
Finding and Fixing Type Mismatches
in the Evolution of Object-NoSQL Mappings

Stefanie Scherzinger
OTH Regensburg, Germany

stefanie.scherzinger-
@oth-regensburg.de

Eduardo Cunha
de Almeida
UFPR, Brazil

eduardo@inf.ufpr.br

Thomas Cerqueus
University of Lyon, France

thomas.cerqueus
@insa-lyon.fr

Leandro Batista
de Almeida
UTFPR, Brazil

leandro@dainf.ct.utfpr.edu.br

Pedro Holanda
UFPR, Brazil

ptholanda@inf.ufpr.br

ABSTRACT
NoSQL data stores are popular backends for managing big
data that is evolving over time: Due to their schema-flexi-
bility, a new release of the application does not require a full
migration of data already persisted in production. Instead,
using object-NoSQL mappers, developers can specify lazy
data migrations that are executed on-the-fly, when a legacy
entity is loaded into the application. This paper features
ControVol, an IDE plugin that tracks evolutionary changes
in object-NoSQL mappings, such as adding, renaming, or
removing an attribute, which may conflict with entities al-
ready persisted in production. If not resolved prior to launch
of the new application, harmful evolutionary changes can
cause runtime exceptions or data loss. In this demo, we fo-
cus on a novel feature of ControVol, detecting changes to at-
tribute types that are not backwards-compatible with legacy
entities. When such changes occur, ControVol issues warn-
ings, and upon the request of developers, assists in safely
carrying out type changes.

1. INTRODUCTION
Over the past years, application development for big data

management with NoSQL data stores has matured: De-
velopers no longer need to code against proprietary APIs.
Instead, object-NoSQL mappers introduce a desirable level
of abstraction [15]. Like their counterparts for relational
databases, object-NoSQL mappers such as Objectify [9],
Morphia [8], or Hibernate OGM [5] marshal and unmar-
shal between stored entities and objects in the application
space. Annotated Java classes, the object-NoSQL mappings,
declare how objects are to be persisted as entities.

Going beyond this core business, Objectify and Morphia
enhance a key feature of NoSQL data stores in agile software
development: the schema-flexibility of NoSQL backends [7].

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

Let us consider a standard development environment with
an editor (e.g., an IDE like Eclipse) and a code repository.
The production environment contains a schema-flexible No-
SQL data store, possibly offered as database-as-a-service
(DaaS). A platform-as-a-service infrastructure (PaaS) takes
care of the load balancing at runtime. As the data store does
not enforce a schema, the entities stored by different releases
of the application may differ in their structure. Neverthe-
less, the NoSQL data store is capable of evaluating queries
over the structurally heterogeneous entities.

We now switch to a real-life example. Figure 1 visual-
izes schema evolution in the object-NoSQL mappings of the
open source project ExtraLeague [3]. ExtraLeague imple-
ments a small website for managing company-internal soc-
cer championships. This project is written in Java, uses
Google App Engine (as PaaS) and Google Cloud Datastore
(as DaaS) [10], as well as the object-NoSQL mapper Objec-
tify. At the point of writing this paper, 9 contributors have
collectively made about 700 commits to this project hosted
on GitHub. The chart reads as follows. The x-axis shows
the number of commits to the project, which may be inter-
preted as the progress in time. The y-axis shows the number
of object-NoSQL mappings (i.e., the Java classes that de-

Figure 1: Schema evolution in ExtraLeague [3].



{
"kind": "Player",
"id": 1,
"name": "Gollum",
"health": "poor"

}

{
"kind": "Player",
"id": 2,
"name": "Bilbo",
"health": 5

}

{
"kind": "Player",
"id": 3,
"name": "Frodo",
"health": 1.2

}

(a) Legacy entity with
String-typed health

(b) Legacy entity with
Integer-typed health

(c) Up-to-date entity with
Double-typed health

(d) Class Player declaring
the health type as Double

Figure 2: (a) – (c) Legacy entities (in JSON format) and (d) the current object-NoSQL mapping.

clare the current data model). Over time, the project grows
to 13 mappings. Some object-NoSQL mappings are removed
from the project, resulting in interim dips in the chart. At
any point in time, the chart states how many classes remain
unchanged (“Attrs not modified”). If a mapping contains
at least one retyped attribute, it is flagged as such (“Attrs
retyped”). Otherwise, if it contains at least one removed
attribute, it is also flagged accordingly (“Attrs removed”).
Finally, when attributes have been added, but none of the
other cases apply, the mapping is flagged as such (“Attrs
added”). Thus, we classify the object-NoSQL mappings by
their most disruptive schema change.

In total, the object-NoSQL mappings have changed in 47
commits. When the object-NoSQL mappings change with
a new release, this effectively amounts to a schema change.
Yet rather than migrating all legacy entities prior to a re-
lease, legacy entities may be migrated lazily , when they are
loaded into the application, one at a time. This is supported
by several object-NoSQL mappers, such as Objectify.

Lazily evolving an entity by adding an attribute is gener-
ally a safe operation: When a legacy entity is loaded into the
application, the attribute is added as the entity is mapped
to a Java object. When the object is saved again, the entity
is persisted with the new attribute.

However, when attributes are removed, renamed, or re-
typed, the object-NoSQL mappings may no longer be back-
wards-compatible with legacy entities. Accidental removal
or faulty renamings of attributes lead to runtime problems, a
topic we have addressed in an earlier paper on ControVol [2].

In this paper, we focus on attribute retypings, which also
occur in Figure 1. Retypings can lead to

1. data loss (due to implicit type conversions),
2. runtime exceptions (due to type incompatibilities), and
3. confusing query results (due to the lack of standard-

ization of NoSQL query languages).
These runtime issues may only be sporadic: The produc-

tion data store may contain only a small number of struc-
tural outliers that nobody in the development team is aware
of. Yet this makes trouble shooting even more difficult.
Therefore, systematic tool support is of the essence.

Contributions: In this demonstration, we present new
ControVol features for (1) finding type mismatches in the
evolution of object-NoSQL mappings, (2) addressing the
subtleties that retyping can have on query evaluation in
some NoSQL data stores, and (3) suggesting quick fixes so
that developers may pro-actively address these problems.
Our earlier demos of ControVol [1,11] showed how ControVol
finds and fixes issues caused by the removal and renaming
of attributes in object-NoSQL mappings. This earlier ver-

sion would also warn when attributes were retyped, but then
forced the developer to restore the original type. This effec-
tively made it impossible to change attribute types. Contro-
Vol, as presented in this paper, actually enables developers
to change types in a controlled manner.

Videos and further information on ControVol are available
at https://sites.google.com/site/controvolplugin/.

2. TYPE MISMATCHES BY EXAMPLE
In discussing mismatched types, we focus on Java prim-

itive types1: Boolean, Byte, Short, Integer, Long, Float,
Double, and String. ControVol may be extended to handle
structured types as well.

We next consider the scenarios featured in this demo. Fig-
ure 2 shows player entities stored by different releases of an
online role playing game. It also shows the object-NoSQL
mapping of the current release. The object mapper anno-
tation @Entity declares that player objects may be stored.
Annotation @Id marks the unique ID among all players.

2.1 Runtime Errors due to Type Changes
Our upcoming example illustrates how mismatched types

can cause runtime errors. As runtime errors are particu-
larly undesirable in web applications, the underlying prob-
lem should be addressed prior to launch. We then describe
how ControVol finds and fixes these issues.

Example 1. The legacy entity for player Gollum in Fig-
ure 2(a) records Gollum’s health as a String. Let us as-
sume Gollum’s player has been stored several releases back,
when health was classified as “poor”, “fair”, or “excellent”.
Much has changed since then: The object-NoSQL mapping
in Figure 2(d) expects to load a Double value. Thus, load-
ing Gollum’s entity will cause a runtime exception due to an
unsuccessful type cast. 2

ControVol monitors code changes from within Eclipse to
detect this issue at development time. To do so, ControVol
accesses the code repository and compares different versions
of object-NoSQL mappings. For instance, if ControVol de-
tects the earlier declaration shown in Figure 3, then it warns
about the type mismatch with the declaration in Figure 2(d).
Note the warning symbol in line 10 of the screenshot, in-
jected by ControVol.

1We use the term primitive type casually, to refer to classes
of the java.lang package that wrap Java primitive types
(int, long, float, etc.). Void, Character, and Object are cur-
rently not considered by ControVol, as Objectify does not
support storing values of these types.



Figure 3: Legacy object-NoSQL mapping by which
Gollum’s entity from Figure 2(a) was persisted.

Figure 4: Quick fixes proposed by ControVol.

ControVol also proposes quick fixes to address this issue,
as shown in Figure 4. Developers can choose to (1) suppress
this warning, (2) generate a code stub for translating the
String to a Double, or (3) to change the type back to String.

We discuss the second quick fix in greater detail. If se-
lected, ControVol rewrites the class as shown in Figure 5:2

• The original health attribute of type String has been
restored. Annotation @IgnoreSave ensures that the value
is loaded from legacy entities, but not saved anymore.
• The new health attribute of type Double has been re-

named, so as not to conflict with the legacy attribute.
• A method stub for migrateHealth has been generated.

Due to the Objectify annotation @OnLoad, this method
is invoked whenever a player entity is loaded.

The developers may now translate the value of legacy at-
tribute health to a Double value within migrateHealth.3

2.2 Mixed Value Types in Query Evaluation
We next give an example of the effect that attributes with

mixed value types can cause during query evaluation.

Example 2. The entity for legacy player Bilbo in Fig-
ure 2(b) can be loaded by the mapping in Figure 2(d) with-

2In Figure 5, we use the Objectify syntax @OnLoad. As the
annotations are not standardized for object-NoSQL map-
pers, we require different annotations when using a different
object-NoSQL mapper. ControVol is currently being ex-
tended to support Morphia as well.
3Lazy migration using object-NoSQL mappers can be very
convenient for small, incremental schema changes. Yet when
object-NoSQL mappings need to be compatible with entities
from several releases back, their declarations become clut-
tered with migration code. We refer to [13] for a proposal
on how multi-step lazy migration may be realized outside of
the application layer.

Figure 5: ControVol-generated code stub.

out a runtime exception, since the Integer value is implicitly
cast to Double (yet loss of precision is possible). However, as
long as Bilbo’s entity is not migrated, this type mix in the
data store can produce seemingly confusing query results.
For instance, evaluating the query

SELECT id FROM Player ORDER BY health ASC LIMIT 10

on our entities from Figure 2 in Google Cloud Datastore
returns Bilbo’s ID before Frodo’s. Yet Bilbo’s health is 5,
while Frodo’s health is 1.2 This seems counter-intuitive given
ascending sort. Worse, MongoDB returns Frodo’s ID before
Bilbo’s for the same query. 2

This puzzling behavior is due to the lack of standardiza-
tion in NoSQL query languages. In Google Cloud Datastore,
all queries are evaluated over indexes. The indexes contain
hierarchically sorted entries, with primary order on the value
type and secondary on a type-specific ordering [4]. Let us
consider the index capturing the entities from Figure 2, as
well as a fourth player named Peregrin with id 4 and a Dou-
ble health value of 9.9.

In displaying the index as shown in Table 1, we employ
the visual notation from [10]: Google Cloud Datastore eval-
uates the query from Example 2 using an index containing
the keys of player entities (consisting of the kind “Player”
and the player id), and the values of their health properties.
These are sorted in ascending order. The index entries are
sorted, with Integer values before Strings, and further before
floating point values.

Key health ↑
Player/2 5

Player/1 "poor"

Player/3 1.2

Player/4 9.9

Table 1: Datastore.

Key health ↑
Player/3 1.2

Player/2 5

Player/4 9.9

Player/1 "poor"

Table 2: MongoDB.

Now, retrieving all player IDs in ascending order of their
health is conducted by a single scan over this index. Scan-
ning the index from top to bottom retrieves Bilbo’s ID,
then Gollum’s, Frodo’s, and finally Peregrin’s. To NoSQL
novices, this may seem surprising, and understandably so:
When the entities are loaded as Java objects into the ap-
plication, Frodo’s health value has type Double (due to the
implicit type conversion on loading). This makes it particu-
larly confusing why Bilbo with a health value of 5.0 should



be sorted before Frodo with a health of 1.2. From the view-
point of the developer, this is a puzzle that can only be
solved by inspecting the raw contents of the data store.

Worse yet, this effect is product-specific: Table 2 cap-
tures the order in which MongoDB returns the query re-
sults. Here, the sort operator returns all numeric values
before strings, and hence, a different result.

Thus, even when developers aim at platform independence
by using object-NoSQL mappers, the implementation de-
tails of NoSQL data stores shine through. Since such effects
can be easy to miss, we have set up ControVol to warn if a
change to an object-NoSQL mapping might introduce mixed
value types. This gives developers a chance to react, e.g.,
to identify these legacy entities and to eagerly migrate them
to Double values. This can be done by writing custom code
or using declarative, special-purpose schema evolution lan-
guages, c.f. [12, 14]. Having made sure that incompatible
legacy entities no longer exist, and having allowed the data
store indexes sufficient time to be rebuilt (which happens
asynchronously in Google Cloud Datastore), the warning is-
sued by ControVol may be suppressed.

2.3 Demo Outline
The general outline for our interactive demo is this:

1. We introduce the typical setup for NoSQL web devel-
opment: Developers write code in the Eclipse IDE,
manage its versions in Git, and regularly deploy the
application to a PaaS framework (Google App En-
gine). The application is backed by a NoSQL data
store (Google Cloud Datastore).

2. We show common pitfalls in evolving the application
code: Foremost, we focus on issues introduced by type
changes in object-NoSQL mappings. We also demon-
strate the earlier features of ControVol, such as finding
problems caused by renaming or removing attributes.

3. We provoke various consequences of mismatched types:
data loss, data corruption, runtime errors, and counter-
intuitive query results, as discussed in Section 2. Con-
troVol then finds these issues and proposes quick fixes,
which it carries out semi-automatically.

4. We further run ControVol on open source projects pub-
licly hosted on GitHub, and thus, on real-life code.

We discuss the impact of conflicting type declarations with
our audience, as well as the tradeoffs between quick fixes.

3. SUMMARY
When it comes to assessing the potential impact of Con-

troVol, we point out two current trends: First, schema-
flexible NoSQL data stores are gaining popularity [7], es-
pecially in agile web development: When projects undergo
frequent releases and cannot afford downtime due to a re-
lease, NoSQL data stores can be suitable backends. Second,
object-NoSQL mappers with support for lazy migration are
gaining popularity. Among the currently popular libraries,
there are Objectify for Google Cloud Datastore, and Mor-
phia for MongoDB. The future roadmap for Hibernate OGM
explicitly mentions similar plans for lazy data migration [6].
Thus, there seems to be a trend for vendors of object-NoSQL
mappers to provide annotation-based support for data mi-
gration. Looking at both trends, we see a growing market for
tools like ControVol, especially considering the gaping void
when it comes to a tooling eco-system for NoSQL-backed
application development.

Acknowledgments
ControVol was partly funded by CNPq grant 441944/2014-0.
We thank Tegawendé F. Bissyandé from University of Lux-
embourg for suggesting to us to crawl GitHub projects. We
further thank Uta Störl from Darmstadt University of Ap-
plied Sciences for sharing her insights on queries over mixed
value types in MongoDB. Last but not least, we thank the
anonymous reviewers for the careful reading of our paper
and their helpful suggestions.

4. REFERENCES
[1] T. Cerqueus, E. Cunha de Almeida, and

S. Scherzinger. ControVol: Let yesterday’s data catch
up with today’s application code. In Proc. WWW’15,
poster, 2015.

[2] T. Cerqueus, E. Cunha de Almeida, and
S. Scherzinger. Safely Managing Data Variety in Big
Data Software Development. In Proc. BIGDSE’15,
2015.

[3] ExtraLeague, Sept. 2015. Source code available at
https://github.com/squix78/extraleague, latest
release at http://ncaleague-test.appspot.com.

[4] Google Cloud Platform. Datastore Indexes, Jan. 2016.
https://cloud.google.com/appengine/docs/java/

datastore/indexes/#Java_Properties_with_mixed_

value_types.

[5] Hibernate OGM, Jan. 2016.
http://hibernate.org/ogm/.

[6] Hibernate OGM Roadmap for Hibernate OGM 5.0,
Jan. 2016. http://hibernate.org/ogm/roadmap/.

[7] Z. H. Liu and D. Gawlick. Management of Flexible
Schema Data in RDBMSs - Opportunities and
Limitations for NoSQL. In CIDR’15, 2015.

[8] Morphia, Jan. 2016.
https://github.com/mongodb/morphia/.

[9] Objectify, Jan. 2016.
https://github.com/objectify/objectify.

[10] D. Sanderson. Programming Google App Engine with
Java. O’Reilly Media, Inc., 2015.

[11] S. Scherzinger, E. Cunha de Almeida, and
T. Cerqueus. ControVol: A Framework for Controlled
Schema Evolution in NoSQL Application
Development. In Proc. ICDE’15, demo paper, 2015.

[12] S. Scherzinger, M. Klettke, and U. Störl. Managing
Schema Evolution in NoSQL Data Stores. In Proc.
DBPL’13, 2013.

[13] S. Scherzinger, U. Störl, and M. Klettke. A
Datalog-based Protocol for Lazy Data Migration in
Agile NoSQL Application Development. In Proc.
DBPL’15, 2015.

[14] J. Schildgen and S. Deßloch. NotaQL is not a Query
Language! It’s for Data Transformation on
Wide-Column Stores. In Proc. BICOD’15, 2015.

[15] U. Störl, T. Hauf, M. Klettke, and S. Scherzinger.
Schemaless NoSQL Data Stores – Object-NoSQL
Mappers to the Rescue? In Proc. BTW’15, 2015.


