
Workload-Aware Streaming Graph Partitioning

Hugo Firth
School of Computing Science

Newcastle University
h.firth@ncl.ac.uk

Paolo Missier
School of Computing Science

Newcastle University
paolo.missier@ncl.ac.uk

ABSTRACT
Partitioning large graphs, in order to balance storage and
processing costs across multiple physical machines, is be-
coming increasingly necessary as the typical scale of graph
data continues to increase. A partitioning, however, may in-
troduce query processing latency due to inter-partition com-
munication overhead, especially if the query workload ex-
hibits skew, frequently traversing a limited subset of graph
edges. Existing partitioners are typically workload agnostic
and susceptible to such skew; they minimise the likelihood
of any edge crossing partition boundaries.

We present our progress on LOOM: a streaming graph
partitioner based upon efficient existing heuristics, which re-
duces inter-partition traversals when executing a stream of
sub-graph pattern matching queries Q. We are able to con-
tinuously summarise the traversal patterns caused by queries
within a window over Q. We do this using a generalisation
over a trie data structure, which we call TPSTry++, to
compactly encode frequent sub-graphs, or motifs, common
to many query graphs in Q. When the graph-stream be-
ing partitioned contains a match for a motif, LOOM uses
graph-stream pattern matching to capture it, and place it
wholly within partition boundaries. This increases the like-
lihood that a random query q ∈ Q may be answered within
a single partition, with no inter-partition communication to
introduce additional latency.

Finally, we discuss the potential pitfalls and drawbacks
which exist with our approach, and detail the work yet to
be completed.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

1. INTRODUCTION
Recently there has been a proliferation of web hyperlinks,

social network users, protein interaction networks, and other
content readily modelled as large graphs. Sub-graph pattern

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

q1

a

b

a

b

q2

a b c

q3

a b c d

ba

G

5:b 6:a 7:d 8:c

1:a 2:b 3:c 4:d

Q

Figure 1: An example graph G with query workload
Q

matching over these graphs is common to many modern ap-
plications, including fraud detection [18], recommender sys-
tems [7] and genome analysis [4]. Pattern matching can be
simply discussed in terms of sub-graph isomorphism, where,
given a labelled query graph Gqi and a labelled parent graph
G, the answer to the query is all sub-graphs in G which
are isomorphic to Gqi ; i.e. all sub-graphs which have the
same structure (vertices, edges, and labels) as Gqi . For in-
stance, given the graph and query workload in figure 1, the
answer to q1 would be the sub-graph of G containing the
vertices 1, 2, 5, 6 and their interconnecting edges. Figure 1
also demonstrates query graphs which share common sub-
structure. In this work, we exploit the existence of such fre-
quently reoccurring sub-graphs within a query workload Q
to improve Q’s performance over large, distributed graphs.
We refer to frequent sub-graphs of query graphs as motifs.

Pattern matching is computationally complex and, over
“big-graph data”, would prove prohibitively expensive to a
single commodity machine. Distributed graph partitioning
has long been seen as a viable approach to address such scal-
ability issues in graph processing frameworks [11, 12], and
graph database management systems (GDBMS) [1]. These
systems distribute vertices and computation across multiple
machines, using a simple hash function to determine ver-
tex placement by default. Although a hash-partitioning is
efficient to compute and creates partitions with even num-
bers of vertices, it ignores vertex locality, and is therefore to
create a large number of inter-partition edges. This is unde-
sirable, incurring a high communication overhead between
partitions for many types of graph workload, including pat-
tern matching queries.

The problem of minimising the number of inter-partition,
or cut, edges in a distributed graph, whilst maintaining an
even distribution of vertices, is known as k-balanced graph

partitioning, which is NP-Hard [3]. Despite this, there ex-
ist several practical solutions [8, 17, 19, 20] to the problem.
Some, such as the state-of-the-art“offline”partitioner METIS
[8], are memory intensive, their performance suffering over
graphs with billions of vertices [19]. They may also have to
perform expensive repartitioning in the presence of graph
changes. Others [17,19,20] adopt a simpler streaming graph
partitioning model. A graph-stream is an ordering over
the elements of a dynamic, growing graph, often by cre-
ation time. Social networks are often viewed as graph-
streams [16]. Procedures on graph-streams will usually con-
sider each graph element, in order, just once and therefore
likely have very good complexity, regardless of graph size.
Streaming graph partitioners typically produce more inter-
partition edges than METIS, but are much faster.

Although these streaming graph partitioners do reduce the
number of cut edges and seamlessly handle graph updates,
they are agnostic to the specific workload being executed
over the graph partitioning: edges to be cut are computed
purely based upon graph structure. For some workloads,
which may traverse a limited subset of edges in a graph, such
partitionings may incur unnecessary communication over-
head [15, 20]. An example of such a workload is a one of
pattern matching queries, where the topologies which are
likely to be traversed are those which correspond to mo-
tifs defined in query graphs. In this work we focus on a
different measure of partitioning quality: the probability of
inter-partition traversals which is different from the number
of inter-partition edges, given a workload Q.

Whilst systems such as LogGP [20] do attempt to collect
runtime statistics in order to improve graph partitioning for
a given workload, they are focused on the Bulk-Synchronous-
Parallel (BSP) model of computation used by Pregel-like
systems for “offline” analytical workloads. Our goal, how-
ever, is to improve graph partitionings for a given “online”
workload of pattern matching queries over a dynamic la-
belled graph, as would be common to GDBMS.

1.1 Contributions
We describe a novel extension to existing streaming graph

partitioning methods [17], aimed at avoiding introducing
unnecessary inter-partition communication overhead for a
given query workload. More precisely, let Q be a work-
load of queries over G, along with the relative frequency
of each query in Q. We are able to efficiently derive the
most common motifs from the query graphs in Q. Using an
approach to graph-stream pattern matching [16], we iden-
tify those sub-graphs in G which match these motifs, and
are therefore likely to be traversed during the execution of
a random q ∈Q. Having grouped a graph-stream into fre-
quently traversed sub-graphs, we are then able to use the
successful Linear Deterministic Greedy heuristic [17] (LDG)
to assign these to a partition, excepting some balance con-
straints. This increases the likelihood that a random q ∈ Q
can be processed without causing inter-partition traversals
and communication overhead.

Concretely, this work makes the following contributions:

• We extend an existing streaming graph partitioning
approach [17], to account for the probabilities of cross-
ing partition boundaries during execution of a query
from a given workload Q.

• We present an efficient intensional representation of

the probable edge traversals caused by a given work-
load of sub-graph pattern matching queries Q.

• We propose a graph-stream pattern matching approach
to transform a stream of vertices and edges G into a
sequence of motifs, where each motif represents a sub-
graph in G likely to be traversed during execution of
a random q ∈ Q.

The rest of this paper is organised as follows. In the sub-
sequent section we discuss background material and related
work. In Section 4.2 we present the TPSTry++ datastruc-
ture for capturing an intensional representation of graph
traversals from a query workload. In Section 4.3 we present
a detailed overview of the streaming graph partitioner which
accounts for the workloads captured in Section 4.2. In the
Conclusion we discuss our progress with this work, highlight
its limitations, and present some potential avenues for future
study.

2. DEFINITIONS
A labelled graph G = (V,E, LV , fl) is of the form: a set

of vertices V = {v1, v2, ..., vn}, a set of pairwise relationships
called edges e = (vi, vj) ∈ E and a set of vertex labels LV .
The function fl : V → LV is a surjective mapping of vertices
to labels.

A graph motif is simply a sub-graph structure which
occurs repeatedly within a graph or graph-stream G.

A pattern matching query is defined in terms of sub-
graph isomorphism. Given a pattern graph Q = (VQ, EQ),
a query should return G′: a set of sub-graphs of G. For
each returned sub-graph G′

i = (V ′
i , E

′
i) there should exist

a bijective function f such that: (a) for every vertex v ∈
V ′
i , there exists a corresponding vertex f(v) ∈ VQ; (b) for

every edge (v1, v2) ∈ E′
i, there exists a corresponding edge

(f(v1), f(v2)) ∈ EQ; and (c) for every vertex v ∈ G′
i, the

labels match those of the corresponding vertices in Q, l(v) =
l(f(v)).

A graph partitioning is defined as an disjoint family
of sets of vertices Pk(V) = {V1, V2, . . . , Vk}. Each set Vi,
together with its edges Ei (where ei ∈ Ei, ei = (vi, vj), and
{vi, vj} ⊆ Vi), is referred to as a partition Si. A partition
forms a proper sub-graph of G such that Si = (Vi, Ei), Vi ⊆
V and Ei ⊆ E.

3. BACKGROUND & RELATED WORK
The three main areas of work which relate to our own are:

1) graph partitioning, particularly when workload-aware;
2) frequent sub-graph mining; & 3) graph-stream pattern
matching. We provide an overview of the first below, but
defer discussion of the latter two to sections 4.2 and 4.3 re-
spectively, for context.

3.1 Graph partitioning
balanced graph partitioning is an NP-Hard problem with

application to many areas across distributed systems and
scientific computing; it has been exhaustively studied in lit-
erature since the 1970s [6, 8, 9], and several practical solu-
tions exist [8, 19]. One such solution is METIS [8], a re-
liable standard for offline, fast partitioning. METIS is a
multilevel technique: it computes a succession of recursively
compressed graphs, partitions the smallest then “projects”
that partitioning onto previous graphs in the sequence, ap-
plying local refinement techniques [9] to the partitioning at

each step. This produces a balanced k-way partitioning on
the original graph, optimised for minimal edge cut.

Despite its prevalence, there are soome issues with METIS
which makes it unsuitable for our goal of workload-aware
partitioning of a large, dynamic graph. Firstly, the per-
formance of METIS suffers in the presence of graphs with
more than a few hundred million elements [19]. Secondly, if
a graph partitioning produced with METIS, or other offline
techniques, grows over time then expensive full repartition-
ing operations will be required to maintain partition qual-
ity. Finally, METIS may account for a static query work-
load known a priori, using individual edge-weights to repre-
sent traversal frequency, however tracking this information
is memory intensive, and otherwise non-trivial.

The streaming graph partitioning model [17] addresses the
first two of these shortcomings. By assigning vertices and
edges to a partition as soon as they arrive and not stor-
ing them to perform introspection of graph structure, such
partitioners are able to maintain a small memory footprint.
Thus, streaming partitioners such as Fennel [19], created
by Tsourakakis et al, are able to scale to large graphs un-
bounded by the main memory of a host machine. Also, be-
cause element placement is computed“on the fly”, streaming
partitioners adapt seamlessly to graph growth, applying the
same placement operation for each new vertex and edge that
arrives over time.

It is worth noting, however, that the heuristics used by
streaming graph partitioners are sensitive to the order of
graph elements in a stream [17]. There are three cate-
gories of graph ordering commonly considered when evaluat-
ing streaming graph partitioners: random, adversarial and
stochastic. Consider an 2-way partitioning for the graph in
figure 1, with a vertex ordering of V = (1, 3, 6, 8, 2, 4, 5, 7).
Given no neighbours for the first half of vertices received, a
naive partitioner might greedily place them in a single par-
tition which, intuitively, causes a final balanced partitioning
with the maximum edge cut: |E|. This is an adversarial
ordering. For the streaming graph partitioning approach
described in this work, we will consider stochastic order-
ing; that is, a graph-stream continuously generated by some
stochastic process, such as user input.

3.2 Workload aware partitioning
To the best of our knowledge, existing streaming graph

partitioning solutions do not satisfy our goal for this work:
producing workload-aware graph partitionings, which ac-
count for the edge traversals patterns of a given “online”
workload of sub-graph pattern matching queries.

Xu et al ’s LogGP [20] tackles workload aware partition-
ing improvement for graphs processed in Pregel-like sys-
tems [12], where operations are computed in a vertex-centric
fashion across a series of supersteps. LogGP collects in-
formation about the set of vertices accessed in each su-
perstep, using it to predicts the set to be accessed in the
next. Subsequently, this meta-data is incorporated with the
original graph, transforming it into a hypergraph. With a
novel streaming hypergraph partitioning technique, LogGP
then repartitions the graph after each superstep, reducing
the communication overhead for the next and reducing the
overall execution time of an operation. Though LogGP’s
approach is workload-aware, its dependence on supersteps
and vertex-centric computation renders it unsatisfactory for
our goal.

There are a number of works addressing the related prob-
lem of workload-aware data partitioning in distributed rela-
tional database systems [5,13]. Schism [5] and SWORD [13]
use an a priori workload to generate a hypergraph, where
each edge represents a set of tuples involved in a single
transaction. This hypergraph is then partitioned using a
version of METIS to achieve a minimal edge-cut. Mapped
back to the original database, the partitioning represents an
arrangement of records which causes a minimal number of
transactions in the captured workload to be distributed.

Though the goals of these works and our own are similar,
they are focused on a relational data model, where typical
workloads overwhelmingly consist of short 1-2 “hop” queries.
It is unclear how the techniques described would perform
given a workload containing many successions of JOIN op-
erations, equivalent to the traversals required for sub-graph
pattern matching. Furthermore, these works do not consider
dynamic graphs at all.

In [21], Yang et al propose algorithms to efficiently anal-
yse online query workloads and to dynamically replicate
“hotspots” (clusters of vertices over 2 or more partitions
which are being frequently traversed), thereby temporarily
dissipating network load. Whilst highly effective at dealing
with unbalanced query workloads, Yang et al focus solely
upon the replication of vertices and edges using temporary
secondary partitions. They do not consider workload char-
acteristics when producing the initial partitioning, nor do
they consider workload characteristics when producing it.
This can result in replication mechanisms doing far more
work than is necessary over time, adversely affecting the
performance of a system. As a result, the partitioning tech-
nique we present here could effectively complement many
workload aware replication approaches, such as this.

4. LOOM PARTITIONING OVERVIEW
In this section we provide an intuition of how we are going

to partition a graph-stream to account for a specific work-
load. Initially, we describe the efficient streaming-graph par-
titioning heuristic used as a base for our workload-aware
extensions. The heuristic assesses characteristics of each in-
dividual vertex before placing them in an appropriate par-
tition. However, by running efficient pattern matching pro-
cedures against a buffered window over the graph-stream,
we are able to capture motifs; treating these motifs as single
vertices, we may then use the same heuristic to place them
wholly within beneficial partitions. If the motifs we cap-
ture correspond to those likely to be frequently traversed
by a known workload Q, then this would increase the likeli-
hood that a random q ∈Q is executed without inter-partition
traversals. Thus, we subsequently present a method for con-
tinuously summarising the motifs most frequently traversed
by a given stream of sub-graph pattern matching queries
Q. Finally, we present our chosen pattern matching proce-
dure and discuss the issues which currently exist with our
partitioning approach.

4.1 Base partitioning heuristic
LOOM’s partitioning is based upon the Linear Deter-

ministic Greedy heuristic (LDG) proposed by Stanton and
Kliot [17]. LDG is a simple heuristic which seeks to assign
a new vertex to the partition where it has the most edges,
as this is efficient to compute, and greedily minimises the
number of inter-partition edges for each vertex. In order to

b c

a b

ba

b ca

a b c d

a

c d

a b c

b c d

a b c d

a b c

a

b a b c

a b a b

a b a

b a ba

b

c

d

b

b ca d

aa

b

a

b

Figure 2: TPSTry++ for Q in fig.1

create a partitioning which is balanced in the number of ver-
tices, each partition is given a capacity constraint C. For a
given vertex v and partition Si = (Vi, Ei), the number of v’s

edges in Si is weighted by Si’s free capacity 1− |Vi|
C

. In this
way partitions are progressively more penalised the more
vertices they contain. LDG is an effective heuristic [17, 19],
reducing the number of edges cut by up to 90%.

In LOOM we buffer a sliding window over a graph-stream,
and use LDG to assign both connected sub-graphs1 and sin-
gle vertices from the buffer to partitions. Stanton and Kliot
describe similar extensions in their original work [17]. In par-
ticular, the Greedy EvoCut partitioning heuristic is closely
related to our own. The local partitioning algorithm Evo-
Cut [2] is used to split sub-graphs which occur within the
stream buffer into small pseudo-partitions, which are then
wholly assigned to parent partitions using LDG. In LOOM
however, we attempt to detect sub-graphs within the stream
buffer which are likely to be frequently traversed by a work-
load Q, and greedily place those wholly within a partition.

4.2 Capturing a query workload
In order to detect the sub-graphs from stream G which are

likely to be frequently traversed by a workload Q, we must
first discover those motifs which occur frequently within the
query graphs defined in Q. This act of discovery is a form
of frequent sub-graph mining.

In a previous work by the authors which is submitted
for publication elsewhere, we define the traversal pattern
summary trie (TPSTry). The TPSTry datastructure, in-
spired by Li et al ’s work [10] to find common traversal paths
amongst sessions of hyperlink click-streams, is an encoding
of the frequent motifs in a workload of path queries. The en-
coding is intensional, encoding paths of vertex labels, rather
than the vertices themselves, in order to save space. Each
node n is associated with the set of queries which could
cause the path of traversals which n represents. Each node
n in the trie is additionally associated with a probability
P (n), representing the likelihood of a traversal in graph G
along a path whose vertex labels match those of the path
ε → . . . → n in the TPSTry. Using these probabilities, we
are able to estimate the probability of any traversal from a
vertex v, given its v label and those of v’s local neighbour-
hood.

1When assigning sub-graphs, LDG considers the total edges
from all vertices, to each partition.

In this work we extend the TPSTry data structure from a
trie to a directed acyclic graph, which we call TPSTry++,
capable of encoding the features of more complex motifs:
branches, cycles etc. Encoding the motifs described by in-
exact pattern matching queries, such as those including vari-
able length paths, is considered out of scope for this work.

The TPSTry++ is inspired by the work of Ribeiro and
Silva, who propose G-Tries [14]. A G-Trie is a trie data
structure which stores unlabelled graphs in such a way that
a parent node in the trie represents a sub-graph of its chil-
dren. Each graph in a G-Trie node is represented in its
canonical form. A canonical form is guaranteed to be equal
for two graphs which are isomorphic to one another, avoid-
ing multiple trie branches per graph. In order to discover
frequent sub-graphs (motifs), Ribeiro and Silva traverse the
elements of a graph, constructing the branches of a G-Trie
as they encounter distinct motifs. A p-value is associated
with each node, based upon the number of times a particu-
lar motif has been observed.

This process is similar to how we construct a TPSTry++
from a stream of sub-graph pattern matching queries, how-
ever there are a number of differences. Firstly, as we cap-
ture labelled topologies, the TPSTry++ must be a directed
acyclic graph (DAG), rather than a tree, as it may have mul-
tiple possible root nodes: one for each vertex with a distinct
label. Secondly, we must use a different method for checking
isomorphism between two motifs, as the unlabelled canonical
form used when constructing G-Tries is no longer sufficient.
To match two motifs, we use an efficient algorithm by Song
et al [16] for computing numerical signatures for graphs.
This algorithm is proposed as part of a graph-stream pat-
tern matching approach, which we use to detect matches for
Q’s motifs in a graph-stream G. Both algorithm and pat-
tern matching approach are detailed in the next section 4.3.
Note that signature equality constitutes a non-authoritative
form of isomorphism checking. However, the probability of
signature collisions, and therefore of mistakenly represent-
ing distinct motifs with a single TPSTry++ node, is shown
to be very low.

Figure 2 shows a representation of a TPSTry++ for the
workload Q in figure 1, without p-values. We capture the
motifs common to Q, along with their frequencies, by ex-
ecuting a simple co-recursive algorithm, presented in algo-
rithm 1, for each query graph Gqi .

Algorithm 1 Recompute TPSTry++ for each query q ∈Q
qG← the query graph defined by q
signature(g)← the signature of a graph g
support(g)← a map of TPSTry++ nodes to p-values
tpstry ← the TPSTry++ for Q
g ← some sub-graph of qG, initially a single vertex

weave(qg, tpstry)
for v in vertices from qG do

g ← new graph with just {v}
corecurse(g, tpstry)

sig ← signature(g)
if sig not in tpstry then

tpstry ← tpstry + g //Add a g node to TPSTry++
support(g)← support(g) + 1
newEdges← edges incident to g but not in g
for e in newEdges

corecurse(g + e, tpstry) //Traverse through qG
return tpstry

Any node in the TPSTry which has a p-value above a
user-defined threshold T is denoted frequent, and the node’s
associated sub-graph is considered a motif in Q.

4.3 Detecting motif matches in a graph-stream
The TPSTry++ for Q provides a set of query motifs

which, where they occur in G, are likely to be frequently
traversed by a random q ∈Q. Given this information, we
must attempt to identify sub-graphs in G which match these
motifs, in order to make sure they cross partition boundaries
as little as possible. As mentioned, global graph introspec-
tion or pattern matching operations are expensive and limit
the scalability of a partitioner [19]. Instead, we use a graph-
stream pattern matching algorithm to capture those sub-
graphs in G which match a query motif and occur within a
given window2 over the graph-stream.

Song et al [16] propose a highly efficient algorithm based
on number theoretic signatures. Offline, they construct a
“signature” for each query graph Gqi in a workload. This
signature is really a large integer hash, which captures key
information about a graph, such as vertices, labels and their
degree, as distinct factors. Subsequently, as an edge e arrives
online, the signature for a sub-graph S which contains e is
calculated by multiplying the previous signature of the sub-
graph S\e by the factor for e. If the signature for S is
divisible by the signature for Gqi then there is likely to be a
match for qi in S.

Song et al demonstrate that if a graph does not have a
signature equal to that of a given query graph Gqi , then
it cannot be a match for the query qi. Note that this is
a weaker property than a signature match being equivalent
to a graph match, and as such this pattern matching algo-
rithm is non-authoritative; indeed, Song et al must use a
secondary algorithm to verify matches. However, they also
demonstrate that signature collision is highly unlikely, which
should be sufficient for our purposes of heuristically improv-
ing a partitioning, without further verification.

Recall from algorithm 1 that a signature is computed for
each motif represented by a node in the TPSTry++. As each
edge arrives in the graph-stream, if it connects two vertices
within the stream window to form a sub-graph S, then we
compute a signature. If the signature is a match for a node
n in the TPSTry++, then S is a match for a motif. For
a subsequently added edge, the signature for sub-graph S′

must match a signature associated with a child of n, or else
S′ is not a match for a motif. Note that the sub-graph S′

not being a match for a motif does not imply that the newly
added edge is not part of a sub-graph which is a match.

Figure 3 presents an illustrative example of the above.
The subgraph S′ is not a match for any node of the TPSTry++
in figure 2, however it contains two distinct instances of the
abc motif. The pattern matching algorithm does not de-
tect this, because sub-graph signatures are iteratively recom-
puted with each update, and previous signatures discarded.
As a result, we risk assigning the added c labelled vertex
to a different partition than the sub-graph S, creating an
inter-partition edge which is likely to be traversed. In order
to avoid this, we adopt the following simple procedure: if an
edge e is added to a sub-graph S, and the new sub-graph
S′ is not a match for a motif in the TPSTry++, then we
incrementally compute a new signature for S′, starting with

2Stream windows may be defined in terms of time, or ele-
ment count

graph-stream G

a cb a cb

c

S S`

Figure 3: Motif matching over the graph-stream

the new edge e. This computation is similar to algorithm
1, in that we traverse each edge in S′, starting with those
incident to vertices in e. After each step we recompute the
signature for the sub-graph of S′ which we have traversed so
far. If this recomputed signature is not in the TPSTry++
then we discard the most recent edge, and do not traverse
to its neighbours. We eventually traverse and identify the
largest sub-graph of S′ which both contains the edge e and
is a match for a query motif3.

4.4 Assigning motif matches to partitions
The pattern matching algorithm described in the previous

section will maintain the set of sub-graphs which are cur-
rently within the graph-stream window, and which match
common motifs from a query workload Q. Over time, ver-
tices and edges will leave the stream window and be assigned
to partitions using the LDG heuristic, as mentioned in sec-
tion 4.1. When the “oldest” vertex in a motif match is due
to be assigned, we assign the whole matching sub-graph at
once. Other matching sub-graphs which share common sub-
structure with the sub-graph being assigned, as in figure 3,
will also be assigned to the same partition. This greedy
approach is naive, as it risks assigning some motif match-
ing sub-graphs to sub-optimal partitions because they share
substructure with another sub-graph which was assigned
earlier. Furthermore if a set of connected sub-graphs is very
large, it is unclear what effect this would have on partition
balance, even given LDG’s penalty weighting. Evaluating
alternative approaches, including local partitioning of motif
matches to separate them across partitions, is a focus of our
ongoing work.

As stated previously, isolated vertices, or sub-graphs which
do match motifs from Q, are assigned according to the LDG
heuristic.

5. CONCLUSION AND FUTURE WORK
We have presented our ongoing work on LOOM: a workload-

aware streaming graph partitioner. Our primary contri-
bution is using a generalised trie data structure to iden-
tify query motifs, small sub-graphs common to many of
the query graphs defined in a sub-graph pattern matching
workload Q. We have also described how we use an effi-
cient graph-stream pattern matching technique to identify
matches for query motifs in a graph-stream G, and greedily
assign these matches to partitions to reduce the probability
of inter-partition traversals.

As future work we will perform extensive evaluation of the
prototype LOOM architecture, specifically in the presence
of a number of different graph-stream orderings, and dif-
ferent query workloads. Furthermore, our choice of greedy

3This may be none!

assignment semantics, never splitting sub-graphs in G which
match query motifs, risks poor performance when large sub-
graphs are assigned to sub-optimal partitions in order to
maintain partition balance. We must propose a local parti-
tioning procedure for large matched sub-graphs which allevi-
ates this. Finally it would be interesting to extend our base
partitioning heuristic (LDG) to incorporate edge traversal
probabilities from the TPSTry++ into the process of select-
ing assignment partitions.

6. REFERENCES
[1] Titan - Distributed Graph Database.

http://thinkaurelius.github.io/titan/. Accessed
on: 2015-12-01.

[2] R. Andersen and Y. Peres. Finding sparse cuts locally
using evolving sets. In Proceedings of the 41st annual
ACM symposium on Symposium on theory of
computing - STOC ’09, page 235, New York, New
York, USA, 2009. ACM Press.

[3] K. Andreev and H. Racke. Balanced Graph
Partitioning. Theory of Computing Systems,
39(6):929–939, nov 2006.

[4] G. Brevier, R. Rizzi, and S. Vialette. Pattern
Matching in Protein-Protein Interaction Graphs. In
Fundamentals of Computation Theory, pages 137–148.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[5] C. Curino, E. Jones, Y. Zhang, and S. Madden.
Schism. Proceedings of the VLDB Endowment,
3(1-2):48–57, 2010.

[6] B. Hendrickson and R. Leland. An Improved Spectral
Graph Partitioning Algorithm for Mapping Parallel
Computations. SIAM Journal on Scientific
Computing, 16(2):452–469, mar 1995.

[7] Z. Huang, W. Chung, T.-H. Ong, and H. Chen. A
graph-based recommender system for digital library.
In Proceedings of the 2nd ACM/IEEE-CS joint
conference on Digital libraries, pages 65–73, 2002.

[8] G. Karypis and V. Kumar. Multilevel k -way
Partitioning Scheme for Irregular Graphs. Journal of
Parallel and Distributed Computing, 47(2):109–124,
1997.

[9] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell systems
technical journal, 49(2):291—-307, 1970.

[10] H. Li and S. Lee. Mining Top-K Path Traversal
Patterns over Streaming Web Click-Sequences.
Journal of Information Science and Engineering,
1133(95):1121–1133, 2009.

[11] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab. Proceedings of the VLDB Endowment,
5(8):716–727, apr 2012.

[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel. In
Proceedings of the 2010 international conference on
Management of data - SIGMOD ’10, page 135, New
York, New York, USA, 2010. ACM Press.

[13] A. Quamar, K. A. Kumar, and A. Deshpande.
SWORD. In Proceedings of the 16th International
Conference on Extending Database Technology, page
430. ACM Press, 2013.

[14] P. Ribeiro and F. Silva. G-Tries: a data structure for
storing and finding subgraphs. Data Mining and
Knowledge Discovery, 28(2):337–377, mar 2014.

[15] Z. Shang and J. X. Yu. Catch the Wind: Graph
workload balancing on cloud. 2013 IEEE 29th
International Conference on Data Engineering
(ICDE), pages 553–564, apr 2013.

[16] C. Song, T. Ge, C. Chen, and J. Wang. Event pattern
matching over graph streams. Proceedings of the
VLDB Endowment, 8(4):413–424, dec 2014.

[17] I. Stanton and G. Kliot. Streaming graph partitioning
for large distributed graphs. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1222–1230, 2012.

[18] H. Tong, B. Gallagher, C. Faloutsos, and
T. Eliassi-Rad. Fast best-effort pattern matching in
large attributed graphs. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, page 737, 2007.

[19] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. FENNEL. In Proceedings of the 7th
ACM international conference on Web search and
data mining, pages 333–342, 2014.

[20] N. Xu, L. Chen, and B. Cui. LogGP. Proceedings of
the VLDB Endowment, 7(14):1917–1928, oct 2014.

[21] S. Yang, X. Yan, B. Zong, and A. Khan. Towards
effective partition management for large graphs. In
Proceedings of the 2012 international conference on
Management of Data, pages 517–528. ACM Press,
2012.

