
Virtual Documents and Answer Priors in
Keyword Search over Data Graphs∗

Yosi Mass†‡ and Yehoshua Sagiv‡

†IBM Haifa Research Lab, Haifa 31905, Israel
yosimass@il.ibm.com

‡The Hebrew University, Jerusalem 91904, Israel
sagiv@cs.huji.ac.il

ABSTRACT
In keyword search over data graphs, an answer is a non-
redundant subtree that contains the keywords of the query.
Ranking of answers should take into account both their tex-
tual relevance and the significance of their semantic struc-
ture. A novel method for answers priors is developed and
used in conjunction with query-dependent features. Since
the space of all possible answers is huge, efficiency is also a
major problem. A new algorithm that drastically cuts down
the search space is presented. It generates candidate an-
swers by first selecting top-n roots and top-n nodes for each
query keyword. The selection is by means of a novel con-
cept of virtual documents with weighted term frequencies.
Markov random field models are used for ranking the virtual
documents and then the generated answers. The proposed
approach outperforms existing systems on a standard eval-
uation framework.

Keywords
Data graph, keyword search, query, ranking, answer prior,
virtual documents

1. INTRODUCTION
Data graphs are a convenient, flexible way of representing

knowledge bases. They can be constructed from a variety
of formats (e.g., XML, RDB and RDF). Their semistruc-
tured nature makes it possible to create them incrementally,
distributively and heterogeneously. Since they do not have
a rigid schema, it is essential to support keyword search
over them (rather than querying in some formal language,
such as XQuery or SPARQL). Yet, it could be possible to
get succinct answers that have some semantic structure. In
particular, their answers can show semantic connections be-
tween distinct units (e.g., Web pages), which is impossible

∗This work was supported by the Israel Science Foundation
(Grant No. 1632/12).

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

in ordinary keyword search, where a result is always a single
unit (e.g., document).

The nodes of a data graph represent entities and relation-
ships, while the connections among them are introduced as
edges. Free text can be associated with nodes and edges. In
keyword search over data graphs, answer are non-redundant
subtrees that contain all the keywords of the query.

Keyword search over data graphs has been investigated
extensively in recent years (cf. [5]). It involves two main
challenges: effectiveness and efficiency. The first one means
that we have to develop effective methods for ranking of
answers (i.e., subtrees) that take into account the structure
(e.g., the importance of entities and the strength of relation-
ships among them) as well as the relevance of the keywords
of the query. The second challenge is to generate candidate
(i.e., potentially relevant) answers efficiently. This is not
an easy problem, because there could be a huge number of
subtrees that contain all the keywords of the query.

A common approach begins by assigning weights to the
nodes and edges of the data graph. Then, the search for
answers starts from nodes containing keywords of the query.
The weights are intended to focus the search on paths that
lead to roots of the most relevant answers. However, those
weights are assigned based on local considerations (e.g., the
text of a node) and, hence, their effectiveness is limited for
the following reason. Nodes belonging to relevant answers
are those that have, in their vicinity, other nodes with key-
words of the query. To solve this problem, we introduce vir-
tual documents (VDs) that contain a node and its vicinity.
We rank VDs by applying (similarly to [1,20]) a Markov ran-
dom field (MRF) model that combines query-dependent and
independent features. In particular, we adapt positional lan-
guage models [18] by using distances based on static weights
that reflect the structure of the data graph. Also, we use
node priors as a query-independent feature.

We apply the ranking of VDs to the process of selecting
the top-n keyword nodes (i.e., nodes containing keywords of
the query) and the top-n roots. Only after selecting both
keyword nodes and roots, do we construct paths that con-
nect them, thereby yielding answers. By first selecting roots
and not just keyword nodes, we realize a higher degree of
both effectiveness and efficiency. It should be noted that
several papers [10,21] use notions of virtual documents that
are also returned as answers. In contrast, we apply VDs just
as a first step in the construction of answers.

For the final ranking of the generated answers, we use
once again an MRF model for combining query-dependent
and independent features. Unlike previous work, our query-

independent feature is not ad hoc, but based on a rigorous
computation of answer priors.

We have evaluated our system on the framework of [5] that
consists of three datasets: IMDB, Wikipedia and Mondial,
as well as fifty queries for each one. On all three datasets,
our method outperforms the state-of-the-art systems. Our
experiment include automatic learning of the parameters of
the MRF models.

We also show that our approach offers an excellent way of
improving the efficiency with just a minor impact on the ef-
fectiveness (i.e., quality of answers). It is done by decreasing
n (i.e., the number of selected roots and keyword nodes).

In summary, our main contributions are the following.

1. By developing virtual documents and using them for
first selecting the top-n keyword nodes and also the
top-n roots, we have an algorithm for generating an-
swers that is both highly efficient and effective.

2. We formally compute answer priors and use them as
a query-independent feature in the final ranking. Our
experiments show that they make a highly significant
contribution to the effectiveness of our system. In the
area of keyword search over data graphs, this is the
first time that query-independent features are based
on a rigorous formalism, rather than ad hoc intuition.

3. We describe an efficient implementation using inverted
indexes. We have done extensive experiments showing
that our system is highly effective and efficient.

The rest of the paper is organized as follows. In Section 2,
we discuss related work. Section 3 reviews basic concepts.
Section 4 develops the virtual documents and their features.
Section 5 presents the algorithm that uses the selected roots
and keyword nodes for generating answers. Section 6 devel-
ops the features of answers. Section 7 describes the imple-
mentation and the experiments that verify the effectiveness
and efficiency of our approach. We conclude in Section 8.

2. RELATED WORK
We discuss systems for keyword search over data graphs

along the dimensions of efficiency (i.e., how to generate an-
swers) and effectiveness (i.e., how to rank answers). The
common approach to generate answers efficiently [2, 12, 19]
uses backward iterators that start from keyword nodes until
they meet at a root node. In [13] they improved [2] by adding
forward iterators that can go back from the detected roots,
to keyword nodes. Still, they have to start from keyword
nodes. In [8], they present a method for keyword search
over RDF graphs that starts with triples that match each
keyword. Then they produce answers by joining the triples
through their subjects and objects. In our work we use vir-
tual documents to start simultaneously from roots and key-
word nodes, thus we further reduce the search space.

Other papers have also used virtual documents in key-
word search over data graphs. In [10, 21], they create a
virtual document from a node and its vicinity, and search
it for the keywords. In [4], they do entity search over RDF
data and their virtual documents contain a node, but only
with its literal neighbors. All of these systems return virtual
documents or their roots as answers, whereas we use them
just as a first step to generate answers (i.e., subtrees).

For an effective ranking of answers (cf. [7]), systems use
features that consider both relevance to the keywords of

the query and to the structure of answers. In [3] they use
pseudo-feedback to apply relevance models to tuples and
use them for ranking of answers. The works of [12, 17, 19]
resemble our work in that they concatenate the text in the
nodes of answers and use IR methods combined with query-
independent features for ranking. We also apply IR features
on the concatenated text, but different from those works,
we present a probabilistic feature that considers the prior of
an answer, and we use a well established theory of MRF for
combining it with the IR features.

In [16] they builds priors to paths in graphs for the ap-
plication of recommendation of conferences, papers to cite,
or experts for a new paper that one writes. In comparison,
we assign different priors to each answer (i.e., subtree) while
they assign priors for paths, and their priors are fixed for all
paths of the same type.

In [15], they learn per-term weights for each field; in our
case, it gave inferior results. So, we use a term-independent
weight for each field as in [11,14].

Figure 1: Tiny snippet of the IMDB data graph

3. PRELIMINARIES

3.1 The Data Model
Data graphs can be created from any format (XML, RDF,

RDB, etc.). Figure 1 shows a tiny portion of the IMDB data
graph. In this paper, we experiment with data graphs that
are obtained from relational databases as follows. Each tuple
t becomes a node vt that has the relation name as its type.
A tuple t can be either an entity or a relationship. In the
former case, vt is an entity node and is shown as a rectangle
in Figure 1. In the latter case, vt is a relationship node
and is shown as a diamond. The attribute-value pairs of vt
are those of the tuple t, excluding foreign keys. That is, a
foreign key is represented in the data graph by a directed
edge (shown in Figure 1 as a solid arrow). An opposite edge
(shown as a dashed arrow) is added in the reverse direction
in order not to miss relevant answers.

In Figure 1, the diamond of a relationship node shows
the type (e.g., cast). The top line of a rectangle shows
the entity’s name (e.g., goldfinger) followed by its type

(e.g., movie). The other attribute-value pairs are listed be-
low the top line.

The value of an attribute could be free text. For the name
of an entity node, we choose the value of an appropriate at-
tribute, such as title, etc. We shall refer to that attribute
generically as name. The value of name is a short string that

serves as a not-necessarily-unique identifier; for example, it
could be the title of a movie or the name of a person. Rela-
tionship nodes typically do not have the attribute name.

3.2 The Content and Title Fields
In [9,11,14], they showed that combining fields yields bet-

ter results when searching XML, the Web or flat documents.
Similarly, we group the attributes of a node into two seman-
tic fields (that could overlap). The content field consists of
the names and values of all the attributes. The title field
comprises only the value of the attribute name. In Figure 1,
for example, the title field of node 2 is: goldfinger, and the
content field is: title goldfinger type movie release-

date 1964 genre action adventure producedin uk plot

bond is back and his next mission ...

The content and title fields (of a node) contain textual
information that we use to assign IR scores. We distinguish
between these two fields in order to control the relative im-
portance of an occurrence (of a query keyword) in the title
compared with an occurrence only in the content field.

3.3 Queries and Answers
A query Q = (q1, ..., qm) on a data graph is a set of key-

words. Each qi should match a term in the content of some
node(s); that is, we use the AND semantics as usually done
in keyword search over data graphs (supporting the OR se-
mantics is left for future work).

Answers are subtrees of the data graph, rather than sub-
graphs, because a tree is easier to understand quickly and
is typically an indivisible unit of information. Formally, an
answer to Q is a non-redundant subtree a of the data graph,
such that a contains all the keywords of Q. Containment
means that each keyword appears in some node(s). Non-
redundancy requires an answer not to have a proper subtree
that also contains all the keywords of the query.

As an example, consider the data graph of Figure 1 and
the query “sean connery fleming” for finding movies that are
related to those names. A possible answer comprises five
nodes: goldfinger (of type movie), ian fleming and james

bond (both of type person), and the two connecting nodes
of type cast. Note that non-redundancy does not imply
minimality, and a query could have numerous answers.

3.4 Markov Random Fields
Markov random field (MRF) models make it possible to

combine query-dependent and independent features. We
apply the sequential dependency model of [1, 20] and use
unigrams and unordered bigrams as query-dependent fea-
tures. Our query-independent feature is the prior of either
a node or an answer. The score with respect to a query
Q = (q1, ..., qm) is given by

score(Q, x) =
∑
qi∈Q

[
λT fT (qi, x) + λT̂ fT̂ (qi, x)

]
+

∑
{qi,qi+1}∈Q

[
λUfU (qi, qi+1, x) + λÛfÛ (qi, qi+1, x)

]
+ λLfL(x), (1)

where x is either a node or an answer, and the potential
function are: fT and fT̂ for unigrams of the content and
title fields, respectively; similarly, fU and fÛ for unordered
bigrams; and fL for the query-independent feature. The

parameters λT , λT̂ , λU , λÛ and λL are nonnegative and
their sum is 1. We learn them automatically (see Section 7).

We actually use two variants of Equation (1). The algo-
rithm for generating answers (Section 5) starts by selecting
the top-n roots and keyword nodes using the potential func-
tions fnT , fn

T̂
, fnU , fn

Û
and fnL that are defined in Section 4.4.

After the algorithm generates n answers, they are re-ranked
using the potential functions faT , fa

T̂
, faU , fa

Û
and faL that are

defined in Section 6.

4. VIRTUAL DOCUMENTS FOR RANKING

4.1 Virtual Documents
We consider a data graph G = (V,E), where V and E

are the sets of nodes and edges, respectively. In [19], each
node v ∈ V is deemed a document. We take a different
approach and view a small vicinity of a node (including the
node itself) as a virtual document. Intuitive motivation is
that often keywords of a query are spread over several nodes
that are close to one another.

Formally, the virtual document (abbr. VD) of a node v,
denoted by v?, consists of all nodes u, such that the following
holds. There is a path p in the data graph G from v to some
entity node x (where x could be u), such that p includes
u and has at most τ entity nodes, excluding v itself. The
parameter τ is called the diameter of the VD. As a running
example, we use Figure 1 with τ = 1. The VD of node 6
consists of nodes 2, 3, 4 and 6 (node 3 is not counted in τ ,
because it is a relationship). The VD of node 2 comprises
nodes 1, 2, 3, 4, 5, and 6. Note that v? is defined as a set
of nodes. However, v? can also be viewed as the subgraph
of G induced by its nodes (i.e., the subgraph comprising the
nodes of v? and the edges between them).

A node consists of two fields: content and title. We denote
by vf the text in the field f of node v. In particular, vcnt
and vttl are ordinary documents consisting of the text in
the content and title fields, respectively, of v. Similarly, v?f
denotes the field f of the VD v?, that is, the concatenation of
the text in field f of all the nodes comprising v?. (However,
the weighted term frequencies defined later are applied to
v?.) Recall that V is the set of nodes of the data graph. We
use Vf to denote the collection that comprises all the vf .

4.2 Static Weights
In the VD v? of a node v, occurrences of terms closer to v

are more important. Distances among nodes are determined
by minimal-weight paths. We assign static weights (which
are query independent) to nodes and edges as follows.

For an entity node u, the importance is proportional to
the number of its neighbors. Thus, the static weight of u,
denoted by wns(u), is defined as

wns(u) =
1

ln(e+ Deg(u))
, (2)

where e is Euler’s number and Deg(u) is the degree of u
(i.e., the number of its edges) inG. Notice that 0 ≤ wns(u) ≤
1 and a node with a higher degree has a better (i.e., lower)
weight. We use logarithm in the denominator so that the
weight will not decay too fast as the degree increases, or
else there would be a negligible difference between nodes
with large degrees. For example, node 2 in Figure 1 has two
neighbors, so its static weight is 0.64; the static weight of
node 4 is 0.76, because it has a single neighbor.

Next, we consider relationship nodes and edges. Two en-
tity nodes are directly related if they are connected by either
a single edge or a pair of edges that pass through a relation-
ship node. In this paper, we do not consider types of nodes
and edges when determining static weights. In addition, the
degree of a relationship node is usually 2 or 3. Therefore, we
apply the rule that the static weight of a direct relationship
is always 1. In this way, we give some preference to smaller
answers (i.e., with fewer nodes). To conform to the above
rule, the static weight wns(u) of a relationship node u is 1.
The static weight of an edge e, denoted by wes(e), is 1 if
e connects two entity nodes; otherwise e connects an entity
with a relationship node and wes(e) = 0.

A path p from node v to node u is written as pv→u. The
static weight of pv→u, denoted by ws(pv→u), is the sum of
static weights of all the edges and nodes of p; that is,

ws(pv→u) =
∑
e∈p

wes(e) +
∑
x∈p

wns(x), (3)

where the first sum is over all edges e of p and the second—
over all nodes x of p. Note that if the path consists of only
node v, its weight is wns(v).

4.3 Weighted Term Frequencies
Next, we define the weighted terms frequencies of uni-

grams and unordered bigrams in a VD v?. Given a node
u of v?, the relative static weight of u in v?, denoted by
ws(v

?, u), is the minimum weight over all paths from v to u
in v?; that is,

ws(v
?, u) = min

pv→u is in v?
ws(pv→u). (4)

Note that all the nodes and edges of pv→u are in v?. For
example, in Figure 1, the relative static weight of node 4 in
the VD of node 2 is ws(2

?, 4) = 0.64 + 1 + 0.76 = 2.4.
Let t be either a unigram or an unordered bigram. To

define the frequency of t in v?, we adapt the method used in
positional language models [18]. That is, the weight of t in a
node u of v? is inversely proportional to ws(v

?, u)−ws(v?, v),
which is the weighted distance of u from v in the VD v?. In
particular, a kernel serves as a discounting factor. We use a
Gaussian kernel, because it was shown to be the best [18].
Formally, the weighted term frequency of t in field f of v?,
denoted by wtf (t, v?f), is

wtf (t, v?f) =
∑
u∈v?

e
−(ws(v

?,u)−ws(v?,v))2

2σ2 tf (t, uf), (5)

where tf (t, uf) is the ordinary term frequency of t in the field
f of node u and σ is a parameter that controls the spread
of the kernel.

Note that the sum in Equations (5) is over all nodes u
in v?. Observe that the weight of a single occurrence of t
is at most one, and it is exactly one in v. For example, in
Figure 1, the keyword bond appears twice in the VD of node
2: once in node 2 itself and once in node 4. If we set σ = 1,
then wtf (bond, 2?cnt) = 1 + 0.21 = 1.21.

4.4 Node Potential Functions
Consider a query Q = (q1, ..., qm). We now define poten-

tial functions for unigrams, unordered bigrams and nodes.
In Section 5, we use Equation (1) with these functions.

Unigrams. For unigrams, we use two potential functions
fn
T (qi, v) and fn

T̂
(qi, v) for the content and title fields, re-

spectively. These functions consider the fields of the VD v?

(rather than node v itself). They are defined by

fn
T (qi, v) = ln

(
(1− αnT)P (qi|v?cnt) + αnTP (qi|Vcnt)

)
, (6)

fn
T̂ (qi, v) = ln

(
(1− αnT̂)P (qi|v?ttl) + αnT̂P (qi|Vttl)

)
, (7)

where αnT and αn
T̂

are smoothing parameters for the content
and title fields, respectively, and Vcnt and Vttl are the collec-
tions comprising the content and title fields, respectively, of
all the nodes of the data graph. We use Dirichlet smoothing
for αnT and αn

T̂
, as described in Section 7.3.

We use the maximum likelihood estimate. Hence, in each
one of Equations (6) and (7), the first probability in the
right side is given by

P (qi|v?x) =
wtf (qi, v

?
x)∑

t∈v?x
wtf (t, v?x)

, (8)

where we use weighted term frequencies (defined by Equa-
tion (5)) and x is either cnt or ttl . The summation in the
denominator is over all unigrams t that appear in v?x and is
called the length of v?x.

In each of Equations (6) and (7), the second probability in
the right side (which does the smoothing with the collection)
is given by

P (qi|Vx) =

∑
u∈V tf (qi, ux)∑

u∈V
∑
t∈ux tf (t, ux)

. (9)

where x is either cnt or ttl .
Unordered bigrams. For an unordered bigram {qi, qi+1}
of Q (similarly to unigrams), we use the following two po-
tential functions for the content and title fields.

fn
U (qi, qi+1, v) = ln

(
(1− αnU)P ({qi, qi+1}|v?cnt) +

+ αnUP ({qi, qi+1}|Vcnt)
)
, (10)

fn
Û (qi, qi+1, v) = ln

(
(1− αnÛ)P ({qi, qi+1}|v?ttl) +

+ αnÛP ({qi, qi+1}|Vttl)
)

(11)

Here, αnU and αn
Û

are the smoothing parameters for un-
ordered bigrams. Similarly to unigrams, we use Dirichlet
smoothing for these parameters. As earlier, the probabili-
ties in Equations (10) and (11) are derived according to the
maximum likelihood estimate. That is, they are given by
Equations (8) and (9), respectively, except that we substi-
tute {qi, qi+1} for qi and assume that t denotes unordered
bigrams (rather than unigrams).
Query independent. We use one query-independent po-
tential function that is given by the node prior. In particular,
we assume that the probability of a node v is proportional
to its degree in the graph. Hence,

fn
L(v) = ln

Deg(v)∑
u∈V Deg(u)

. (12)

Overall, there are five potential functions and, thus, we
have to learn five parameters (i.e., λnT , λn

T̂
, λnU , λn

Û
and λnL).

In the next section, we use the five functions twice: once
for selecting roots and a second time for choosing keyword
nodes. The learning is done separately for each one of these
two cases, as described in Section 7.3.

5. GENERATING ANSWERS
In this section, we rank nodes according to score(Q, v)

of Equation (1), where the potential functions are given by
Equations (6), (7), (10), (11) and (12).

We begin by selecting roots and keyword nodes. The for-
mer will be roots of answers. The latter will appear in
answers as nodes containing keywords of the given query
Q = (q1, . . . , qm). We do it as follows. First, we consider all
nodes v of G, such that v? contains every qi. We rank them
according to score(Q, v) and select the top-n. These are the
selected roots. Second, we consider the set U of all nodes v,
such that v is in r? where r is a selected root. Let Ui be the
subset of U that comprises all nodes v, such that v contains
the keyword qi of Q. For each keyword qi ∈ Q, we rank the
nodes of Ui according to score(Q, v) and choose the top-n.
These are the selected keyword nodes (for qi). Let S be the
set consisting of all the selected roots and keyword nodes.

We will construct answers from minimal-weight paths that
connect the selected roots and keyword nodes. We want
the weight of a path from a root r to a keyword node v
to reflect also the scores of its endpoints (i.e., score(Q, r)
and score(Q, v)), rather than just the static weights of Sec-
tion 4.2. Hence, we convert scores into dynamic weights.
When converting, we invert the scores, because lower weights
are better (whereas it is the opposite for scores). The conver-
sion produces dynamic weights in the interval [0, 1], to make
them commensurate with the static weights. Formally, the
dynamic weight of a node v ∈ S, denoted by wnd(v), is

wnd(v) = 1−
max
u∈S

score(Q, u)

score(Q, v)
. (13)

Since score(Q, v) is negative (i.e., obtained by applying log-
arithm to probabilities), wnd(v) is in the interval [0, 1]. Note
that wnd(v) = 0 if node v has the highest score in S.

The static weight of a path pr→v is given by Equation (3).
The combined weight of pr→v, denoted by wc(pr→v), also
incorporates the dynamic weights of r and v (while omitting
their static weights). That is,

wc(pr→v) = wnd(r) + wnd(v) +

+
∑
e∈p

wes(e) +
∑

x∈p∧x/∈{r,v}

wns(x). (14)

Let r be a selected root. The set Uri consists of all the
keyword nodes that were selected for qi and are in r?. Ob-
serve that every combination of m minimal-weight paths,
such that each one is from r to a keyword node of Uri
(1 ≤ i ≤ m), yields an answer to Q = (q1, . . . , qm).1 For
each root r and keyword qi, we generate these paths and
keep them in a separate sorted list.

To generate answers, a priority queue A stores for each
selected root r, the next best answer (with r as the root) that
has not yet been added to the output (or discarded if it is not
valid). Answers are removed from A by increasing height.
Note that the height of a tree is the maximum combined
weight over all the paths from the root to some leaf.

An answer a is valid if it satisfies the following conditions.
First, a is non-redundant, that is, a does not have a proper
subtree that also contains all the keywords of the query. If a
is redundant, we convert it to a non-redundant answer by re-

1Formally, such a combination may not create a tree. How-
ever, it can be easily modified to form a tree.

cursively removing the root r, thereby decreasing its height.
Second, a is not a duplicate of another answer that is al-
ready in the output. Duplicates are removed based on an
undirected semantics (to conform to the evaluation frame-
work of Section 7). Third, a does not have a relationship
node with fewer than two adjacent entity nodes.

6. ANSWER POTENTIAL FUNCTIONS
We view an answer a as a document by concatenating the

instances of each field over all the nodes of a. Thus, acnt
and attl are ordinary documents obtained by concatenating
the content and title fields, respectively, of all the nodes
of a. Similarly to nodes, we define potential functions for
unigrams, unordered bigrams and query-independent answer
priors. These functions are used for scoring answers with
respect to Q by means of Equation (1).
Unigrams. Analogously to Equations (6) and (7), we use
the following two potential functions for the content and
title fields, respectively.

fa
T (qi, a) = ln

(
(1− αaT)P (qi|acnt) + αaTP (qi|Vcnt)

)
(15)

fa
T̂ (qi, a) = ln

(
(1− αaT̂)P (qi|attl) + αaT̂P (qi|Vttl)

)
(16)

Recall that Vcnt and Vttl are the collections comprising the
content and title fields, respectively, of all the nodes of the
data graph.
Unordered bigrams. Similarly to Equations (10) and (11),
for an unordered bigram {qi, qi+1} of Q, we define two po-
tential functions for the content and title fields as follows.

fa
U (qi, qi+1, a) = ln

(
(1− αaU)P ({qi, qi+1}|acnt) +

+ αaUP ({qi, qi+1}|Vcnt)
)

(17)

fa
Û (qi, qi+1, a) = ln

(
(1− αaÛ)P ({qi, qi+1}|attl) +

+ αaÛP ({qi, qi+1}|Vttl)
)

(18)

As in Section 4.4, we use the maximum likelihood estimate
for the probabilities in the above equations. Since acnt and
attl are ordinary documents, we employ the usual term fre-
quencies, rather than the weighted ones. We use Dirichlet
smoothing for αaT , αa

T̂
, αaU and αa

Û
(see Section 7.3).

Query independent. We use one query-independent po-
tential function faL that is derived from an answer prior as
follows. Let ar be an answer. The subscript of ar means
that node r is the root. To derive the prior P (ar), we con-
sider the skeleton sr that is obtained by deleting the content
of ar. Namely, sr has the same nodes and edges as ar, but
without attribute-value pairs.

To obtain the probability P (ar), we assume that ar is
generated in two steps. First, the skeleton sr is generated
with probability P (sr). Second, sr is instantiated to ar with
probability P (ar|sr); this is also done in two steps. First, the
root of sr is instantiated to a specific node of the data graph
G. Second, the following is repeated. After instantiating a
node v of sr to some node v′ of G, we select a neighbor of
v′ for each child of v.

The prior of an answer ar is P (ar) = P (ar|sr)P (sr). For
simplicity, we assume that P (sr) is the same for all skele-
tons, so P (ar) = P (ar|sr). To compute P (ar|sr), we make
another simplifying assumption, namely, the probability of
choosing a specific node u of ar depends only on its parent,

denoted by par(u). In particular, the probability of choos-
ing the root r of ar depends only on the data graph G. And
as in the derivation of Equation (12), it is proportional to
the degree or r. Thus,

P (r) =
Deg(r)∑
v∈V Deg(v)

. (19)

For a node u 6= r of ar, the probability of choosing u is pro-
portional to its degree when compared with all the adjacent
nodes of its parent. Hence,

P (u|par(u)) =
Deg(u)∑

v∈N (par(u)) Deg(v)
, (20)

where N (par(u)) consists of all the neighbors of par(u).
Therefore, the probability of ar is

P (ar) = P (r)
∏

u∈a,u6=r

P (u|par(u)). (21)

Note that the product of the conditional probabilities is over
all nodes u of a, except the root. Since an answer a is an
undirected subtree, we can pick any one of its nodes as the
root; hence, we define

faL(a) = ln

(
max

r is a node of a
P (ar)

)
. (22)

7. EXPERIMENTS

7.1 The Benchmark
We use the evaluation framework of [5] that was specif-

ically developed for testing the effectiveness of systems for
keyword search over data graphs. The framework consists
of three datasets: IMDB, Wikipedia and Mondial.

The datasets are given as relations. Each tuple of those
relations has a unique id and may have some foreign keys
pointing to other tuples. IMDB and Wikipedia contain six
relations each, and Mondial contains twenty four relations.
IMDB has 1.6M tuples, Wikipedia has 206K tuples and
Mondial—only 17K tuples. IMDB and Wikipedia contain
relatively large chunks of text, while Mondial has only short
strings, such as names of countries and cities, etc. The Mon-
dial data graph has on average a large number of edges per
node, compared with the other two datasets.

For each dataset, the evaluation framework of [5] has fifty
queries and their qrels (i.e., query relevance judgments). The
average number of keywords per query is 2.91, when exclud-
ing five queries of IMDB that consist of very long quotations
from movies. The average number of answers per query is
4.49 and the largest number of tuples in an answer is 5.

7.2 System Implementation
We translated each dataset into a data graph, as explained

in Section 3.1. Each data graph is indexed into three data
structures. First, the graph index comprises the nodes and
edges, and is kept in a Berkeley DB.2 It is used for travers-
ing the data graph and for storing query-independent in-
formation that is needed for computing the potential func-
tions. The stored information includes, for example, the
static weights and for each node v, the lengths of v?cnt and
v?ttl ; the latter two are used in Equation (8).

2http://www.oracle.com/technetwork/products/berkeleydb

Table 1: Index sizes (in MB)
raw graph node virtual index
data index index τ = 1 τ = 2

Mondial 2 22.8 4.3 6.1 137
Wikipedia 220 330 316 299 23K
IMDB 304 1800 519 734 40K

The second data structure, called the node index, is an
Apache Lucene3 inverted index. It handles each node as a
separate document consisting of the title and content fields,
after applying stemming and stop-word removal.4 We use
the Lucene Field class to implement those two fields. We
keep two instances of the inverted node index, one for uni-
grams and another for unordered bigrams. The node index
also stores the full text of each node, because it is needed
for building the virtual index that is described next.

The third data structure, called the virtual index, is a
Lucene inverted index for the VDs (virtual documents) (one
per node). Similarly to the node index, it has title and con-
tent fields, and two instances (for unigrams and unordered
bigrams). The posting list of t keeps, as a Lucene payload,
the weighted term frequency of t (see Equation (5)).

Table 1 gives the sizes of the indexes for each dataset.5 For
IMDB, the graph index is relatively big, due to the large
number of entities and relationships in that dataset. The
node index and virtual index for τ = 1 have similar sizes.
This is due to the fact that the node index also stores the
full text of the title and content fields (rather than just the
inverted lists). The virtual index for τ = 2 is larger by two
orders of magnitude than the one for τ = 1.

The selection of roots and keyword nodes in Section 5 is
efficiently implemented as follows. Let Q = (q1, . . . , qm) be
the given query. In Lucene, we run Q as a boolean conjunc-
tive query on the virtual index and find all nodes v, such
that the VD v? contains all the qi. We rank those nodes
by score(Q, v) of Equation (1) and the potential functions
of Section 4.4; the top-n are the selected roots. We select
the top-n keyword nodes for each qi (1 ≤ i ≤ m) as follows.
Using the node index and the Filter tool of Lucene, we run
a Lucene query to find all the nodes that contain qi and are
in the VD of some selected root, and then choose the top-n
according to score(Q, v).

7.3 Parameters Tuning
We use Equation (1) in three places. First, to select the

top-n roots, second, to select the top-n keyword nodes and
finally to rank the top-k answers. Thus, we have to learn
the parameters λT , λT̂ , λU , λÛ and λL for each of the three
cases. We use the coordinate ascent algorithm [20], as im-
plemented in RankLib,6 to learn the parameters.

We generated three labeled files—for roots, keyword nodes
and answers—with positive and negative examples for each
query as follows. The qrels in the benchmark [5] contain only

3https://lucene.apache.org/
4We used stop words from http://www.textfixer.com/
resources/common-english-words.txt, added some nega-
tion words, such as can’t and won’t, and removed stop words
that could be names of people, such as Will.
5The sizes of the node and virtual indexes are shown for
unigrams. The unordered-bigram indexes are between two
to eight times larger than those of the unigrams.
6http://sourceforge.net/p/lemur/wiki/RankLib/

the correct answers that are labeled with 1. For each node
v of those answers, if v can be a root (i.e., its VD contains
all the query keywords) or a keyword node, then it is added
to the corresponding file with the label 1. To add negative
examples, we ran our system with equal weights of 0.2 for all
of the five parameters (when scoring roots, keyword nodes
and answers). We used the default values of n = 1, 000 and
k = 1, 000. Among the top-k answers obtained in this way,
we chose those that are not in the qrels and labeled them
with 0. Each node that can be a root or a keyword node
of an answer that is not in the qrels was also labeled with
0 and added to the corresponding file, provided that it had
not previously been labeled with 1.

Our experiments use cross validation. Namely, we learn
the parameters on two datasets and use them on the third
one. We report the results for each dataset with those
learned parameters. The files with both 0 and 1 labels are
just for training. The MAP is measured on the third dataset
by using the original qrels of the evaluation framework.

We use Dirichlet smoothing with the parameter µ
µ+|x| ,

where |x| is the length of x. For αnT , αn
T̂

, αnU and αn
Û

in Equa-
tions (6) and (10), the variable x ranges over v?cnt , whereas
in Equations (7) and (11), it ranges over v?ttl . The parameter
µ is the average of |x| over all v?cnt and v?ttl when smoothing
v?cnt and v?ttl , respectively.

For the parameters αaT , αa
T̂

, αaU and αa
Û

in Equations (15)
and (17), the variable x ranges over the acnt field of the top-
k answers, whereas in Equations (16) and (18), it ranges
over their attl field. We view an answer a as an ordinary
document. But since answers have a variable number of
nodes, we define the length of af (where f is either cnt
or ttl) as the average per node; namely, 1

s

∑
t∈af

tf (t, af),

where s is the number of nodes of a. When smoothing af ,
the parameter µ is the average of |vf | over all nodes v of the
data graph; similarly for unordered bigrams.

The diameter of VDs is τ = 1 (see Section 4.1). Unless
otherwise specified, when selecting the top-n roots and key-
word nodes for each qi (see Section 5), we use n = 1, 000.

7.4 The Setup of the Experiments
We compare our approach with the top systems, namely,

BANKS [2], Bidirectional [13] and CD [6], among those
tested in [5], as well as with GraphLM [19]. In [7], they
extended the binary relevance set of [5] to include answers
with marginal relevance. However, they have not made that
extended framework available, so we cannot use it. Similarly
to [5, 19], we use the default k = 1, 000 when producing the
top-k answers for each query.

7.5 Comparison with the State of the Art
We compare our approach, called MRF-KS, with the state-

of-the-art systems using the evaluation framework of [5].7

Figure 2 shows that MRF-KS outperforms the other sys-
tems on each of the three datasets.8 The second best is
GraphLM. On Wikipedia, MRF-KS achieves a MAP of 0.76
compared with 0.63 for GraphLM (an improvement of 20%).
On IMDB, MRF-KS has a MAP of 0.76 compared with 0.68
for GraphLM (an improvement of 11.3%). And on Mon-

7For all the systems, the MAP on IMDB is based on the up-
dated qrels that appear in http://www.cs.virginia.edu/
~jmc7tp/resources.php#search.
8We show only the top performing state-of-the-art systems.

dial, MRF-KS has a MAP of 0.89 compared with 0.83 for
GraphLM (an improvement of 7.6%).

The advantage of MRF-KS over the second best system
GraphLM is statistically significant on all three datasets, as
measured in a one-tailed t-test (p-value < 0.05). We exclude
the work of [3] from this comparison due to the following.
Some essential details (e.g., the algorithm for generating an-
swers in ranked order) are missing from their paper, which
has made it impossible for us to reproduce their results.
Moreover, they declined our request to get their code or,
at least, the AP (average precision) they obtained for each
individual query of the evaluation framework of [5]; hence,
verifying their results is problematic. In any case, they re-
ported that for Mondial, Wikipedia and IMDB, they got a
MAP of 0.9, 0.78 and 0.79, respectively. Our results are
almost the same: 0.89, 0.76 and 0.76, respectively.

Mondial Wikipedia IMDB

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
A
P

MRF-KS GraphLM CD Bidirectional Banks

Figure 2: MAP of MRF-KS and state-of-the-art sys-
tems (k = 1, 000, n = 1, 000)

Mondial Wikipedia IMDB

0.6

0.7

0.8

0.9

M
A
P

MRF-KS MRF-KS(τ = 2) noWTF(τ = 2) noBigram

noTitle noAnswerPriors onlyAnserPriors

Figure 3: Effect of individual features (k = 1, 000,
n = 100)

7.6 The Effect of Different Components
We now show the effect of various components of our sys-

tem by measuring the MAP yielded by different configura-
tions, as shown in Figure 3. Unless otherwise specified, VDs
have the default diameter of τ = 1. To magnify the effect
of the different configurations, we select a relatively small
number (n = 100) of roots and keyword nodes. For each
configuration, we relearned the relevant parameters on two
datasets and then measured the MAP on the third one, as
explained in Section 7.3.

The first two columns show that increasing the diameter
τ of VDs from 1 to 2 slightly lowers the MAP. The third
column (labeled with noWTF) is when the diameter is 2 and
ordinary term frequencies (instead of the weighted ones) are
used. In this case, the MAP drops on all three datasets and
the larger effect is on Wikipedia (from 0.74 to 0.66).

The rest of the columns show an ablation test that dis-
ables one feature at a time. The column noBigram is when
disabling the unordered bigrams in the content and title
fields (setting λU , λÛ = 0) for roots, keyword nodes and
answers. The column noTitle denotes the effect of disabling
the title field for unigrams and unordered bigrams (setting
λT̂ , λÛ = 0) for roots, keyword nodes and answers. The col-
umn noAnswerPriors is when using all features except the
answer priors (setting λL = 0). The last column onlyAn-
swerPriors shows the MAP when using only answer priors
for ranking the answers (setting λT , λU , λT̂ , λÛ = 0 for an-
swers and keeping all features for roots and keyword nodes).

We can see that the most dominant feature is the answer
priors. When disabled, the MAP drops sharply on all three
datasets. For example, on Wikipedia it drops from 0.75 to
0.6 and on IMDB—from 0.76 to 0.56. The contribution of
the answer priors is statistically significant. The title field
has the second largest effect on IMDB and Wikipedia. The
unordered bigrams have a moderate effect on Mondial and
Wikipedia, but a larger one on IMDB.

7.7 Efficiency vs. Effectiveness
In this section, we show that our method offers a useful

trade-off between effectiveness and efficiency that can be
easily tuned, thereby substantially improving the running
time while only slightly lowering the MAP. This ability is
hardly found in any other system. Figure 4 gives the average
running time per query and the MAP for different values of n
(i.e., the number of selected roots and keyword nodes). The
results are for k = 100 rather than the default k = 1, 000,
thereby making the results more significant.

Figure 4 shows that the running time drops at a much
faster rate than the MAP, as n gets smaller. On the three
datasets, even for the small value of n = 50, the MAP is
almost the same as for n = 1, 000. Hence, the parameter
n enables us to substantially increase the efficiency without
sacrificing effectiveness.

n=10 n=50 n=100 n=1000

0.2

0.4

0.6

0.8

M
A

P

Mondial-MAP Wikipedia-MAP IMDB-MAP

n=10 n=50 n=100 n=1000
0

1

2

3

T
im

e
(s

ec
)

Mondial-Time Wikipedia-Time IMDB-Time

Figure 4: Effect of n (number of selected roots and
keyword nodes) for k = 100

8. CONCLUSIONS
We presented a novel approach, couched in probability

theory, to finding the top-k answers in keyword search over
data graphs. It is based on new ideas and concepts. First, we
showed how to estimate the prior of an answer (i.e., subtree)
and showed its contribution to the final ranking of answers.
Second, we defined virtual documents with weighted term
frequencies and showed their effectiveness in selecting the
most promising roots and keyword nodes of candidate an-

swers. Third, we presented an efficient algorithm for gener-
ating and ranking answers. The ranking of nodes (i.e., roots
and keyword nodes) and answers is based on a combination
of query-dependent and independent features.

We compared our approach with other systems on the
evaluation framework of [5] that consists of three datasets:
IMDB, Wikipedia and Mondial. In terms of MAP, our ap-
proach has a statistically significant advantage over other
tested systems on each of these datasets. For example, on
Wikipedia, we achieved an improvement of 20% compared
with the best state-of-the-art system.

We performed an extensive analysis of the contribution
of the various components. The most significant feature is
the answer priors. We further showed that that the MAP
remains almost the same even when selecting a small number
of keyword nodes and roots, thereby reducing the search
space and increasing the efficiency.

9. ACKNOWLEDGMENTS
The authors thank Oren Kurland for helpful comments.

10. REFERENCES
[1] M. Bendersky, W. B. Croft, and Y. Diao. Quality-biased

ranking of web documents. In WSDM, 2011.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, and S. Chakrabarti.
Keyword searching and browsing in databases using banks. In
ICDE, pages 431–440, 2002.

[3] V. Bicer, T. Tran, and R. Nedkov. Ranking support for
keyword search on structured data using relevance models. In
CIKM, 2011.

[4] R. Blanco, P. Mika, and S. Vigna. Effective and efficient entity
search in rdf data. In ISWC, 2011.

[5] J. Coffman and A. C. Weaver. A framework for evaluating
database keyword search strategies. In CIKM, 2010.

[6] J. Coffman and A. C. Weaver. Structured data retrieval using
cover density ranking. In KEYS, pages 115–126, 2010.

[7] J. Coffman and A. C. Weaver. Learning to rank results in
relational keyword search. In CIKM, 2011.

[8] S. Elbassuoni and R. Blanco. Keyword search over rdf graphs.
In CIKM, 2011.

[9] B. He and I. Ounis. Combining fields for query expansion and
adaptive query expansion. In Information Processing and
Management, volume 43, pages 1294–1307, 2007.

[10] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: Ranked
keyword searches on graphs. In SIGMOD, 2007.

[11] D. Himestra. Statistical language models for intelligent XML
retrieval. In Intelligent Search on XML Data, LNCS 2818.
Springer-Verlag Berlin Heidelberg, 2003.

[12] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
ir-style keyword search over relational databases. In VLDB,
pages 850–861, 2003.

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and
R. Desai. Bidirectional expansion for keyword search on graph
databases. In VLDB, pages 505–516, 2005.

[14] J. Kamps, G. Mishne, and M. de Rijke. Language models for
searching in Web corpora. In TREC, 2004.

[15] J. Y. Kim and W. B. Croft. A field relevance model for
structured document retrieval. In European Conference on
Information Retrieval (ECIR), pages 97–108, 2012.

[16] N. Lao and W. W. Cohen. Relational retrieval using a
combination of path-constrained random walks. In Mach
Learn, volume 81, pages 53–67, 2010.

[17] Y. Luo, X. Lin, W. Wang, and X. Zhou. Top-k keyword query
in relational databases. In SIGMOD, pages 115–126, 2007.

[18] Y. Lv and C. Zhai. Positional language models for information
retrieval. In SIGIR, 2009.

[19] Y. Mass and Y. Sagiv. Language models for keyword search
over data graphs. In WSDM, pages 363–372, 2012.

[20] D. Metzler and W. B. Croft. A markov random field model for
term dependencies. In SIGIR, 2005.

[21] Q. Su and J. Widom. Indexing relational database content
offline for efficient keyword-based search. In IDEAS, pages
297–306, 2005.

