
A tool for the automatic generation  

of multimodel editors 

 

David Blanes 

Universitat Politècnica de València 

Camino de Vera, s/n, 46022, Valencia, 

Spain 

dblanes@dsic.upv.es

Javier Gonzalez-Huerta 

LATECE Group, Université de 

Québec à Montréal 

Avé President Kennedy, PK4938, 

H2X 3Y7, Montreal, QC 

gonzalez_huerta.javier@uqam.ca

Emilio Insfran 

Universitat Politècnica de València 

Camino de Vera, s/n, 46022, Valencia, 

Spain 

einsfran@dsic.upv.es 

 

 
Abstract— In a software development process, normally 

different stakeholders have different system views at different 

abstraction levels. This heterogeneity when applying the Model-

Driven Software Development approach requires the use of 

multiple views to represent a software system. However, EMF 

tools are focused on the generation of editors for one unique view. 

This fact affects negatively the maintainability, e.g. one editor 

must be modified when a new view is added in the system. In this 

demo, we present an infrastructure where the user can create 

metamodels for representing multiple views, and their 

relationships. This infrastructure allows creating automatically 

editors for any multimodel that represents these multiple views 

by means of the EMF code generation facilities. This solution 

provides a flexible way for generating automatically multimodel 

editors. Additionally, we show an example of a multimodel editor 

that illustrates the feasibility of the infrastructure. A video with a 

demo can be found at: http://goo.gl/rLmmZK.  

Index Terms— Multi-view modelling, EMF, model editors, 

editor generation. 

I. INTRODUCTION AND MOTIVATION 

Usually multiple artifacts, roles, and phases are involved in 

a software development process. When following a Model-

Driven Software Development approach, a properly software 

system representation is usually composed by multiple views. 

These views are not isolated, and thus, it is necessary to 

establish relationships among them. In a possible scenario, we 

could have a system to represent a web page initially formed by 

two views: UML class diagrams to specify the structure, and 

Domain Specific Language (DSL) to represent the interface. 

Since the UML has no models to represent graphical interfaces, 

we should establish a relationship among each UML class from 

the class diagram, and the interface represented in our DSL. 

A suitable solution to this problem is the use of a 

multimodel, which it is composed of multiple views, 

represented as viewpoint models, and the relationships among 

them. An editor for this kind of representations needs to 

support not only the addition and removal of views, but also the 

establishment of relationships among these views and in a 

flexible way. Furthermore, it is required also to be able to 

import models (and their metamodels) created by using third 

party tools.  

Eclipse Modelling framework (EMF) is a framework, and 

code generation facility, for building tools and other 

applications, e.g. model editors, based on a structured data 

model [1]. EMF allows defining metamodels, and generating 

automatically the model editors for these metamodels. 

However, for creating multimodel editors this solution is not 

enough due the high coupling between the model and the 

multimodel editor (i.e., each time that a new view is created in 

the multimodel, it is necessary to change the graphical editor).  

In this demo we propose an infrastructure to address these 

problems. This infrastructure allows creating editors for 

multimodels adapted to the specific models in an automatic 

way, by using the EMF code generation facilities. Additionally, 

we show an example of a multimodel editor that illustrates the 

feasibility of this infrastructure for creating multimodel editors. 

Section II describes the designed multimodel architecture used 

to give infrastructure support. Section III describes the 

infrastructure to generate automatically editors and the 

implemented multimodel editors. Section IV, discusses similar 

approaches. Finally, Section V summarizes the demonstration. 

II. THE MULTIMODEL ARCHITECTURE 

A two-layer architecture is proposed to support our 

infrastructure. Firstly, a generic metamodel, called Core 

metamodel, is proposed for containing the necessary elements 

to represent a multimodel. A multimodel is defined as a set of 

interrelated models that represents different viewpoints of a 

particular system. A viewpoint is an abstraction that yields a 

specification of the whole system restricted to a particular set 

of concerns. In any given viewpoint it is possible to define a 

model of the system that contains only the objects that are 

visible from that viewpoint. Such a model is known as a 

viewpoint model, or a view of the system from that viewpoint 

[2]. Secondly, the user creates custom metamodels for specific 

problems that extends the meta-classes of the Core metamodel.  

The Core metamodel is based on the metamodel proposed 

at [3] for supporting multimodels. Fig. 1 presents the structure 

of the multimodel metamodel following an UML-like notation, 

where the dotted lines represent metaclasses that are contained 

on external metamodels. Any viewpoint model 

(ViewPointModel) contains the necessary entities (Entity) and 



relationships (Relationship) in the viewpoint model. An 

interesting application of metamodel structure is that we can 

load models that are supported by third party tools in our 

multimodel in a flexible and easy way. 

However, the multimodel is not limited to contain 

viewpoint models. The multimodel also contains additional 

entities (MultimodelEntity) that extend entities, on the proxy-

pattern [3], defined on the different viewpoint models defined 

so that they hold inter-viewpoint relationships 

(MultimodelRelationship). These relationships involve two 

multimodel entities extending model entities on different 

viewpoints. Finally, the multimodel entities and relationships 

could contain additional attributes (Multimodel Attribute). The 

attributes allows enriching a multimodel entity with additional 

information, e.g. add OCL constraints [3]. 

 

Fig. 1. Core Multimodel1 

III. AN INFRASTRUCTURE FOR GENERATING AUTOMATICALLY 

EDITORS 

To support the multimodel definition with two or more 

viewpoints, and the establishment of relations among elements 

of these viewpoints, it has been defined an infrastructure for 

editing and managing multimodels that implements the 

multimodel generic structure. In this section we describe how 

was carried out the implementation of this infrastructure. First, 

the user creates a custom metamodel to support a multi-model 

for a specific domain by extending the Core metamodel. 

Second, the user generates automatically and editor by using 

the EMF code generation facilities. We show an example of a 

multimodel editor that illustrates the feasibility of this 

infrastructure to create multimodel editors. The custom 

metamodel is used for representing a software product line 

from the automotive domain which comprises the safety-

critical embedded software systems responsible for controlling 

a car [4]. This example defines a multimodel2 used for deriving 

product architectures with the required quality attributes from 

the product line architecture. This editor allows editing 

viewpoints, entities, and relationships. The multimodel used to 

describe SPLs is composed of three interrelated viewpoints: 

                                                           
1 We use an UML-like notation to illustrate the multimodel structure. 

However, it only expresses the generic structure of a multimodel.  
2 The example material is available at: 

http://users.dsic.upv.es/~jagonzalez/CarCarSPL/ 

 The variability viewpoint expresses the commonalities and 

variability within the product line. It is represented with 

the notation proposed in [5]. The main element is the 

feature, which represents a system functionality. 

 The architectural viewpoint represents the architectural 

variability of the Product Line architecture that realizes the 

external variability of the SPL expressed in the variability 

viewpoint. It is expressed by means of the Common 

Variability Language (CVL) [6] and its main element is 

the Variability Specification (VSpec).  

 The quality viewpoint represents the hierarchical 

decomposition of quality into sub-characteristics, quality 

attributes, metrics and the impacts and constraints among 

quality attributes. It extends the ISO/IEC 2500 (SQuaRE) 

standard [7], thus providing the quality assurance and 

evaluation activities in SPL development with support. 

A. Generation of multimodel editors 

The user can register metamodels that represent viewpoints 

on a custom meta-model. The user can include as a view any 

EMF-compliant metamodel that represents a views point. The 

user loads the necessary viewpoint models, entities, and 

establishes relationships adapted to the problem domain. Once 

the custom metamodel is created, then the user generates the 

editor code by using the EMF code generation facilities [1]. 

Fig. 2 shows the obtained automotive multimodel generator. It 

is possible creating instances from this metamodel, and editing 

these instances by a standard tree-editor by means of the 

generated editor code.  

 

Fig. 2. Custom multimodel generator 

Once the editor code is generated, the views are registered 

in the plugin.xml file by using a wizard, which it is included in 

our tool. The mechanism is based on the eclipse extension 

points [6]. Fig. 3 shows the obtained extension point for the 

automotive multimodel. This registered information is used by 

the implement multimodel editor described above. 



 

Fig. 3. Generated extension point for registering the multimodel 

B. Multimodel edition 

In this sub-section, we describe the main functionalities and 

features of an editor created by using the infrastructure as 

example to illustrate the infrastructure for generating 

multimodel editors. The editor has been implemented with a 

multi-tab design. Each tab contains an editor dedicated to a 

specific functionality: edit views, import models, update 

models, edit elements, and edit relationships. The editor is able 

to create a specific view from scratch. Hence, the multi-model 

view is empty and then the user is responsible for manually add 

the entities and relationships. The editor is able to recognize the 

allowed views, entities, and relationships in the multimodel by 

using the information registered in the plugin.xml file. This 

solution allows decoupling among the editor interface and the 

models.  

If we have a model created using an EMF-based third party 

tool, we can import it to the multimodel by using the import 

view. We select the model to import in the editor, and then the 

model is loaded into memory by means of dynamic EMF code. 

If there are entities in the model that had been extended at 

design time in the meta-model, then the tool performs a type 

conversion (casting) of that entity. Thus, the original entity 

(Entity) is casted to an extended entity type (MultimodelEntity). 

This representation is based on inclusion polymorphism (also 

called sub-typing or redefinition).  

In the case that we would update an existing view, the 

editor also allows to update an existing viewpoint. For this 

purpose we have integrated a tool called EMFCompare [8], 

which provides a utility to compare models. When it is 

necessary to update a viewpoint, the viewpoint have to be 

loaded first by using the wizard, and then the editor shows the 

model differences among the loaded model and the 

corresponding viewpoint of the metamodel. This allows edit 

external tools with models that have been imported 

multimodel, even if their bodies are part of such relationships 

multi-model. Fig. 4 shows the editor integrating a new version 

of the variability viewpoint model. 

The editor also integrated a tree-editor (see Fig. 5) for the 

multimodel entities. It supports the addition, modification, and 

removal of any multimodel element. Finally, the multi-model 

includes a relationship editor among the different viewpoints.  

 

Fig. 4. Editor for updating the viewpoint models 

 

Fig. 5. Multimodel tree editor 

IV. RELATED WORK 

In this section, we analyze approaches that represent the 

system with multiple views and build editors following a 

model-driven strategy. Cicchetti [9] use a base multimodel for 

representing the system, and the views as subportions of the 

original base metamodel. A difference metamodel is derived 

from the original and views metamodels though ATL model-

to-model transformations. A bidirectional model-to-model 

transformation is executed in order to convert model 

differences between the view models and the original model. 

An editor for modifying the view models is automatically 

generated by a QVT model-to-model transformation, which 

takes as input the created view metamodel. In our approach, we 

use a multimodel that integrates several views and the 

relationships among them in the multimodel. This approach 

differs with ours primarily in the views goal; the hybrid 

approach creates a view from a single-based meta-model with 

synchronization, while our proposal uses a multimodel that 

connects several views and its relations among them. 

EMF Views [10] proposes a generic approach allowing to 

build views on any set of interrelated models that conform to 

potentially different metamodels. It provides a two-step 

approach that explicitly separates the specification of 

viewpoints from the realization and handling of corresponding 

views. A virtual metamodel, which is a metamodel whose 

(virtual) elements are just proxies to actual elements contained 



in other models, connects each viewpoint. The virtual 

metamodel is defined by using a Domain Specific Language 

(DSL) to create the proxies. Our infrastructure uses the 

multimodel metamodel in a similar way since it contains the 

proxies to the viewpoint model entities.  However, the 

definition and edition of the multimodel metamodel in our 

proposal is based on the EMF standard tools instead of using a 

DSL language for editing the virtual metamodel.  

MuVieMoT [11] proposes a set of domain-specific 

modelling languages for the specification and model-driven 

development of multi-view modelling tools. The starting point 

for the transformation is the modelling scenario model, which 

includes the specification of the meta models and the 

viewpoints. The Modelling Scenario is trans-formed into ALL 

code, which allows the immediate construction of an initial 

model-ling tool. MuVieMoT is focused on the generation of 

graphical editors for multi-view modeling tools. Our 

infrastructure has a different focus since it is oriented on the 

generation of general multimodel editors integrated in the EMF 

framework.  

We analyzed several proposals that deal with systems with 

multiple views and provide editors for these systems. Our 

proposal differs with the mentioned proposals since it is totally 

integrated into the EMF-platform without the need to define 

any DSL language. In our infrastructure, the multimodel 

integrates the multiple views and its relations by using the EMF 

framework. Additionally, the editor code is generated by using 

the standard EMF generator and allows using our multimodel 

editor. This integration potentiates the interoperability with 

other EMF tools. 

V. CONCLUSIONS & FURTHER WORK 

In this demo, we provide an infrastructure with the aim to 

generate automatically multimodel editors. This infrastructure 

is based on an architecture that contains a metamodel for 

multimodels, which is composed of viewpoint models to 

represents the views, and its relationships. If the user creates a 

custom multimodel for a specific domain based on the 

proposed architecture, then infrastructure allows obtaining a 

multimodel editor through the EMF code generation facilities. 

In order to illustrate the applicability of the infrastructure, we 

implemented a multimodel editor that is able to use this code to 

edit instances based on this custom multimodel independently 

of the used views in the multimodel. Furthermore, it is possible 

to populate a viewpoint model from external models generated 

with external tools in a flexible way; since it is possible to 

include external metamodels that represents external views in 

the multi-model metamodel. Additionally, the tool allows 

establishing relationships among elements from the viewpoints. 

We can also support updating a view from an external tool with 

the integration of the EMFCompare plug-in in the editor. The 

proposed infrastructure gives a solution to the problem of 

generating multimodel editors in a flexible way with a low 

coupling between the model and the editor interface. 

As future work, we intended to perform experimental 

validations applying our multimodel infrastructure in other 

domains to get feedback to improve the infrastructure. Finally, 

we are currently working in the definition of model 

transformations on ATL language to import the views in the 

multimodel editor, instead of transformations based on 

dynamic EMF. 

ACKNOWLEDGMENT 

This research was supported by the FPU program (AP2009-

4635) from the Spanish Ministry of Education and Science, the 

Value@Cloud project (MINECO TIN2013-46300-R), and the 

Natural Sciences and Engineering Research Council of Canada 

(NSERC). 

REFERENCES 

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, 

E.: EMF: Eclipse Modeling Framework. Addison-

Wesley Professional (2008). 

2. Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, 

D.W., Libes, D.E., Steves, M.P., Wallace, E.K.: 

Concepts for Automating Systems Integration. , 

Technical Report. National Institute of Standards and 

Technology. Gaithersburg, USA (2003). 

3. Javier González-Huerta: Quality Derivation, 

Evaluation and Improvement of Software 

Arquitectures on Software Product Lines Development 

(In Spanish). (2014). 

4. González-Huerta, J., Abrahão, S., Insfran, E.: 

Automatic Derivation of AADL Product Architectures 

in Software Product Line Development. Proceeding of 

the 1st International Workshop on Architecture 

Centric Virtual Integration (ACVI) Collocated with 

MODELS. pp. 69–78. Valencia, Spain (2014). 

5. Gómez, A., Gómez Llana, A.: Model Driven Software 

Product Line Engineering: System Variability View 

and Process, (2012). 

6. Object Management Group: Common Variability 

Language ( CVL ) OMG Revised Submission. (2012). 

7. ISO/IEC: ISO/IEC 25000:2005 Software Engineering 

- Software product Quality Requirements and 

Evaluation (SQuaRE) - Guide to SQuaRE, (2005). 

8. Zhang, X., Haugen, Ø., Moller-Pedersen, B.: Model 

Comparison to Synthesize a Model-Driven Software 

Product Line. Proceeding of the 15th International 

Software Product Line Conference (SPLC). pp. 90–99. 

IEEE (2011). 

9. Cicchetti, A., Ciccozzi, F., Leveque, T.: A hybrid 

approach for multi-view modeling. Electron. 

Commun. EASST. 50, (2012). 

10. Bruneliere, H., Perez, J.G., Wimmer, M., Cabot, J.: 

EMF Views: A View Mechanism for Integrating 

Heterogeneous Models. Proceeding of the 34th 

International Conference on Conceptual Modeling 

(ER). pp. 19–22. , Stockholm, Sweden (2015). 

11. Bork, D., Karagiannis, D.I., Fill, H.-G.I.: Model-

Driven Development of Multi-View Modelling Tools: 

The MuVieMoT Approach. Proceedings of the 9th 

International Joint Conference on Software Paradigm 

Trends (ICSOFT PT). pp. 11–23 (2014).


