 s t a t i c quad encoder NetMark ing marking ;
40 s t a t i c q u a d e n c o d e r I n p u t S i g n a l s i n p u t s ,

p r e v i n p u t s ;
41 s t a t i c q u a d e n c o d e r P l a c e O u t p u t S i g n a l s p l a c e o u t

;
42 s t a t i c q u a d e n c o d e r E v e n t O u t p u t S i g n a l s e v ou t ;
43

44 vo id s e t u p ()
45 {
46 c r e a t e I n i t i a l q u a d e n c o d e r N e t M a r k i n g (&

marking) ;
47 i n i t q u a d e n c o d e r O u t p u t S i g n a l s (&p l a c e o u t ,

&e v ou t) ;
48 q u a d e n c o d e r I n i t i a l i z e I O () ;
49 q u a d e n c o d e r G e t I n p u t S i g n a l s (&p r e v i n p u t s ,

NULL) ;
50 # i f d e f HTTP SERVER
51 w e b S e r v e r i n i t () ;
52 # e n d i f
53 }
54

55 vo id loop ()
56 {
57 # i f d e f HTTP SERVER
58 w e b S e r v e r g e t R e q u e s t () ;
59 # e n d i f
60

61 i f (t r a c e c o n t r o l != TRACE PAUSE)
62 q u a d e n c o d e r E x e c u t i o n S t e p (&marking , &

i n p u t s , &p r e v i n p u t s , &p l a c e o u t , &
ev ou t) ;

63 e l s e q u a d e n c o d e r G e t I n p u t S i g n a l s (&i n p u t s ,
NULL) ;

64 i f (t r a c e c o n t r o l > TRACE PAUSE) −−
t r a c e c o n t r o l ;

65

66 # i f d e f HTTP SERVER
67 webServe r sendResponse () ;
68 # e n d i f
69

70 quad encoder LoopDelay () ;
71

72 # i f d e f HTTP SERVER
73 w e b S e r v e r d i s c o n n e c t C l i e n t () ;
74 w e b S e r v e r c h e c k B r e a k P o i n t s () ;
75 # e n d i f
76 }
77

78 i n t main ()
79 {
80 s e t u p () ;

81

82 do loop () ;
83 w h i l e (q u a d e n c o d e r F i n i s h E x e c u t i o n (&

marking) == 0) ;
84

85 r e t u r n 0 ;
86 }

Listing 2. Part of the generated VHDL code
25 −− Net quad encode r − IOPT
26 −− Automat ic code g e n e r a t e d by IOPT2VHDL XSLT

t r a n s f o r m a t i o n .
27 −− by GRES R e s e a r c h Group − 2014
28

29

30 L i b r a r y IEEE ;
31 Use IEEE . STD LOGIC 1164 . ALL;
32 Use IEEE . STD LOGIC ARITH . ALL;
33 Use IEEE . STD LOGIC UNSIGNED . ALL;
34

35

36 E n t i t y quad encode r IS
37 P o r t (
38 Clk : IN STD LOGIC ;
39 CH A : IN STD LOGIC ;
40 CH B : IN STD LOGIC ;
41 COUNTER : OUT INTEGER RANGE 0 TO 255 ;
42 Enab le : IN STD LOGIC ;
43 R e s e t : IN STD LOGIC
44) ;
45 End quad encode r ;
46

47 A r c h i t e c t u r e S t r u c t u r a l OF quad encode r IS
48

49 S i g n a l p 2 : INTEGER RANGE 0 TO 1 := 0 ;
50 S i g n a l p 3 : INTEGER RANGE 0 TO 1 := 0 ;
51 S i g n a l p 4 : INTEGER RANGE 0 TO 1 := 0 ;
52 S i g n a l p 5 : INTEGER RANGE 0 TO 1 := 0 ;
53 S i g n a l p 30 : INTEGER RANGE 0 TO 1 := 1 ;
54

55 S i g n a l prev CH A : STD LOGIC := ’ 0 ’ ;
56 S i g n a l prev CH B : STD LOGIC := ’ 0 ’ ;
57

58 S i g n a l event A UP : STD LOGIC := ’ 0 ’ ;
59 S i g n a l event A DOWN : STD LOGIC := ’ 0 ’ ;
60 S i g n a l event B UP : STD LOGIC := ’ 0 ’ ;
61 S i g n a l event B DOWN : STD LOGIC := ’ 0 ’ ;
62

63 S i g n a l s COUNTER : INTEGER RANGE 0 TO 255 :=
0 ;

64

65 −− Array i m p l e m e n t a t i o n :
66

67 Begin
68 −− S e l e c t e d a r r a y i t e m s :
69

70 p r o c i n e v e n t s : PROCESS(Clk , Enab le) IS
71 Begin
72 I f f a l l i n g e d g e (Clk) Then
73 (c o n t i n u e s)

IV. RELATED WORK

Petri nets have been used for a long time for the description
of hardware systems and for the design of digital controllers
(e.g. [18]). For example, a Petri net variant called STG (State-
transition graphs) has been widely used in the field of logic
systems design.

Another Petri Net inspired formalism is NCES/TNCES (Net
Condition Event System/ Timed Net Condition Event System),
which has been used for system modeling, mostly in the

automation area [19]. Due to its structure, NCES can be used
to represent module interface abstraction and internal behavior,
and can be easily mapped onto IEC61499 function blocks. The
NCES editor ViEd has several associated tools as ViVe Visual
Verifier that contain model builder, simulator, time diagram
generator among others.

When comparing IOPT-Tools with other Petri net editors
it is possible to conclude that there are several/many editors
also freely available, however only a very few of them offer
the possibility of code generation. Compared to other Petri
net based code generators for hardware/software systems, the
tools in IOPT-Tools have a significant advantage, mainly due
to the modeling capabilities of IOPT nets, but also due to its
web based platform.

V. ADDITIONAL INFORMATION

The IOPT tools can be freely used at http://gres.uninova.
pt/IOPT-Tools. A user manual is available from the login
webpage http://gres.uninova.pt/iopt usermanual.pdf and a list
of related publications can be found at http://gres.uninova.pt/
iopt publications.html. The developers can be contacted using
the GRES Research Group email: gres@uninova.pt.

A self-explanatory short video presentation, without sound,
is available at https://goo.gl/0cnRkf.

The editor employs a plug-in architecture to simplify the
addition of third party extensions [20].

VI. CONCLUSIONS

IOPT-Tools have been successfully used to design digital
controllers, targeting both software and hardware platforms
[21], and has been extensively validated within several master
courses at the department of Electrical and Computer Engi-
neering at Nova University of Lisbon [11]. The cloud-based
architecture and web user interface requires no local software
installation and can be used from any PC or tablet, thus
simplifying data sharing and collaborative work [8].

A Javascript code generator (used within the simulator tool),
as well as a MatLab/Simulink code generator (currently in beta
testing phase) are expected to be publicly available in the near
future.

Ongoing and future work also include a new web-based
Animator tool, to implement user interfaces for simulation,
and tools to import/export model files from/to other Petri-
net tools, as well as better support for modularity and net
operations (namely net addition and net splitting operations
allowing composition and decomposition of models). Finally,
a configurator tool is currently being developed to allow
semi-automatic assigning of platform I/O pins, definition of
platform specific options, and code deployment into specific
implementation platforms.

ACKNOWLEDGMENT

This work is financed by National Funds through Portuguese
Agency ”FCT -Fundação para a Ciência e a Tecnologia” in the
framework of project PTDC/EEI-AUT/2641/2012.

REFERENCES

[1] R. David and H. Alla, Petri Nets & Grafcet; Tools for Modelling Discrete
Event Systems. Prentice Hall International (UK) Ltd, 1992.

[2] L. E. Holloway, B. H. Krogh, and A. Giua, “A Survey of Petri
Net Methods for Controlled Discrete Event Systems,” Discrete Event
Dynamic Systems, vol. 7, pp. 151–190, 1997.

[3] G. Frey and M. Minas, “Editing, Visualizing, and Implementing Signal
Interpreted Petri Nets,” in Proceedings of the AWPN 2000, Koblenz, Oct.
2000, pp. 57–62.

[4] H.-M. Hanisch and A. Lüder, “A Signal Extension for Petri Nets and
its Use in Controller Design,” Fundamenta Informaticae, vol. 41, no. 4,
pp. 415–431, 2000.

[5] “Petri nets tool database,” accessed on 2015/07/30. [Online]. Available:
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

[6] C. A. Petri, “Kommunikation mit Automaten,” Rheinisch-Westfälisches
Institut für Instrumentelle Mathematik an der Universität Bonn, Bonn,
Dissertation, Schriften des IIM 2, 1962.

[7] W. Reisig, Petri nets: an Introduction. Springer-Verlag New York, Inc.,
1985.

[8] L. Gomes, F. Moutinho, and F. Pereira, “IOPT-tools – a web based tool
framework for embedded systems controller development using Petri
nets,” in Field Programmable Logic and Applications (FPL), 2013 23rd
International Conference on, Sept 2013, pp. 1–1.

[9] L. Gomes, J. Barros, A. Costa, and R. Nunes, “The Input-Output
Place-Transition Petri Net Class and Associated Tools,” in Proceedings
of the 5th IEEE International Conference on Industrial Informatics
(INDIN’07), Vienna, Austria, Jul 2007.

[10] J. Ribeiro, F. Moutinho, F. Pereira, J. Barros, and L. Gomes, “An
Ecore based Petri net Type Definition for PNML IOPT Models,” in
Proceedings of the 9th IEEE International Conference on Industrial
Informatics (INDIN 2011). Lisbon, Portugal: IEEE, jul 2011, http:
//dx.doi.org/10.1109/INDIN.2011.6034992.

[11] L. Gomes and A. Costa, “Cloud based development framework using
IOPT Petri nets for embedded systems teaching,” in Industrial Electron-
ics (ISIE), 2014 IEEE 23rd International Symposium on, June 2014, pp.
2202–2206.

[12] F. Pereira, F. Moutinho, and L. Gomes, “IOPT-Tools - Towards cloud
design automation of digital controllers with Petri nets,” in Proceedings
of the 2014 IEEE International Conference on Mechatronics and Control
(ICMC 2014). Jinzhou, China: IEEE, jul 2014.

[13] F. Pereira and L. Gomes, “Cloud based IOPT Petri net simulator to test
and debug embedded system controllers,” in Technological Innovation
for Cloud-Based Engineering Systems, ser. IFIP Advances in Informa-
tion and Communication Technology, L. M. Camarinha-Matos, T. A.
Baldissera, G. Di Orio, and F. Marques, Eds. Springer International
Publishing, 2015, vol. 450, pp. 165–175.

[14] R. Campos-Rebelo, F. Pereira, F. Moutinho, and L. Gomes, “From
IOPT Petri nets to C: An automatic code generator tool,” in Industrial
Informatics (INDIN), 2011 9th IEEE International Conference on, July
2011, pp. 390–395.

[15] F. Pereira and L. Gomes, “Automatic synthesis of VHDL hardware
components from IOPT Petri net models,” in Industrial Electronics
Society, IECON 2013 - 39th Annual Conference of the IEEE, Nov 2013,
pp. 2214–2219.

[16] L. Gomes, F. Moutinho, F. Pereira, J. Ribeiro, A. Costa, and João
Paulo Barros, “Extending Input-Output Place-Transition Petri Nets for
Distributed Controller Systems Development,” in Proceedings of the
2014 IEEE International Conference on Mechatronics and Control
(ICMC 2014). Jinzhou, China: IEEE, jul 2014.

[17] F. Moutinho and L. Gomes, “Asynchronous-channels within Petri net-
based gals distributed embedded systems modeling,” Industrial Informat-
ics, IEEE Transactions on, vol. 10, no. 4, pp. 2024–2033, Nov 2014.

[18] A. Yakovlev, L. Gomes, and L. Lavagno, Hardware Design and Petri
Nets. Kluwer Academic Publishers, 2000.

[19] V. Vyatkin, “Modelling and verification of discrete control systems,”
2007. [Online]. Available: http://www.fb61499.com/valid.html

[20] F. Pereira, F. Moutinho, J. Ribeiro, and L. Gomes, “Web based IOPT
Petri net Editor with an extensible plugin architecture to support generic
net operations,” in IECON 2012 - 38th Annual Conference on IEEE
Industrial Electronics Society, Oct 2012, pp. 6151–6156.

[21] F. Pereira and L. Gomes, “FPGA based speed control of Brushless DC
Motors using IOPT Petri Net models,” in Industrial Technology (ICIT),
2013 IEEE International Conference on, Feb 2013, pp. 1011–1016.

