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ABSTRACT
Nowadays large volumes of energy data are continuously
collected through a variety of meters from different smart-
city environments. Such data have a great potential to in-
fluence the overall energy balance of our communities by
optimizing building energy consumption and by enhancing
people’s awareness of energy wasting. This paper presents
FARTEC, a data mining engine based on exploratory and
unsupervised data mining algorithms to characterize build-
ing energy consumption together with meteorological con-
ditions. FARTEC exploits a joint approach coupling clus-
ter analysis and association rules. First, a partitional clus-
tering algorithm is applied to weather conditions to dis-
cover groups of thermal energy consumption that occurred in
similar weather conditions. Each computed cluster is then
locally characterized through a set of association rules to
ease the manual inspection of the most interesting correla-
tions between thermal consumption and weather conditions.
FARTEC also includes a categorization of the rules into a
few groups according to their meaning. Each group is de-
termined by the data features appearing in the rule. The
experimental evaluation performed on real datasets demon-
strates the effectiveness of the proposed approach in discov-
ering interesting knowledge items to raise people’s awareness
of their energy consumption.

1. INTRODUCTION
Nowadays the demand for energy in the main urban sec-

tors is driven by human activities and by people’s aware-
ness of wasting energy. It is challenging to increase people’s
awareness and persuade them to pursue energy-saving be-
haviours but it is fundamental to have a positive impact on
the global energy balance. Many research activities have
been carried out to use database technologies and statisti-
cal tools to store and analyze energy data to evaluate the
efficiency of buildings. Research contributions on energy-
related data have been carried out for: (i) supporting data
visualization and warning notification [12]; (ii) efficient stor-
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ing and retrieval operations based on NoSQL databases [11];
(iii) characterizing building consumption [2] and consump-
tion profiles among different users [6]. Data mining emerged
during the late 1980s and focused on studying algorithms to
find implicit, previously unknown, and potentially useful in-
formation from large volumes of data. Data mining activities
include studying correlations among data (e.g., association
rules at different levels of abstraction), grouping data with
similar properties (e.g., clustering), and extracting infor-
mation for prediction (e.g., classification, regression). The
first two classes of algorithms are the most interesting ones
for their exploratory nature, as they do not require a-priori
knowledge (such as the target class to be predicted), thus
supporting different and interesting targeted analyses. The
exploitation of these approaches on energy-related data is of
paramount importance to bring interesting, actionable, and
hidden knowledge to the surface.

This paper presents an exploratory data mining engine,
named FARTEC (From Association Rules To Energy Con-
sumption), targeted at energy-related data. FARTEC an-
alyzes energy data collections enriched with meteorological
data through a two-level methodology based on cluster anal-
ysis and association rules. The clustering analysis allows the
discovery of groups of thermal energy consumption that oc-
curred with similar weather conditions. Each cluster is then
locally characterized by a set of interesting patterns to sum-
marize cluster content and to highlight correlations among
thermal energy consumption and meteorological conditions.
Specifically, FARTEC includes the K-means algorithm [8] to
cluster weather data while using the association rule miner
[4] to model correlations among energy data and meteorolog-
ical conditions. A categorization of rules into a few reference
classes according to their meaning has been also proposed.
As a case study, FARTEC has been validated on real en-
ergy consumption collected in a major Italian city. These
data have been integrated with meteorological data. Pre-
liminary experimental results show that the proposed ap-
proach is effective in discovering interesting correlations to
raise people’s awareness of their energy consumption.

In this paper, Section 2 introduces an overview of the
FARTEC system, while a thorough description of its main
components is presented in Section 3. Section 4 discusses
the preliminary experimental results obtained on real data,
and Section 5 draws conclusions and presents the future de-
velopment of this work.

2. THE FARTEC SYSTEM
Figure 1 shows the overall architecture of the FARTEC



Figure 1: The FARTEC system architecture.

system to collect, integrate, characterize, and analyze energy-
related data by making people aware of their energy and
thermal consumption, as well as encouraging them to pur-
sue energy saving strategies. FARTEC includes four main
components, named Data collection and integration, Data
preprocessing, Knowledge extraction and Knowledge visual-
ization. These components are briefly described below and a
more detailed description is given in Section 3. In FARTEC
the Data collection and integration component stores mea-
surements on energy consumption every 5 minutes and ag-
gregates them in hourly thermal energy consumption. These
data are enriched with spatial and temporal information at
different abstraction levels as well as with various hourly
meteorological conditions. The enriched dataset is stored
in a datawarehouse as proposed in [3]. Different phases of
Data preprocessing are then performed to prepare data for
the subsequent analysis. The Knowledge extraction com-
ponent discovers groups of energy consumption levels as-
sociated with similar meteorological conditions as well as
correlations among thermal energy consumption and mete-
orological conditions. Discovered correlations, in the form
of association rules [4], are categorized into a few reference
classes according to their meaning. Lastly, the Knowledge
visualization component shows user-friendly plots to sum-
marize building performance over time.

3. THE FARTEC COMPONENTS
The analysis process in FARTEC is applied on data as

modeled in [3]. Thus, the Data collection and integration
component collects thermal energy consumption, roughly
every 5 minutes, from a large number of smart meters de-
ployed in a major Italian city, and aggregates them every
hour. As proposed in [3], these data are enriched with
temporal information at different granularity levels as well
as with various meteorological conditions available as open
data sources. Weather data include temperature, relative
humidity, precipitation, wind direction, UV index, solar ra-
diation and atmospheric pressure. In this paper we mainly
focus on the exploitation of exploratory and unsupervised
data mining algorithms to characterize energy consumption
at different coarse granularities. Different criteria can be
exploited to select only a portion of data (e.g., daily energy
consumption in a winter season) stored in the datawarehouse
to address a targeted analysis. The FARTEC components,
addressing the main phases of the analysis process, are de-
scribed in the next sections.

3.1 Data preprocessing
Extracting actionable knowledge from data is a multi-step

process. The knowledge extraction phase is preceded by a
preprocessing phase, which aims to smooth the effect of pos-
sibly unreliable measurements. Preprocessing entails the fol-
lowing steps: (i) outlier detection and removal, (ii) missing
value handling, and (iii) correlation analysis.

Outlier detection and removal. An outlier is an ob-
servation that lies outside the expected range of values. It
may occur either when a measurement does not fit the model
under study or when an error in measurement happens (e.g.,
faulty sensors may provide unacceptable measurements for
the thermal energy consumption). To address this issue,
FARTEC exploits the boxplot (also known as whiskers plot)
to graphically show groups of numerical data through their
quartiles. The boxplot sums up data distribution through a
few numbers (i.e. median, quartiles, min and max values)
modeling the frequency distribution. The median summa-
rizes the central tendency of the distribution and compared
to quartiles provides information about the asymmetry of
the distribution. The quartiles give an indication of the
variability through the difference interquantile. Extremes
not only provide information on the maximum and mini-
mum value but also on the possible presence of data with
abnormal characteristics, plotting them as individual points.

Missing value handling is an important step that sig-
nificantly affects the mining process. Since we focus on the
characterization of thermal energy consumption, we only
consider data records where the corresponding consumption
value is available. However, FARTEC exploits two strate-
gies to handle missing values on other considered features
(e.g., meteorological data): (i) replace them with the daily
average value or (ii) replace them with the hourly average
value computed in the last week. The choice is mainly driven
by the physical meaning of each attribute. For example, case
(i) is exploited for the precipitation and wind direction at-
tributes, while case (ii) is for the solar radiation and UV
index attributes.

Correlation analysis. Correlated attributes have simi-
lar impact in the analysis process. Thus, they are usually
removed to reduce the space and time complexity of data
mining algorithms. FARTEC leverages the correlation ma-
trix to analyze the dependence between multiple variables
at the same time. Each correlation coefficient between each
variable and the others is computed through the Pearson
correlation defined as

ρX,Y =
cov(X,Y )

σXσY
(1)

where cov(X,Y ) is the covariance between X and Y , σX is
the standard deviation of X and analogously σY for Y . Cor-
relation coefficients are not influenced by the measurement
unit of the attributes. The higher the coefficient values the
stronger the correlation.

3.2 Knowledge extraction
To extract meaningful and interesting knowledge items

from data while maintaining the number of extracted results
within manageable limits, the analysis should be performed
on the most interesting subsets of input data and the results
manually evaluated by a domain expert. Selecting specific
subsets from which interesting knowledge can be indepen-
dently derived is of paramount importance to bring hidden



knowledge to the surface. For this purpose, FARTEC ex-
ploits a clustering algorithm to identify specific data subsets
from which interesting data correlations can be discovered.
Specifically, since energy consumption is strongly influenced
by weather conditions, the identification of energy consump-
tion records that occurred with similar weather conditions
reduces both the complexity of the correlation analysis and
the cardinality of the extracted rules to be manually vali-
dated. FARTEC uses a clustering algorithm to partition
data in subsets. Before the clustering phase the dataset
is normalized with the range transformation (0,1). Each
cluster is then locally characterized by a set of association
rules to model the most interesting correlations among data.
FARTEC also includes a categorization of extracted rules
in a few groups to ease manual inspection by the domain
expert.

3.2.1 Clustering
Clustering algorithms divide data into groups/subsets (clus-

ters) so that objects within the same group are more similar
to each other than objects assigned to different groups [10].
In FARTEC, groups are identified by analyzing records of
meteorological conditions and the distance between two ob-
jects is computed with the Euclidean distance. The aim is to
discover records of energy consumption that occurred with
similar weather data. FARTEC integrates a partitional al-
gorithm, the K-means algorithm [8], to subdivide the input
dataset into K groups, where K is defined by the user and
each object is assigned to a single cluster. Each group is
represented by its centroid computed as the average of all
the objects in the cluster. First, the algorithm sets K ini-
tial centroids, chosen randomly. Then each point is assigned
iteratively to the closest centroid. Next, the centroids are
recalculated. The algorithm repeats the previous steps until
the centroids no longer change. K-means is probably the
most popular clustering algorithm [5, 13], although it has
a bias towards clusters with a spherical shape. However, it
identifies the cluster set in a limited computational time by
producing a quite good cluster set. K-means requires the
number of clusters to be specified in advance, which is one
of the biggest drawbacks. To address this issue, FARTEC
analyzes the trend of the SSE quality index and the optimal
value of K must be selected at the coordinates where the
marginal decrease in the SSE curve is maximized. The SSE
index [10] measures the cluster quality in terms of cluster co-
hesion. It is is computed as the total sum of squared errors
for all objects in the collection, where for each object the
error is computed as the squared distance from the closest
centroid.

3.2.2 Association rules extraction
FARTEC discovers correlations from the cluster set iden-

tified by the K-Means algorithm. Discovered correlations,
in terms of association rules, model interesting relationships
among the data under analysis. A transactional dataset D is
a set of transactions in which each one is a set of items (also
called itemset). An item is represented in the form attribute
= value. Since we are interested in analyzing energy-related
data, each attribute may describe energy consumption, me-
teorological data (e.g., wind direction, UV index), temporal
data (e.g., daily time slot). Since the associaton rule min-
ing requires a transactional dataset of categorical attributes,
FARTEC applies the discretization step to convert contin-

uously valued measurements into categorical bins. An asso-
ciation rule is expressed in the form X → Y , where X and
Y are disjoint itemsets, i.e. X ∩ Y = ∅. X is also called
rule antecedent and Y rule consequent. The rule quality is
measured through two basic indices, named support (s) and
confidence (c). The rule support is the percentage of records
containing both X and Y . It represents the prior probabil-
ity of X ∪ Y (i.e. its observed frequency) in the dataset.
The rule confidence, instead, is the conditional probability
of finding Y given X.

Given a set of transactions D, FARTEC finds all the
rules having support ≥ minsup and confidence ≥ minconf ,
where minsup and minconf are the corresponding support
and confidence thresholds that are user-specified parame-
ters. To rank the most interesting rules, FARTEC uses the
lift index [10], which measures the (symmetric) correlation
between antecedent and consequent of the extracted rules.
When a rule has lift equal to one, the occurrence probabil-
ity of the antecedent and the consequent are independent,
so X and Y are not correlated. Lift values above 1 show
a positive correlation between itemsets X and Y, while val-
ues below 1 indicate a negative correlation. FARTEC ranks
rules according to their lift value to focus on the subset of
most positively correlated rules.

3.3 Association rule categorization
FARTEC includes a categorization of the rules into a few

groups according to their meaning to ease the manual in-
spection of the domain expert. The meaning of a rule is
determined by its template which includes the attributes
characterizing data. We defined three basic classes of rules
that progressively provide more detailed information. Tem-
plates are summarized in Table 1, where a basic example
rule is reported for each of them.

Specifically, the first template models the Correlations
among cluster and weather conditions included in it, as shown
in Table 1 at row T1. This template mainly focuses on the
weather conditions that characterize each cluster, without
considering the other aspects. We only consider 2-length
rules to extract the peculiar characteristics of the climatic
conditions of each cluster. This rule set is extracted from
the complete cluster set. At row T2 the template models the
Correlations among weather conditions included in the clus-
ter. This template models the cluster content based on the
most frequent weather conditions. This kind of rule is locally
extracted from each cluster content. The third template
at row T3 in Table 1 models the Correlations among en-
ergy consumption level, time, and weather conditions. This
template models the correlation between weather conditions
and energy consumption level at a different time granular-
ity. This kind of rule is locally extracted from each cluster
content enriched with the energy consumption information.

4. EXPERIMENTAL RESULTS
We performed a preliminary analysis of energy consump-

tion on a real dataset, including energy consumption of 15
residential buildings, using the FARTEC engine. We con-
sidered energy data related to a complete winter period from
October 15th, 2014 to April 15th, 2015. Data collected
through the smart meters are integrated with meteorolog-
ical information collected from the Weather Underground
web service[7], which gathers data from Personal Weather
Stations (PWS) registered by users. These data are ana-



TId Question Rule template Rule example Rule meaning

T1 What is the main
weather phenomenon
that characterize each
cluster?

{cluster} ⇒ {weather
condition}

{cluster = Cluster 4} ⇒
{Temperature = warm}

It means that the Cluster 4 is char-
acterized by warm temperatures

T2 What are the associa-
tion rules that are the
most representative for
each cluster?

{weather conditions}
⇒ {weather conditions}

{Temperature = cold,
Wind Direction = North}
⇒ {Precipitation = no rain,
Pressure = High}

It means that the analized cluster
is characterized by cold winds that
blow from the North that lead to
clear sky and dry weather. In fact,
the north winds are strong winds
that bring good weather sweeping
away the clouds, in agreement with
the lack of rain and high humidity.

T3 Given a fortnight and
a daily time slot, what
kind of consumption
level characterizes them
under varying atmo-
spheric conditions of
each cluster?

{fortnight, daily time
slot , weather
conditions} ⇒
{consumption level}

{Fortnight = 16 − 31 December,
Daily time slot =
Day, UV index =
minimum, Precipitation =
no rain, Humidity =
very high, Temperature =
very cold, Wind Direction =
North} ⇒ {Consumption level =
very high}

It means that in the fortnight = 16-
31 December and in the daily time
slot = Day, a high consumption oc-
curred. Very cold temperatures and
high humidity make the body feel a
greater sense of cold and then phys-
ical discomfort, and the winds blow
from the North which are strong and
cold winds.

Table 1: Rule template

lyzed for each building separately. We addressed three is-
sues: (i) outlier detection and correlation analysis (Section
4.1); (ii) cluster characterization in terms of data distri-
bution in each cluster (Section 4.2) and representative as-
sociation rules (Section 4.3); (iii) knowledge visualization
(Section 4.4); (iv) FARTEC sensitivity and robustness to
parameter setting (Section 4.5). Here we discuss a given
building which is representative of the group of buildings in
the considered dataset.

Based on the experimental evaluation discussed in Section
3.2, parameter setting (K=4, minconf=1%, minsup=1%,
minlift=1.1) has been used as reference default configura-
tion for FARTEC . To address the problem of centroids ini-
tialization for the K-means algorithm we performed multiple
runs, with randomly chosen initial centroids and the num-
ber of iterations set to 20. The open source RapidMiner
toolkit [1] has been used for the correlation analysis, cluster
analysis and association rule extraction. The toolkit MAT-
LAB has been used to perform the analysis of data distribu-
tion. Experiments were performed on a 2.66-GHz Intel(R)
Core(TM)2 Quad PC with 8 GBytes of main memory.

4.1 Oulier detection and correlation analysis
Here we discuss the preliminary results performed to ad-

dress the outlier detection and removal phase as well as
the correlation analysis step performed by FARTEC. Since
data collected from sensors are expected to be dirty, col-
lected measurements are analyzed one phenomenon at a time
through boxplot. Humidity measurements are discussed as
a representative example. Figure 2 shows the humidity dis-
tribution of measurements related to a winter period be-
fore and after outlier removal. In the left part of the figure
is shown the boxplot with the presence of outliers. The
plot highlights the presence of incompliant (with humidity
percentage values) measurements. To ease the manual in-
spection of values outside the allowable range, the boxplot
shows outliers as individual points in the graph. Figure 2
(right) shows the humidity distribution in the absence of val-
ues classified as outliers. The boxplot has the median value
close to 70% and 50% of data falls in the interquartile range
[55%− 85%].

FARTEC exploits the correlation matrix to analyse the

Figure 2: Humidity data distribution

dependence between multiple variables at the same time.
The correlation matrix shown in Table 5 contains the cor-
relation coefficients between each couple of attributes com-
puted as discussed in Section 3.1. This matrix is symmet-
ric (i.e. the correlation of column i with column j is the
same as the correlation of column j with column i), and
its generic element (i, j) models the correlation between the
attribute in row i and the one in column j. Correlation co-
efficients always lie in the range [−1, 1]. A positive value
(]0, 1]) implies a positive correlation between attributes i
and j. Thus, large (small) values of attribute i tend to be
associated with large (small) values of attribute j. A nega-
tive value ([−1, 0]) means a negative or inverse association.
In this case large values of i tend to be associated with small
values of j and vice versa. A value near 0 indicates weakly
correlated data. Elements on the diagonal of the matrix are
always 1, since they represent the correlation of an attribute
with itself. The matrix shown in Table 5 has been computed
on data, available for a given building, of a complete winter
period. These results highlight two strong correlations: (1)
a positive and strong correlation (0.967) between External
Temperature, i.e. the mean external temperature monitored
through PWS, and Mean Temperature monitored through a
sensor deployed on the roof of the considered building. (2)
A high correlation, greater than 0.90, exists between UV in-
dex and Solar Radiation. Since highly correlated attributes
are similar in behaviour, for each couple of attributes high-
lighted in the matrix one is removed from the analysis to
reduce both the computational cost and the cardinality of



Figure 3: Cluster set representation through SVD

the extracted knowledge. Based on the above results, we do
not consider Mean Temperature and Solar Radiation in the
subsequent analysis process.

4.2 Cluster characterization
FARTEC exploits the cluster analysis to identify groups

of energy consumption that occurred in similar meteorologi-
cal conditions. The K-Means algorithm has been applied on
meteorological data related to a winter period. FARTEC
represents the cluster set through (i) the singular value de-
composition (SVD) [10] to show the results in a graphical
and friendly way; (ii) the comparison of boxplots (one for
each cluster) for each attribute separately.

SVD is a matrix factorization method that factorizes the
input data matrix into three matrices. It can be easily ex-
ploited to reduce the data dimensions by only considering
the most representative attributes. Figure 3 shows the SVD
decomposition of the cluster set discovered by K-means with
K=4. Since all clusters in Figure 3 are well-separated, K-
means is able to identify a good cluster set.

Figure 4 shows the Humidity distribution in the four dis-
covered clusters. The set of clusters is characterized by both
positive and negative skewness and groups of observations
are quite different, i.e. Cluster 1 and Cluster 2 have quite
high median values while Cluster 3 and Cluster 4 have lower
median values. In case of positive skewness, observations in-
crease in correspondence with the lowest values, while in the
case of negative skewness, the observations increase in cor-
respondence with the highest ones. Cluster 1 and Cluster 2
have a negative skewness (Q3 −Me) < (Me − Q1), where
Me is the median, Q1 the first quartile and Q3 the third
quartile. Data are more concentrated between the median
and the third quartile, as the same percentage of observa-
tions falls in a smaller range. These clusters have higher
relative humidity than Cluster 3 which instead has a posi-
tive skewness due to the presence of lower relative humidity
values.

4.3 Analysis of extracted patterns
Here we discuss the most interesting association rules clas-

sified according to the rule template presented in Section
3.3. Since association rule mining requires a transactional
dataset of categorical values, FARTEC performs the dis-
cretization step to convert continuously valued measurements
into categorical bins. In our case study, we used fixed-size
discretized bins determined by a domain expert based on

Figure 4: Humidity data distribution for each clus-
ter

RId Rule Supp
%

Conf
%

Lift

R1 {cluster = Cluster 1} ⇒
{Precipitations = drizzling}

8.1 20.5 1.8

R2 {cluster = Cluster 2} ⇒
{Humidity = high}

13.2 45.3 1.3

R3 {cluster = Cluster 3} ⇒
{Temperature = warm}

2.8 41.7 5.8

R4 {cluster = Cluster 4} ⇒
{Humidity = low}

8.0 33.1 3.1

Table 2: Rule subset according to the first template.

the significance in the energy and meteorological context.
The used fixed-size bins have been determined below. (1)
Energy consumption per unit of volume (denoted as con-
sumption level): two bins until 15.5 KW/m3 (off until 0.05
KW/m3, low until 15.5 KW/m3), a bin each 10 KW/m3

for values until 35.5 (medium consumption until 25.5, high
consumption until 35.5) and an additional bin for values ex-
ceeding 35.5 KW/m3. (2) Humidity : a bin each 20% from 0
to 100%. (3) Temperature: values are discretized in five bins
(very cold up to 5◦ Celsius, cold up to 10◦ Celsius, mild up
to 18◦ Celsius, hot up to 25◦ Celsius, very hot up to 45◦ Cel-
sius). (4) Temporal data: timestamp is aggregated into the
corresponding daily time slot (e.g., morning, day, afternoon,
evening). Each day is classified as holiday or working, and
aggregated in week, fortnight, month, 2-month, 3-month, 6-
month time periods. (5) The last meteorological data have
been discretized based on meteorology criteria available in
[9]: precipitation level values and wind direction in have
been categorized in eight bins each; likewise UV index in six
bins; and atmospheric pressure in two bins.

Table 2 shows the top interesting rule (with the highest
lift value) characterizing each cluster according to the first
template. These rules are extracted from the complete set
of energy consumption related to a given building enriched
with cluster labels. Rules R1 − R4 identify the most repre-
sentative meteorological item in each cluster. Through the
second template, these weather items are subsequently com-
bined with other meteorological items to characterize each
cluster in more detail. R1−R4 include different meteorolog-



CId RId Rule Supp
%

Conf
%

Lift

C 1 R5 {Pressure = low, Precipitations
= drizzling} ⇒ {UV index
= minimum, Humidity = very
high}

10.3 86.4 1.7

C 2 R6 {Temperature = cold, Wind
direction = North} ⇒
{Precipitations = no rain,
Pressure = high}

10.5 87.2 1.4

C 3 R7 {Precipitations = no rain, UV
index = medium, Humidity =
low} ⇒ {Temperature = warm}

11.8 67.6 1.6

C 4 R8 {Precipitations = no rain, Tem-
perature = mild, Wind direction
= South} ⇒ {Pressure = high}

12.5 72.9 2.0

Table 3: Rule subset according to the second tem-
plate.

ical items to characterize each cluster and this result further
highlights that the discovered groups are well-separated.

Table 3 shows the most positively correlated rules (R5 −
R8) summarizing each cluster content. These rules, exam-
ples of the second template, show a strong correlation among
various meteorological features, and compactly model each
discovered cluster. For example, Cluster 1 includes meteo-
rological data related to cold days, while Cluster 4 regards
mild days. Specifically, Cluster 1 is characterized by very
high humidity, low pressure and rain, with the presence of
clouds and low UV index, while Cluster 4 is characterized
by mild temperatures, high pressure and light winds.

Table 4 reports a subset of extracted rules according to
the third template. The rules, one for each energy consump-
tion level, are sorted by decreasing lift values. Rules R9 and
R12 highlight a high level of thermal energy consumption to-
gether with various weather conditions. Specifically, the for-
mer means that, during rainy days, the relative humidity of
the air tends to increase as very high humidity and low pres-
sure imply the presence of clouds. Also the south wind is a
very weak and moist wind and cold temperature accentuates
the body’s discomfort. Thus, the energy consumption level
is very high. Rules R10 and R13 instead characterize lower
thermal energy consumption. Specifically, rule R13 means
that the wind from the Southeast is a warm and moist wind,
the humidity is high and the temperature is mild. So the
thermal energy consumption level is negligible. It is October
and the low consumption is also motivated by the fact that
temperatures are not low, despite being in the evenings.

According to the discussed set of patterns, the selected
building chosen as representative has a good thermal energy
consumption level which is in line with the meteorological
factors that influenced it.

4.4 Summarizing and comparing energy con-
sumption

To enhance the user energy awareness of its energy con-
sumption, FARTEC summarizes the building energy con-
sumption levels over time grouped to similar meteorological
conditions. Different symbols and colors (see Figure 5, right)
are used for different energy consumption levels. Figure 5
shows the proposed graphical representation to simplify and
synthesize the energy consumption patterns (according to
the third template) over time in a compact, human-readable,
detailed and exhaustive model. This representation also sim-

CId RId Rule Supp
%

Conf
%

Lift

C 1 R9 {Fortnight = 16-31 Jan-
uary, Daily time slot =
Evening, UV index = mini-
mum, Humidity = very high,
Temperature = cold, Pres-
sure = low, Wind direction
= South, Precipitations =
drizzling} ⇒ {Consumption
level = very high}

0.2 100.0 153.5

C 3 R10 {Fortnight = 1-15 April,
Daily time slot = Evening,
Precipitations = no rain,
UV index = low, Pres-
sure = high, Humidity =
low, Temperature = warm,
Wind direction = South} ⇒
{Consumption level = off}

0.5 100.0 52.8

C 2 R11 {Fortnight = 16-31 Decem-
ber, Daily time slot = Day,
UV index = minimum, Pre-
cipitations = no rain, Pres-
sure = high, Temperature =
cold} ⇒ {Consumption level
= medium}

0.6 62.5 11.3

C 1 R12 {Fortnight = 1-15 Decem-
ber, Daily time slot = Morn-
ing, UV index = minimum,
Pressure = low, Humidity
= very high, Temperature
= cold, Wind direction =
South} ⇒ {Consumption
level = high}

0.2 66.7 7.5

C 4 R13 {Fortnight = 16-31 Oc-
tober, Daily time slot =
Evening, Temperature =
mild, Wind direction =
Southeast, Humidity =
high} ⇒ {Consumption
level = low}

0.1 100.0 2.7

Table 4: Rule subset according to the third tem-
plate.



Figure 5: Energy consumption levels over time grouped according to similar meteorological conditions.

plifies the comparison of thermal energy consumption lev-
els between two buildings. Figure 5 shows two graphs of
the four discovered clusters for the selected building. Each
graph reports the thermal energy consumption level for each
couple (daily time slot, fortnight). Specifically, for each clus-
ter, rules in the form of the third template are partitioned
for each time slot and fortnight. The rule with the high-
est lift value is selected and the symbol associated with the
corresponding energy consumption level is reported in the
graph. Cluster 1 and Cluster 4 are discussed as representa-
tive because they represent orthogonal weather conditions
(cold days versus mild days). The Cluster 1 graph (Fig-
ure 5 left) includes a large number of symbols modeling
high average consumption levels. In fact in the mornings
of the winter months consumption is high due to the bad
weather conditions. In spring and autumn there was a re-
duction of the consumption level, while in every month the
evenings are characterized by a medium consumption level.
Instead the Cluster 4 graph (Figure 5 center) is character-
ized by lower consumption levels because this cluster rep-
resents mild weather conditions. Especially in spring and
autumn, consumption levels are low or negligible during the
day and afternoon time slots, while during the winter low or
medium consumption levels happen in correspondence with
some mild days.

The graphical model that FARTEC uses to display the
extracted knowledge can simultaneously compare the en-
ergy consumption levels among different buildings. In the
presence of different behaviours, users can expand the corre-
sponding rules compactly represented in the graph. Table 6
shows a subset of rules comparing the energy efficiency be-
tween the previously discussed building (bi) and a new one
(building bj). For example, R14 shows as rule antecedent
bad weather conditions that correspond to a different energy
efficiency of the two buildings. The former has a very high
energy consumption level while the latter high. This is due
to the different building size (6,297 m3 and 3,120 m3) and
different populations behaviour. Rule R17 instead shows an
example in which the consumption of building bi is far lower
than that of building bj . Since the fortnight corresponds to
the Christmas holidays, perhaps the people living in bi take
a holiday period away and turn off the heating system.

4.5 Analysis of parameter setting
We analyzed the robustness of the FARTEC engine to

parameter settings for both phases of analysis (i.e. cluster
analysis and association rules). The K-means algorithm re-
quires as input parameter the number of clusters (K), which

Figure 6: SSE trend against K

is in general very difficult to define, given the wide range
in which it may vary. To address this issue we performed
many runs of the algorithm with varying values of K, and
for each run, the cluster set is evaluated by computing the
SSE. Figure 6 shows the SSE value against the K parame-
ter. The smaller the SSE, the better the quality of discov-
ered clusters. However, as the number of cluster increases,
the SSE decreases because smaller and more cohesive clus-
ters are identified. To identify a good trade-off between the
number of clusters and their significance, we selected K = 4
corresponding to the maximization of the marginal decrease
in the SSE curve.

To analyze the impact of traditional rule quality measures
(i.e. support, confidence and lift) on the cardinality of the
mined rule set, we performed many experiments by vary-
ing minsup, minconf , and minlift. We recommend users
to set low support and confidence threshold values (e.g., 1%
and 1% respectively) to avoid pruning some interesting rules
with low confidence but a high lift value. We also recom-
mend a minimum lift threshold equal to 1.1 to prune both
negatively correlated and uncorrelated item combinations.

5. CONCLUSIONS AND FUTURE WORKS
In this paper we presented FARTEC, a data mining en-

gine to analyze energy-related data through exploratory data
mining algorithms. Preliminary results on a real dataset
demonstrate the potential of the proposed methodology. We
are currently extending the FARTEC system with a so-
cial platform where users are proactively engaged to pursue
energy-saving behaviours as well as in the act of generating
data. Users could be engaged with rewards, promoting vir-
tuous behaviours shared with social peers, and introducing
gaming approaches (e.g., a shared ranking of energy rat-
ings among neighbours). Engaged users could also provide
contextual information useful to optimize building energy



Attributes External Mean Precipitation Wind Solar UV Humidity Pressure
Temperature Temperature Direction Radiation Index

External 1 0.967 -0.061 -0.026 0.482 0.477 -0.488 -0.004
Temperature

Mean 0.967 1 -0.031 -0.011 0.414 0.403 -0.463 -0.031
Temperature
Precipitation -0.061 -0.031 1 0.083 -0.069 -0.064 0.145 -0.057

Wind -0.026 -0.011 0.083 1 0.018 0.008 -0.084 -0.115
Direction

Solar 0.482 0.414 -0.069 0.018 1 0.913 -0.485 0.056
Radiation
UV Index 0.477 0.403 -0.064 0.008 0.913 1 -0.423 0.040
Humidity -0.488 -0.463 0.145 -0.084 -0.485 -0.423 1 -0.068
Pressure -0.004 -0.031 -0.057 -0.115 0.056 0.040 -0.068 1

Table 5: Correlation Matrix

RId Rule body Rule head
Building bi
(6,297 m3)

Building bj
(3,120 m3)

R14 Fortnight = 16-31 December, Daily time slot = Morning, Humidity = Very high, Pres-
sure = High, Wind direction = North, Uv index = Minimum, Temperature = Very cold,
precipitation = No rain

Consumption
level = very high

Consumption
level = high

R15 Fortnight = 1-15 November, Daily time slot = Morning, Uv index = Minimum, Precipita-
tions = No rain, Humidity = Very high, Temperature = Cold, Wind direction = North

Consumption
level = high

Consumption
level = off

R16 Fortnight = 16-30 November, Daily time slot = Afternoon, Pressure = Low, Uv index =
Minimum, Temperature = Cold, Precipitation = light rain

Consumption
level = medium

Consumption
level = high

R17 Fortnight = 16-31 December, Daily time slot = Afternoon, Humidity = Medium, Pressure
= High, Wind direction = South, precipitations = No rain, Temperature = Mild

Consumption
level = low

Consumption
level = high

R18 Fortnight = 16-31 October, Daily time slot = Afternoon, Humidity = Low, Pressure =
High, Wind direction = North, Uv index = Low, Temperature = Warm, precipitation =
No rain

Consumption
level = off

Consumption
level = low

Table 6: Rule comparison between two different buildings.

consumption.
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