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ABSTRACT

Fine-grained device-level predictions of both shiftable and non-
shiftable energy demand and supply is vital in order to take advan-
tage of Demand Response (DR) for efficient utilization of Renew-
able Energy Sources. The selection of an effective device-level load
forecast model is a challenging task, mainly due to the diversity of
the models and the lack of proper tools and datasets that can be used
to validate them. In this paper, we introduce the DeMand system
for fine-tuning, analyzing, and validating the device-level forecast
models. The system offers several built-in device-level measure-
ment datasets, forecast models, features, and errors measures, thus
semi-automating most of the steps of the forecast model selection
and validation process. This paper presents the architecture and
data model of the DeMand system; and provides a use-case exam-
ple on how one particular forecast model for predicting a device
state can be analyzed and validated using the DeMand system.

1. INTRODUCTION

Renewable Energy Sources (RES) are increasingly becoming an
important part of the future power grid. However, the dependence
of RES production on weather conditions, such as periods with
wind and sunshine, creates challenges related to balancing elec-
tricity demand with intermittent RES supply. This makes RES
more difficult to integrate to the power grid, compared to traditional
(fossil-based) energy sources.

To address the RES integration challenges, there are numerous
smart grid projects aiming at the efficient utilization of intermittent
RES production. For example, the TotalFlex [1] project proposes
a Demand Response (DR) technique to actively control electric-
ity consumption and production of individual household devices in
order to confront the challenges of intermittent RES supply. The
project utilizes shiftable aggregated demands from household de-
vices (e.g., dishwashers, washing machines) to generate a demand
and supply schedules that minimize differences between demand
and supply, as shown in Figure 1. In TotalFlex (and many other
DR projects), accurate and timely predictions of non-shiftable and
shiftable energy are vital in order to generate effective schedules;
otherwise forecast errors might lead to high-cost imbalances in the
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Figure 1: Balancing the Demand and the Supply from RES

power grid. Therefore, underlying device-level forecast models of
both non-shiftable and shiftable energy demands are required for
being able to effectively plan electricity consumption and produc-
tion.

The selection of the best forecast models for a variety of devices,
data granularity, and forecast horizon is a challenging and resource-
intensive task, mainly due to the (1) the diversity of the models, (2)
the lack of proper tools, similar to [10], and (3) the unavailability
of proper datasets that can be used to validate all these models.

First, the device-level energy demand highly depends on the de-
vice type and its functionality. For example, heating devices (e.g.,
a heat pump) operate for long durations and the demand for each
timestamp depends on various factors such as climate, temperature,
room size, past demands, etc. On the other hand, electric vehicles
need to be charged for a couple of hours and energy demand de-
pends on factors such as current charge level, capacity, charging
rate, etc. Further, the energy demand for household devices (e.g., a
dishwasher) depends on the user’s behavior and other external fac-
tors such as the time of use, duration of use, frequency of use,etc.
In addition, the amount of energy and the concrete energy profiles
depend on the configuration of a device and in some cases are user-
specific [7]. Therefore, it is hard to design a single model that
considers all these factors and handles the stochasticity associated
with device level forecasts. Thus, instead of a single generalizable
model, a large variety of models are required to forecast device
level demands for different types of household devices.

Second, the forecast model selection and validation process in-
cludes a number of steps which are often time-consum- ing (see
Figure 2). In this process, researchers have to spend an enormous
amount of time, especially, in data preprocessing, i.e., data ex-
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traction, cleaning, transformation, and handling outliers and ob-
servation gaps, and feature generation, where a set of features is
generated repeatedly until a sufficient model accuracy is obtained.
Here a feature is a variable, derived based on input dataset values
or additional external information, that is assumed to be helpful for
improving forecasting accuracy, e.g., temperature, wind speed, the
day of the week, potentially, influencing demand and supply.
Third, we can find a number of works dedicated to forecasting
and analyzing device-level demand (3, 9, 2, 7]. However, work
on device-level forecasting is still limited, because experiments are
typically fine-tuned for a particular dataset and usage patterns, and
are hardly reproducible with the reported level of accuracy. Fur-
thermore, efficient and precise extraction of all relevant device-
level data is a challenging and still ongoing research [8, 4, 5].
Consequently, there is a lack of proper datasets containing high-
resolution measurements of a large number of devices that include
all the relevant external influences. The experiments are typically
performed with private datasets containing measurements that are
collected within the scope of a project and are not freely available.
Even the freely available datasets only include measurements for
limited (short) time durations and are often too noisy to perform
any detailed analysis [6]. Lastly, there are no effective tools de-
signed specifically for tuning and validating various device-level

demand and supply forecasting models based on real measurements.

In the light of these challenges, we present the DeMand sys-
tem that allows the user to analyse and validate various forecasting
models using a number of provided datasets and built-in or user-
defined functions. The system is designed to automate most of the
preprocessing steps. At the same time, it provides flexibility for the
user (a researcher or energy market player) to use either existing
system modules or plug-in custom user-defined modules. Figure 3
shows the inputs and outputs of the DeMand system. The system
offers the following features and functionality: i) a repository of
available device-level datasets for evaluating and comparing fore-
cast models, ii) access to existing (standard) forecasting algorithms,
iii) dynamic generation of features for various forecast horizons
and data resolutions, iv) support for various experimental configu-
rations and generation of multiple forecast models, v) functionality
to compare experiment results, and vi) easy integration of external
features and learning algorithms.

The remainder of the paper is organized as follows. Section 2
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describes the system architecture and functionalities. Section 3 de-
scribes its data model. Section 4 gives the use-case example of a
system. Finally, Section 5 concludes the paper and provides future
work directions.

2. DeMand SYSTEM OVERVIEW

In this section, we present the architecture and the function-
ality of the DeMand system. The system is designed as a tool
to automate experiments on device-level forecasting and to facili-
tate the comparison and re-(evaluation) of the existing experiments.
Further, the system provides flexibility in using the available re-
sources or uploading user-defined resources such as datasets, fore-
cast models, evaluation metrics, etc. The user can define all neces-
sary parameters and system configuration using the user interfaces.
Once the user selects the timeseries and configures the experimen-
tal setup, the system provides all the available suggestion for the
experiments such as a list of features, evaluation metrics, etc. Fur-
thermore, the DeMand system is also envisioned to provide an open
repository of device-level datasets that will be accessible to the re-
search community for further experiments. Therefore, in addition
to the graphical display in the interface, the experimental results
and datasets are stored in the system database.

The DeMand system with the most essential components (rect-
angles) and their dependencies is shown in Figure 4. Here, the use
of independent components for feature extraction, evaluator, and
data management, etc. allows adding and removing system features
in the plug-and-play fashion, making the system highly flexible and
customizable for specific use-cases. We now present each of these
components individually.

2.1 Interface Component

This components is designed to simplify and speed-up the pro-
cess of setting up an experiment. Specifically, it offers a graphical
user interface (GUI) and allows selecting a data source, a predictor,
the values of configuration parameters, features, and error measures
to use. It also provides visualization of time-series data. The user
can set multiple values for the parameters to submit multiple tasks
in a single execution. It also offers the visual representation of out-
comes of the experiment, which plays a significant role in the fore-
cast model analysis. Thus, in the end, the interface plots graphs for
the experimental outcomes, according to the selected settings. For
the multiple sets of parameters, the interface shows detailed plots
for each configuration. If the user utilizes all the existing mod-
ules and functionality, the interface can reduce model analysis time
drastically.



2.2 Core Logic Component

Core Logic is the central component in the system, and it orches-
trates data manipulations and data exchange between other compo-
nents according to user settings. The Core Logic component in-
cludes four different sub-components, shown in Figure 4, that au-
tomate the data preprocessing and parameter selection steps, shown
in Figure 2.

Iterator The Iterator sub-component is responsible for parsing
all the input parameters and determining the number of tasks to be
executed. Here, a task is an independent execution of a forecast
model with a particular predictor, dataset, parameters, etc. For ex-
ample, if the user has selected two values of the probability thresh-
old, e.g., in a classification task, then the iterator executes the same
forecast model for each threshold value with the other parameters
unchanged.

Model Creator The Model Creator sub-component creates an
object that contains all the required parameters for the tasks. Then,
all other (sub-)components fetch the parameters from this object.
For multiple tasks, the sub-component updates object elements (pa-
rameters) that take more than a single value. The Model Creator
sub-component is also responsible for persistent storage of model
parameters until the completion of the current task.

Time Series Manager The Time Series Manager sub-component
is responsible for the automation of all data preparation and manip-
ulation tasks, such as data aggregation, noise filtration, filling ob-
servation gaps, etc. Further, it also acts as a communication bridge
between the Data Manager and the Feature Generator components.

Model Executer The Model Executer sub-component executes
the task with the provided feature set and configuration. If the ex-
perimental configuration already exists in the database, i.e., the ex-
periment is not unique, the Model Executer terminates the current
task and extracts the prediction results from the database. Further,
the Model Executer handles errors in user-defined predictors/classi-
fiers by replacing them with the default predictor; else it terminates
the current task and requests the Iterator sub-component to delete
all remaining tasks in the queue. At the end of the execution, it
passes the predicted values to the (model) Evaluator component.

2.3 Data Manager Component

The Data Manager component is responsible for extracting time-
series data from a user-defined source, i.e., a database or files in a
user-specified location, and feeding extracted data to the System
Core component. The Data Manager includes a data parser that
transforms the raw data into the required format. After the data is
successfully parsed, it is then persistently stored in the database for
further analysis. This gives the user the comprehensive repository
of datasets (e.g., for different device types) for future experiments,
where the validation of forecast models in homogeneous environ-
ments becomes possible. Although the database is confined to the
energy domain, there are no methods to validate the domain of the
dataset except the required format. Thus, it is possible to upload
timeseries from any domain without getting an error. However, a
user can manually validate the timeseries before submitting the task
by using the graphical interface (plot) provided by the system. The
database schemas are described in Section 3.

2.4 Feature Generator Component

The Feature Generator component is responsible for the genera-
tion of all features chosen by the user. As discussed earlier, features
are variables (e.g., temperature or the day of the week), derived
based on the input dataset values (time series) or external informa-
tion, specified to, potentially, improve forecasting accuracy. The
features are generated by using pre-defined functions from the fea-

ture repository. Additionally, the user can define new functions for
the specification of custom features.

Script 1: Python code for user defined feature

#INPUT: time series with date column at first
#0OUTPUT: binary feature representing weekdays
# or weekend for each data point

from datetime import datetime as dt

def is_weekend(timeseries = None):

if timeseries == None:
raise TypeError (’Data can not be null’)
elif type(timeseries[0]) is not dt.date:

raise TypeError ('First column must be a
datetime.date, not a %s’
% type(timeseries[0]))
else:
feature_series = []
for item in timeseries:
day_of_the_week = item[0].isoweekday ()
if day_of the week <=5: # not weekend
feature_series.append(0)
else: # is weekend
feature_series.append(1l)
return feature_series #binary features

For example, Script 1 shows a simple user-defined function given
in Python, which, for each data point in the original time series,
identifies if a specific data point has been recorded during the week-
end (value 1) or during a weekday (value 0). The component calls
this user-defined function with the time series dataset as the in-
put parameter. The function computes the features for each row in
the time series and returns an output. The feature generator cal-
culates the size of the output, i.e., the number of attributes, and
increases the size of the feature vector by the respective number.
In some cases, the device-level measurement dataset contains some
sensitive context information, such as location, family size, age,
group, occupation, etc. Therefore, this information is only accessi-
ble through the feature generator and is never revealed to the user.
This approach facilitates the user when using sensitive information
as features without requiring to disclose such information.

2.5 Evaluator Component

The Evaluator component receives as input the output of the pre-
dictor/classifier and evaluates its performance according to the cho-
sen error measure and parameters. Further, it writes the experi-
ment attributes and results to the database in the Result Schema
for future reference and queries. The evaluator also invokes the
functions to plot the graphical representation of the experimental
results. The user can select existing error measures (out of many
available ones), or define custom measures using a Python function,
similarly to feature specification.

2.6 Result Analyser Component

The Result Analyzer is a component that processes the user queries
and fetches the requested dataset from the system database. The
user can write simple SQL queries to extract all the relevant data
and results of an experiment satisfying certain conditions, such as
type of predictor, dataset, forecast horizon, etc. Further, the user
can write queries to compare experiments using a particular error
measure. For example, let us consider a binary classification task
where the objective is to predict a device state, i.e., idle (0) or ac-
tive (1), at a particular hour in the future. Using the SQL query
shown in Script 2, a user can query the results of the entire classifi-
cation tasks based on the logistic regression model, ordered in the
decreasing order of the Area Under the Curve (AUC) value. Fur-
ther, from the list of available results, the user can select up to two
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Figure 5: The schema of the Device Measurements Database

experiments and compare their performance graphically. Finally, if
needed, the earlier experiments can be re-executed on a new dataset
using the same or new configuration of parameters.

Script 2: Sql Script to extract data of earlier experiments

Select a.*x, AUC from Experiment a

left join

(select experimentID, AUC from Result) b
on a.experimentID = b.experimentID

where predictor = ’"Logistic_Regression’
order by AUC desc

3. DATABASE SCHEMAS

The persistent storage of the device measurements and results is
essential for being able to compare and (re-)evaluate different fore-
cast models using multiple datasets and configuration parameters.
Since the device level datasets are stored into the MSSQL database,
currently we have used the same database system to store the ex-
perimental results. However, the DeMand system is envisioned to
support diverse types of data, such as various time series, vary-
ing experiment configurations, results, etc. that cannot be confined
to a strict schema. Therefore, the inclusion of non-relational and
schema-less data models such as NoSQL, JSON would be a good
choice as an add-on for the next version of the system. In the De-
Mand system, device measurements and results are separated and
stored in the database using two different schemas, presented next.

3.1 Device Measurements Database

The schema of the device measurements database is shown in
Figure 5. The House table stores all the information regarding the
owner of the device, and the table Device stores device information.
We consider that households can be represented by a large number
of categories. As it is impractical to have columns for all possi-
ble categories, we thus have only a few columns for the generic
categories, and the rest of the details are stored in the otherDe-
tails column as a list of key-value pairs, such as (regularization, .01
),(windowSize, 7). The amount of energy depends on the type of the
device. Therefore, the types of devices are stored in the DeviceType
table. Further, even similar devices can show significant variation
in the energy demand due to differences among their models; thus,
the device models are stored in the DeviceModel table.

A new dataset uploaded by the user is stored in the same schema,
after it is parsed and validated by the Database Manager compo-
nent. The requirement for the new dataset to be eligible for storage
is that it has to have a label for device type and a timestamp value
for each data point. Further, we know that for the device-level
dataset, additional context information is rarely available. There-
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Figure 6: The Schema of the Results Database

fore, in the case of missing information, the tables are filled with
default values in the mandatory (NOT NULL) fields and generated
unique values in the primary key fields. Further, even if the user
provides the values for the primary keys, such as, houselD, de-
vicelD, etc., the system automatically appends unique values to
avoid primary key conflicts. At present, the device measurements
database contains the energy consumption profiles for 200+ devices
from 13 different households, representing 14 different type of de-
vices.

3.2 Results Database

The experiment results and configuration parameter values are
stored in the three tables, shown in Figure 6.

Here, the Experiment table stores records for each performed
experiment, together with all used configuration parameter values.
However, actual parameters used in an experiment differ based on
the type of predictor. Even the same family of predictor might re-
quire different sets of parameters depending on its implementation.
For example, L1 regularized logistic regression has an extra penal-
izing parameter A, unlike its simple implementation. Therefore, we
have only a few columns in the Experiment table for the generic pa-
rameters, such as forecast horizon, data granularity, threshold val-
ues, etc. The remaining parameters are stored in the column oth-
erParameters as a list of key-value pairs. Finally, the description
of all the features used in an experiment is stored in the column
featureList.

The Forecast table stores information about the complete time
series or its fragment (defined by startDate endDate) used in an
experiment. It also stores the output of the predictor and the corre-
sponding test labels, where the predictor output values are distin-
guished from the test data by using binary values in the isForecast
column, i.e., the value of 1 in the isForecast column indicates the
predictor output values (forecasts).

The Result table stores the values of various predictor perfor-
mance measures. As before, there exist a large number of mea-
sures for performance evaluation. Therefore, we have columns for
only a few frequently used performance measures; and the values
of new measures are stored in the otherMetrics column as a list of
key-value pairs. A single experiment can produce more than one
result depending on the chosen values of a parameter. For example,
recall the classification task where the classifier produces two dif-
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ferent results — one for each probability threshold value. Therefore,
the Result table can have multiple rows for single experiments.

4. DeMand USE-CASE EXAMPLE

In this section, we briefly walk-through the DeMand functional-
ity using the real-world use-case of the device-level forecast model
analysis. Here, we continue with the binary classification problem
of predicting a device state for the next hour.

4.1 Execution of Forecasting

First, we start by making a choice of the dataset to use for the
experiment. In our case, we select the consumption time series of a
washer dryer from the existing database. Alternatively, we can also
select a new dataset using the window shown in Figure 8. The sys-
tem then automatically plots the selected dataset in the main win-
dow and also provides some general statistics on the dataset, such
as minimum, average, and maximum demand (see Figure 7). This
information is helpful in deciding the threshold value (in watts) for
the segmentation of data based on a device state (active or ideal). In
our example, we have selected two values 10 watts and 100 watts as
the threshold (see Figure 7). As result, the system creates two ex-
periments to generate a classification model for each of the thresh-
old values.

Next, we select the percentage of time series to use as a test
set (20% in our example) using the main DeMand system window,
shown in Figure 7. The timeseries is sequentially split into train-
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ing and test sets based on the selected split ratio. Then, we also
choose a predictor to be used for classification, which, in our ex-
ample, is the Logistic Regression with L1 regularization (LR-L1).
Further, we configure an hour-ahead forecast model by selecting
the forecast horizon and data granularity of 1 hour. Afterwards, we
select the set of features which we think will help to improve the
performance of the classifier. As shown in Figure 9, the system
automatically provides a list of available features that can be used
with the selected dataset. In our example, as seen in Figure9, we
select all the available features. Further, we choose the precision-
recall curve as the error measure for evaluating the classifier (see
Figure 7).

Finally, we execute the experiments from the completely con-
figured experiment. The system might still request some addi-
tional parameters specific to the predictor. In the case of user-
defined predictors, all additional parameters have to be handled by
the user. To set the parameter value, a user has to include a call to
the add_parameter function with a parameter name and a value
as input. In our example, the LR-L1 model requires the values of
the penalty parameter A and the probability threshold. After we
provide the values of all required parameters, the system executes
the experiment and stores results in the database along with all fore-
casted values.

4.2 Result Presentation

After the completion of all experiments, the results are presented
in the main window, as shown in the Figure 7. The system plots the
values of the classifiers according to the chosen parameters. In our
example, the system plots performance values in terms of error,
precision, and recall of two classifiers with different threshold watt
parameter values. The system also provides a detailed description
of the results in the main window as a textual description. Further,
if we click on the individual plots, the system automatically shows
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precision-recall curves for each classifier, as seen in Figures 10a
and 10b. For a detailed comparison of the results, we can also use
the result analyzer, as illustrated in Figure 11. In this example,
we query all experiments that has been performed with the same
devicelD and dataGranularity parameter values, sorted based on
AUC values. The output of the query can be seen in the lower
section of the Figure 11. Here, the experiment at the top of the table
has the best performance in terms of the selected error measure.
Additionally, we can choose any two experiments for a visual side-
by-side comparison, as shown in Figure 12.

As seen from the use-case example presented above, the De-
Mand system provides an analytical (decision-support) platform for
comparing, validating, and choosing different forecast models and
their parameter values. With the comprehensive model comparison
information offered by the DeMand system, the user can decide on
the best prediction model (algorithm) and select its parameters for a
specific dataset or the given collection of datasets. As it can be seen
from this use-case, the DeMand system with all its features and
built-in functionality allows significantly reducing time needed to
select and validate forecast models, compared to using general tools
or hard-coded solutions requiring, typically, much more data pre-
processing, system configuration, and result post-processing time.

S. CONCLUSION AND FUTURE WORK

In this paper, we have presented the DeMand system for fine-
tuning, analyzing, and validating the device-level forecast models.
The system offers a number of built-in device-level measurement
datasets, forecast models, features, and errors measures; and al-
lows users to evaluate and compare different forecast models based
on different parameters, making device-level forecasting more ac-
cessible and efficient.

In this paper, we have presented the architecture and a data model
of the DeMand system. We also provided the use-case example
on how a forecast model for predicting a device state can be ana-
lyzed using the DeMand system. Thus, we showed that DeMand is
an easy-to-use system automating most of the steps of the forecast
model selection and validation process.

In the future, we plan to integrate additional features such as i) an
API-centric architecture for the result analyzer, ii) a model and pa-
rameters recommender system, iii) a more flexible comprehensive
data processor, and iv) ensemble learning. We foresee that the full
potential of the DeMand system is to be unleashed, if the system
is used repeatedly, possible by multiple users, allowing to build-up
and utilize a large repository of device-level data and predictors.
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