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Abstract. Computer vision discretizes space in pixels and then proposes ap-
proaches (i.e. segmentation, edge detectors, feature detectors, etc.) to arrange
those pixels together again in order to detect objects and to describe them inside
space by naming its location, topology, distance, etc. in a scene. As the basics in
computation are the discretization of continuous signals (i.e. Boolean calculus,
light waves represented in colour coordinates, etc.), properties of the space must
be reminded to students when teaching computer vision from a spatial cognition
perspective. Psychological spatial thinking tests help students to remind which
abilities they use to solve spatial problems such as inferring cross sections or
canonical views of a 3D object, which are common problems in industrial design
engineering or computer-aided design (CAD) tasks. According to our experience,
Qualitative Spatial and Temporal Reasoning methods provide students with tools
to represent space and its continuous transformations, which enable them to de-
fine approaches closer to spatial cognitive reasoning.

1 How Computer Vision discretizes Space

In computer vision, images of scenes are digitalized, that is, divided into pixels or points
corresponding to 3 colour coordinates (i.e. RGB). In order to recognize objects inside
digital images, these pixels can be: (i) split by a boundary (i.e. transforming the image
into grey scale and analysing intensity transitions between the pixels [1]); (ii) brought
together using a similarity measure (i.e. based on colour closeness or other features);
(iii) matched to predefined pixels corresponding to objects know a priori (i.e. feature
detectors SURF [2]), etc. (see Fig. 3 for overview). Those methods try to recompose
the continuity of the space lost in the digitalization, since this continuity is important
in order to detect/recognize objects, give them a name/meaning and describe its spatial
features in space (i.e. location, topology, shape, colour) [4]. In 3D object recognition
the problem is similar: a scene is represented as a set of points floating in the air, called
point clouds (Fig. 2). To recognize objects there, these points must be put together again
by learning different views of the object using machine learning methods [5].

Some of the problems intelligent systems must solve, are spatial problems which re-
quire spatial thinking such as inferring cross sections or canonical views of a 3D object,
in order to recognize it. In real space, objects preserve continuity, that is, if a change
happens to an object side (dimension), it also affects the other dimensions automati-
cally. For example, when a cup handle breaks, we humans do not need to check from
all perspectives to perceive the change in shape and depth, since continuity in space (i.e.
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Fig. 1. Image of a scene represented as a matrix of pixels Red Green and Blue (RGB), then seg-
mented by the boundary extraction method by Canny [1]; colour segmentation by Felzenszwalb
[3]; and an example of object detection by SURF [2] feature matching.

(a) Original image (b) Point clouds (c) Object recognition

Fig. 2. Scene captured by a RGB-depth sensor (b) resulting point clouds and (c) classifying point-
clouds by machine learning (see [5] for methods and details).

edge parallelism [6]) is in our common sense from our childhood. In computer vision,
pixels or cloud points do not automatically preserve this continuity. Therefore, discretiz-
ing space and then finding its continuity again is computationally very expensive and a
challenge in AI and computer vision nowadays, as far as we are concerned.

2 The Spatial Thinking Perspective

What can we learn from spatial cognition research that we can apply to computer vision
and computer systems in general, so that the process of interacting with space is more
‘intelligent or intuitive’?

In my teaching classes, spatial cognition is introduced from the point of view of
spatial problem solving. Students in computer science get surprised when I ask them
to answer some psychological tests on: (i) diagrammatic representations, translation
from 3D to 2D and viceversa [7], (ii) two dimensional mental transformations [8], (iii)
object perspectives in spatial orientation [9, 10], (iv) topographic map assessment [11],
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(v) inferring cross sections of 3D objects [12], (vi) visualization of 3D views test [13,
14], (vii) visualization of 3D rotations [15], etc.

After carrying out these tests, students realize some of the skills required in spatial
problem solving. Then they are required to define logical approaches to solve these
spatial problems. In their bachelor degree, they acquire knowledge about the digitalized
information that computer systems get. So, they must think out of the box to identify
ways to solve ‘spatial-analog’ problems in a digitalized world. Some of the properties
students get aware of after solving the spatial problems are:

– Abstraction: people abstract dimensions in space (i.e. by assuming one dimension
as constant) and re-represent data in a way that helps visualizing a problem to solve.
For example, a map of the Earth represents 3D space in a 2D paper, sometimes
assuming relief or altitude as constant.

– Continuity: dimensions in space are continuous. Although they can be abstracted
or considered as constant in a representation, this representation must be coherent
with the space and transmit changes in the dimension abstracted, if produced. If a
change in relief is produced (i.e. a road is cut), this change should be transmitted to
all dimensions and the map should represent this discontinuity.

– Relativity: most dimensions in space are relative or inter-related to each other. For
example, when comparing roads in a map, if the roads are represented by abstract-
ing the same dimension, then they can be compared directly. If one road considers
relief while the other does not, then they are not comparable.
Qualitative Reasoning methods is also introduced to students by Allen’s model of

temporal relations which is very useful to introduce continuity and reasoning constraints
in time which then we can extrapolate to space by explaining the notion of conceptual
neighbourhood in common space [16] and in other spaces, such as colour spaces [17].

3 Result Example: Qualitative Description of Objects using Depth

The result of teaching spatial thinking related to computer vision and to qualitative
modelling leaded to the definition of a model for 3D object description which takes
into account depth in the 3 canonical perspectives of the object at the same time [18]
(see Fig. 3). Thus, it propagates changes in object volume, and it can also identify
inconsistent descriptions. Further evaluation is needed to study how cognitive is the
proposed model.
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Fig. 3. Tests that motivated the Q3D model and example of its utility.
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