
CONSOLAS: A Model-Based Tool for Automatic
Configuration and Deployment of Cloud Applications

Hui Song, Franck Chauvel, Franck Fleurey, Nicolas Ferry, Arnor Solberg
SINTEF ICT, Oslo, Norway. Email: {first.last}@sintef.no

Abstract—This paper demonstrates CONSOLAS, an automatic
tool for the configuration and deployment of software applica-
tions in cloud. We provide Domain-Specific Modelling Languages
for application developers to specify the components in the
application and the possible cloud resources to host them, as
well as the constraints between them. Based on the specifications,
CONSOLAS assists application operators in configuring and
deploying the application automatically. Operators only need to
provide simple hints on how they want to configure the applica-
tion, and the tool generates a complete and valid configuration
and deploys it. CONSOLAS also supports operators in refining the
configuration both before and after the deployment: Operators
make small and partial changes on an existing configuration,
and the tool automatically completes the changes and performs
incremental deployment. We demo the tool with a sample case,
and a video can be found at https://youtu.be/V9WWeFi1ZD8 .

I. INTRODUCTION

Many people choose to run software applications in a cloud
environment. They obtain applications from public reposito-
ries such as GitHub, configure them according to their own
requirements, and deploy them on the virtual machines (VMs)
that they provision from a private or a public cloud. In this
way, these application operators provide their own services to
customers based on the existing applications.

Configuration and deployment of cloud applications is chal-
lenging. Unlike traditional desktop applications or the modern
mobile Apps that can be downloaded in a monolithic way
and launched with simple set-ups, a cloud application usually
consists of multiple components that can be hosted by different
VMs. Moreover, for performance or security purpose, the same
component may have multiple instances scattered in different
VMs. Each component may have its own parameters and
depend on several other components. To configure a cloud
application, operators need to decide how many instances to
create for each component type, set the parameters for each
instance, link them together, and assign them to proper VMs.
These decision points are sophisticatedly related, because of
the many constraints existing in the application or the cloud
environment, and therefore, it is difficult and tedious to reach
a globally valid configuration. A configuration is also hard to
refine and adjust - even a small change may require a lot of
subsequent revisions on different parts of the configuration to
make it globally valid.

In this paper, we present the CONSOLAS (CONstraint
SOLving for Architecture Setup) tool for model-based, auto-
matic configuration and deployment of cloud applications. We
provide domain specific modelling languages (DSMLs) for ap-
plication developers to specify the components and their target

cloud resources, as well as the constraints and best patterns
to configure their applications. Using the specifications as a
reference, CONSOLAS helps operators to configure and deploy
the application iteratively: In each iteration, the operators give
simple hints on what configuration they expect or make small
changes on the existing configuration, and CONSOLAS returns
a complete and valid configuration for the next iteration. The
configurations are in the form of architectural models, which
are intuitive for operators to understand and will be deployed
fully automatically into the mainstream cloud platforms by
CONSOLAS. The technical basis of the tool is our research on
multi-cloud modelling, language engineering, and constraint
solving on software architectures.

In the rest of this paper, we use a sample cloud applica-
tion (introduced in Section II) to show how developers use
CONSOLAS to specify their applications (in Section IV), and
how operators use it to automatically configure and deploy
the applications (in Section V). A demonstration video on the
same case can be found at https://youtu.be/V9WWeFi1ZD8 .

II. SAMPLE CASE

SMARTGH [1] is a route planning application developed
by Trinity College Dublin. It searches routes on a city scale
taking into consideration the sensor data such as pollution and
noise. Figure 1 summarises its main components: Sensors
collect data from city sensors or public data sources and
populate them into a Redis database. Hoppers link the
sensor readings to OpenStreetMap maps to plan smart routes.
Webs receive routing requests and display the results from
Hoppers. An adaptable Load-Balancer forwards re-
quests to the user-preferred Web. For the sake of diversity,
developers provide different Hoppers specialized for foot
routing, fast car routing (FCHopper), etc., and also different
types of Sensors. Each component is wrapped as a docker
image, which can be obtained at hub.docker.com/u/songhui/.

Third-party operators can configure and deploy SMARTGH
on their own IaaS (Infrastructure as a Service) environments,
providing a diverse of smart routing services. Figure 2 shows
a sample configuration, where three Hoppers and their Webs
are hosted by two virtual machines. One Hopper utilizes the
data from a PollutionSensor, via a Redis database. The
essential part of this configuration, as is highlighted by greyed
boxes in Figure 2, is to decide what types of hopper and
sensors to provide, and how many instances to create for each
type. This part is interested to the operator, because it defines
the features provided by his/her routing service. However, the



rmem : Integer
port: Integer

Deployable

vmem : Integer

Vm

"vmem = 4"

OpenStackLarge

"vmem = 8"

OpenStackHuge

Lb

Web

"rmem=2"

LocalRedis
Hopper

Sensor

Redis

NoiseSensor

PollutionSensor

FootHopper CarHopper

FastCH NormalCH

"rmem=4" "rmem=2"

deploy

sdbdb

hp

Fig. 1. SMARTGH components

port: 81
mem:1

w1:Web

port: 82
mem:1

w2:Web

h1:FastCH

rmem: 4
port:8080

h2:FootHopper

rmem: 1
port:8081

h3:FootHopper

rmem: 1
port:8080

port: 83
mem:1

w3:Web

s1:PollutionSensor

LocalRedis

vmem: 4

v2:OpenStackLarge

vmem: 8

v1:OpenStackHuge

rmem: 2
port:6397

rmem: 1
port:0

deploy deploy

hp
db

sdb

port: 80
mem:0

lb:LoadBalancer
lb

Fig. 2. SMARTGH components

operator has additional tedious jobs to do to reach a proper
SMARTGH configuration, such as to arrange the component
instances into proper VMs, add auxiliary components (i.e.,
web, load balancers, database), link the components, assign
port numbers, etc. These additional jobs are difficult because
there are many constraints that the operator must obey. For
example, a VM cannot host so many components that the
total memory consumption of these components exceeds the
VM’s capacity; two components on the same VM should
have different port numbers; every Hopper needs its own
Web; a Hopper and its database (if there is one) should
better be hosted by the same VM, etc. An ideal situation
would be that that operators only suggest the essential part
of the configuration, and all the tedious part is automatically
generated according to the constraints and patterns. This is
the automatic configuration supported by CONSOLAS. It also
deploys the configuration automatically into the IaaS platform.

Application configuration is not a once-for-all task, and
operators may need to adjust their SMARTGH configurations
either before they are deployed, or after they have been running
for a while, to optimise the service or to meet new user
requirements. For example, when there are more user requests
for walking routes, the operator may want to add a new
FootHopper into the configuration in Figure 2. For such ad-
justment, a small change may require complicated co-changes
to reach a valid configuration again. For the sample scenario,
the co-changes will be to add a Web for the new hopper,
migrate a component from v1 to v2 to save space for the new
components, linking it to the database, etc.. CONSOLAS also
supports such agile and incremental reconfiguration: Operators

Specify applications 
and resources

Specify constraints / 
patterns / cost

generate constraint 
satisfaction problem

solve complete 
architecture

satisfied
?

configuration hints 
(partial configuration/ 

small changes)

Automatic 
provisioning and 

deployment

CloudML 
type model

CloudML 
topology 
model

de
ve

lo
pe

r
op

er
at

or
s

need 
change

running system

no

yes
yes

consolas

Fig. 3. CONSOLAS process overview

make the changes that they cares, and the tool completes the
required co-changes automatically, and deploys all the changes
to the system incrementally.

III. TOOL OVERVIEW

Figure 3 summarises the process of using CONSOLAS to
configure and deploy a cloud application. The shadowed part
of the flowchart is the internal process of the tool, and the
rest is the activities and artefacts required by tool users. We
identify two different roles of tool users, i.e., the developers
and the operators, and divide the process into two parts, each
for a different user role.

Developers specify the types of components and resources.
After that, they specify the constraints that a proper con-
figuration should follow. The artefacts produced by the two
activities are a type model specified in CLOUDML (a DSML
for cloud specification developed by SINTEF) and a set of
First-Order Logic constraints (specified by a python-based
DSL, implemented for CONSOLAS). Details and samples of
the specifications can be found in Section IV.

The specifications are machine-readable to CONSOLAS,
which helps operators configure their own services from the
application. The process starts from the operators’ providing a
partial configuration as a hint. CONSOLAS then automatically
generates a valid configuration, and visualize it to the operator.
If the operators are not satisfied with the configuration, they
can make changes on it and ask CONSOLAS to complete the
changes. This loop continues until a satisfying configuration
is obtained, and CONSOLAS will automatically deploy the
configuration. Finally, after the application is already running,
operators can still change the configuration. Their changes,
along with the necessary subsequent changes suggested by
CONSOLAS, will be deployed into the system in an in-
cremental way. Details about how operators provide partial
configuration and modify it can be found in Section V.



1 deployment model SmartGHDiv
2 provider openstack_nova : ...
3 types{
4 vm OpenStackLarge{
5 provider : openstack_nova
6 ram : 4096, core : 1,
7 os : "ubuntu", os64,
8 provided host ubuntuPrv
9 ...}
10 internal component FootHopper{
11 required host ubuntuReq
12 provided communication hopperPrv
13 required communication redisReq
14 resource DockerImage{
15 download: "sudo docker pull..."
16 start: "cd ˜; sudo docker run..."
17 }
18 communication hp
19 from hopperReq to hopperPrv...
20 }
21 instances{\\left empty for auto config}
22 }

Fig. 4. Excerpt of CLOUDML specification for SMARTGH

IV. SPECIFICATION OF RESOURCE AND APPLICATION

CONSOLAS needs application developers to specify the
component and resources types, and the constraints on them.
The specification is similar to the “INSTALL” manuals of
traditional software applications, but are machine-readable to
the CONSOLAS tool. We provide two languages to support the
specifications.

CONSOLAS integrates an existing language named
CLOUDML for the specification of applications and cloud
resources. Figure 4 shows an excerpt of the CLOUDML
model for SMARTGH. In the types section, the SMARTGH
developers define the resource and component types, ı.e.,
the boxes in Figure 1. For a resource type, such as the
VM OpenStackLarge, they specify the cloud provider,
some common arguments across all the instances of this
type (such as 4096MB of RAM, 64bit Ubuntu OS, etc.), and
the hosting service they can provide. The developers also
define a component type FootHopper: It requires a hosting
service (not surprisingly the same as the one provided by
OpenStackLarge) and a communication service from a
database. The component can be downloaded and started using
the specified docker commands. Finally, a communication
relation connects the communication services provided by
Hoppers to the service required by Web. The instances
section of this model is left empty, which will be filled with
the automatically generated configuration.

CONSOLAS provides another domain-specific language for
developers to specify constraints on top of the type specifica-
tions. We design and implement the language as an embedded
one on the basis of Python. Figure 5 shows three sample
constraints specified by the CONSOLAS constraint language.
The first constraint specifies that for any Hopper, there must
be a Web for it. The second one specifies that if a Hopper

1 g_forall((x, Hopper),
2 g_exists((y, Web), hp(y)==x)))
3 g_forall([(x, Hopper)],
4 soft(50, Implies(alive(db(x)),
5 deploy(x)==deploy(db(y)))))
6 g_forall([(x, VM)],
7 soft(mem(x)*10, Not(alive(x))))

Fig. 5. Sample constraints for SMARTGH

needs a database, then the two components should better be
deployed on the same VM. This is a soft constraint with a
priority as 50 (in the middle between 0 and 100). Finally, the
last constraint sets up a cost to use any VM instance, which is
correlated to the memory size of the VM. This soft constraints
prevents CONSOLAS from using up too much cloud resources.

V. AUTOMATIC CONFIGURATION AND DEPLOYMENT

CONSOLAS helps operators automatically configure and
deploy a cloud application in their own ways. In this section,
we first use a simple scenario to illustrate the configuration and
deployment process, and then briefly introduce the research
approaches that enable this automatic process.

A. A configuration and deployment scenario

As a sample scenario, We show how an operator uses CON-
SOLAS to achieve the SMARTGH configuration as described
in Section II and Figure 2, and deploy it on a private cloud.

Before configuration, the operator needs to have the applica-
tion and resource specification as described in Section IV, and
an account from a cloud provider (in this case, it is SINTEF’s
private cloud on OpenStack).

In the first iteration, the operator gives no input to CON-
SOLAS (i.e., an empty hint), and CONSOLAS returns an initial
configuration, with only a BasicHopper and a Web hosted
by one VM. This is obviously one of the smallest valid
configuration of SMARTGH, and CONSOLAS does not add
any additional component because it has a cost to do so (i.e.,
breaking the software constraints like Line 6 of Figure 5).

The initial configuration does not satisfy the operator, who
expects two instances of FootHoppers, one instance of
FastHopper, and a PollutionSensor. The operator
inputs this requirement into CONSOLAS as the following
configuration hints.

typeof(h1)==FastCH !
typeof(h2)==FootHopper !
typeof(h3)==FootHopper !
And(db(h3)==sdb(s1),typeof(s1)==PollutionSensor)!

The hints are essentially simple constraints on the config-
uration, and are written in the same CONSOLAS constraint
language as in Section IV. The first three hints require three
hoppers to be of specific types, and “!” means that the hints
apply to all the iterations afterwards. The last hint requires
that h3 connects to a PollutionSensor via a database.
The names of component instances (e.g., h2, s1) are syntax
sugars for operators to avoid the length expressions such as
”there exists three Hoppers, they are different, and their types



are...” Receiving these hints, CONSOLAS automatically returns
the configuration that has been shown in Figure 2. Only the
greyed component instances are directly required by the hints,
but all the rest in the configuration is automatically generated
by CONSOLAS. For example, it generates two Webs for the
two new Hoppers, according to the constraint at Line 1 of
Figure 5, enlarges v1 into an OpenStackHuge VM in order
to be able to host all the Webs and two Hoppers. Then it
instantiates a LoadBalancer because there are more than
one Webs. Finally, according to the last hints, it creates a
PollutionSensor s1 and a LocalRedis between s1
and h1. According to the constraints in Figure 5 Line 3, h3
and r1 are deployed to the same v2.

Now the operator is satisfied with the configuration, and she
provides CONSOLAS the endpoint and the account credential
of her target cloud platform and launches the deploy command.
CONSOLAS will automatically create two VMs, and instan-
tiates 9 docker containers and link them together according
to the configuration. After the automatic deployment process,
the operator can get the IP address of v1 (where the load
balancer is deployed) from the deployment log, and use port
80 to access the routing services.

After the system is running, the operator can still modify
the configuration. For example, for performance purpose, she
can require w3 and h3 to be hosted in the same VM:
deploy(w3)==deploy(hp(w3))

Due the resource limitation, CONSOLAS will create a new VM
in OpenStackHuge, migrate all the components on v2, as
well as w3 to the new VM, and finally terminate v2.

B. Research behind the tool

The automatic configuration and deployment of CONSOLAS
are based on our research of constraint-driven architecture
configuration and CLOUDML, respectively. CLOUDML is a
language for the modelling of cloud resources and topology.
CONSOLAS translate the CLOUDML model together with the
constraints into a Satisfactory Modulo Theory (SMT) problem:
Component instances are represented by enumeration items.
Types, attributes, and connection between components are
represented by uninterpreted functions. The constraints are
translated into First Order Logic assertions on these functions,
and can be either hard or soft. During the configuration
process, CONSOLAS first transform the operators’ hints into
constraints and integrate them into the SMT problem. After
that, it launches an constraint solving process to search for
a solution to the SMT problem, i.e., giving an interpretation
to each of the functions. The solution satisfies all the hard
constraints and minimize the total costs of violated soft con-
straints. For incremental configuration, CONSOLAS will also
generate a set of additional soft constraints according to the
previous configuration, so that the new configuration will have
as little deviation as possible from the previous one. Due to
the space limitation, we will not go into the details of the SMT
problem and the transformation. Interested readers can refer
to our previous publication [2]. CONSOLAS transforms the
solution back into a CLOUDML instance model for automatic
deployment. The deployment is done by the CLOUDML

framework [3]. It first instantiates the required VMs, and then
logs-in to the VMs to execute the download, configure
and start commands specified with each component.

VI. RELATED WORK

Chef [4] and Puppet [5] are the state-of-the-art cloud
management tools, and both of them support the configuration
of cloud applications based on scripting languages. Scripts
are useful when defining command sequences to configure
and deploy individual components, and these tools provide
mechanisms to reuse scripts for existing components. Yet
operators still need to manually design what components and
resources to use and how to link them together. From this point
of view, CONSOLAS’s automatic architecture configuration is
an ideal complement to these tools.

The automatic configuration in CONSOLAS shares the sim-
ilar idea with the research on auto-completion and auto cor-
rection of modelling tools, such as Egyed’s work for UML [6]
and Xiong et al.’s work on Feature Model [7]. However,
model editors suggest completions based on general-purpose
rules or constraints, whereas CONSOLAS allows developers to
define application-specific constraints. Moreover, as a tool for
automatic deployment, CONSOLAS always looks for complete
configurations rather than scattered completion suggestions.

VII. CONCLUSION

This paper introduces the CONSOLAS tool for automatic
configuration and deployment of cloud applications. Based
on developers’ specification on the application, resource and
constraints, CONSOLAS generates configurations of the ap-
plication and deploys them automatically to the cloud en-
vironment. Future work will be focused on improving the
usability, such as providing a web-based GUI and a set of
template for application and constraint specification. We will
also investigate how to infer the user preference from their
refinement iterations.

ACKNOWLEDGEMENT

This work is supported by the EU FP7-ICT-2011-9 No.
600654 DIVERSIFY project

REFERENCES

[1] V. Nallur, A. Elgammal, and S. Clarke, “Smart Route Planning
Using Open Data and Participatory Sensing,” in Open Source Systems:
Adoption and Impact. Springer, 2015, pp. 91–100. [Online]. Available:
https://github.com/DIVERSIFY-project/SMART-GH

[2] H. Song, X. Zhang, N. Ferry, F. Chauvel, A. Solberg, and G. Huang,
“Modelling adaptation policies as domain-specific constraints,” in Model-
Driven Engineering Languages and Systems, 2014, pp. 269–285.

[3] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “Cloud
MF: Applying MDE to Tame the Complexity of Managing Multi-cloud
Applications,” in Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, 2014, pp. 269–277.

[4] Cloud Management Chef, https://www.chef.io.
[5] The Puppet Lab, https://puppetlabs.com/.
[6] A. Egyed, “Fixing inconsistencies in uml design models,” in Software

Engineering, 2007. ICSE 2007. 29th International Conference on. IEEE,
2007, pp. 292–301.

[7] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes
for software configuration,” in Software Engineering (ICSE), 2012 34th

International Conference on. IEEE, 2012, pp. 58–68.


