
Extraction Algorithms for Hierarchical Header Structures
from Spreadsheets

Keisuke Goto
Fujitsu Laboratories Ltd.

Kawasaki, Japan
goto.keisuke@jp.fujitsu.com

Yuiko Ohta
Fujitsu Laboratories Ltd.

Kawasaki, Japan
yuiko@jp.fujitsu.com

Hiroya Inakoshi
Fujitsu Laboratories Ltd.

Kawasaki, Japan
inakoshi.hiroya@jp.fujitsu.com

Nobuhiro Yugami
Fujitsu Laboratories Ltd.

Kawasaki, Japan
yugami@jp.fujitsu.com

ABSTRACT
Spreadsheets are widely used to manage statistical data, and
a massive amount of valuable spreadsheets are now public
as open data. Spreadsheet headers may contain hierarchical
structures, and values in spreadsheets are associated with
not only headers at the same column or row but also those
corresponding to their ancestors. When integrating spread-
sheets with other datasets, it is necessary to extract hierar-
chical header structures and associate this information with
values.
In this paper, we propose three algorithms to extract hier-

archical structures from spreadsheets based on the relation
of values. Since our algorithms are focused only on values,
they can be applied to heterogeneous spreadsheets such that
the structures of row or column headers are not explicitly in-
dicated by specific header features such as space, indent, or
keywords. Our experiments showed that the F-measure for
extractions with one of our algorithms is 0.73. The runtimes
of our algorithms are practical for most datasets; therefore,
they can process 995 real spreadsheets of up to 105 rows,
which accounts for 99.5% of 1000 spreadsheets randomly
chosen from PublicData.eu, within 16200 seconds (the aver-
age runtime per file is 16.28 seconds).

1. INTRODUCTION
Governments and organizations are opening up their own

statistical data so that anyone can analyze them and create
new applications. Many portal sites have been launched 1,
and they are distributing enormous amount of data in var-
ious formats such as CSV, Excel, PDF, HTML, and RDF.
The Semantic Web and Linked Data communities are ad-
vocating that open data be published as RDF format as

1520 open data portals are now listed in http://
dataportals.org

c⃝2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

default since it is suitable for integrating several datasets,
and enables the querying of any values by using the uniform
query language SPARQL [1, 6]. However, most open statis-
tical data are published in spreadsheet format such as CSV
or Excel, which are not suitable for integrating and querying
(see Table 1). To promote the use massive of large amounts
of statistical data, it has to be transformed to RDF format.

Many tools for transforming spreadsheets into RDF have
been published 2 . A spreadsheet consists of three parts,
row headers, column(col) headers, and values, and a value
at row i and col j associated with the row header at i and
the col header at j. Most tools automatically transform a
spreadsheet into RDF by associating each value with the
row and col headers at the same row and col of that value.
However associated information on the above transforma-
tion is insufficient for representing the value rigorously when
the row or col headers have hierarchical structures. A hier-
archical structure of headers in a spreadsheet shows that a
concept indicated by the header corresponding to the parent
is divided into more specific concepts indicated by headers
corresponding to the children. In this case, the value at row
i and col j associated with not only the row header at i
and the col header at j but also the headers corresponding
to their ancestors. Therefore the above transformation may
not include sufficient information of values when headers
have hierarchical structures.

Chen and Cafarella [3] proposed a method to extract hi-
erarchical structure of spreadsheets. They considers the ex-
traction problem as binary labeling problem to set labels
true or false to all pairs of parent and child headers. Their
method uses features of each header, such as fonts, spaces,
indents, italic, bold, or capitalization, and extract structures
by Support Vector Machine [4]. This approach is effective
for spreadsheets whose structures are specifically indicated
by the above features written by owners but not for those
which are not indicated by such features.

In contrast to most approaches concentrating on the fea-
tures of header information, we focus on the features of val-
ues. A hierarchical structure of headers shows that a con-
cept indicated by a parent header involves being divided into
more specific concepts indicated by other child headers. An

2Over 30 tools that transform spreadsheets into RDF are
listed in
https://github.com/timrdf/csv2rdf4lod-automation/
wiki/Alternative-Tabular-to-RDF-converters.

http://dataportals.org
http://dataportals.org
https://github.com/timrdf/csv2rdf4lod-automation/wiki/Alternative-Tabular-to-RDF-converters
https://github.com/timrdf/csv2rdf4lod-automation/wiki/Alternative-Tabular-to-RDF-converters

Portal site CSV Excel PDF HTML RDF
http://data.gov.uk 3675 1697 665 523 211
http://catalog.data.gov 11168 966 32640 70039 7071
http://publicdata.eu 10868 6211 1527 2335 2032
http://data.go.jp 656 3086 7926 5961 2
http://open.canada.ca 7004 1191 149182 5587 1

Table 1: Five portal sites distributing open data in several formats. The number of available files for each
format is measured in December 2015.

Figure 1: Spreadsheet showing number of leather items clas-
sified by their origins, and sellers selling them.

important observation is that for a structure, a value cor-
responding to the parent header is also divided into values
corresponding to the child headers in many cases, and the
parent value equals the sum of child values. For a row i and
j..k, if the value corresponding to row i equals the sum of
values corresponding to rows j..k for each col, we call this a
summation relationship satisfying i and j..k. Our approach
extracts such relationships only by values then outputs the
hierarchical structure of headers corresponding to the rela-
tionships. Since we only focus on the values, our approach
can be applied to spreadsheets that do not have specific fea-
tures for structures written by owners. In the rest of the
paper, we only consider the hierarchical structures of row
headers, but our approach can also be applied to those of
cols by transposing input spreadsheets.
We propose three algorithms, naive, sample, and non-

negative, and we evaluated them in terms of extraction ac-
curacy and runtime performance by applying them to real
spreadsheets from PublicData.eu 3. Our experiments showed
that F-measure for extractions with one of our algorithms
is 0.73 and the runtimes of sample and non-negative algo-
rithms are practical for most datasets; therefore, they can
process 995 real spreadsheets of up to 105 rows, which ac-
counts for 99.5% of 1000 spreadsheets randomly chosen from
PublicData.eu, within 16200 seconds (the average runtime
per file is 16.28 seconds).

2. RELATED WORK
The transformation of spreadsheets into more rigid for-

3http://publicdata.eu

Figure 2: Sub spreadsheet of that in Figure 1 whose rows
do not appear as child rows of the structures of depth 1,
(2, 3...6) and (7, 8...11).

mats such as RDF or relational data base has been mainly
investigated in the database community for the objective to
facilitate the integration. There are three traditional ap-
proaches. A schema matching approach [2, 9] transforms
spreadsheets into a database by specifying the attribute map-
ping. A rule based approach [7], transforms spreadsheets
into a database according to user-provided rules. A user-
interface approach [8, 10] transforms spreadsheets into a
database by user interactive operation using interactive user
interfaces. The drawback of the above approaches is that
human effort is required to specify rules or operate trans-
formation. Recently a crowd-sourcing approach which is
suitable for massive spreadsheets was proposed [5]. This ap-
proach firstly creates a default mapping from spreadsheets
to RDF using a existing mapping tool, and then users cor-
rect the mapping errors by using wiki system. Though this
approach requires manual operations, it is able to scale for
massive spreadsheets by using crowd-sourcing.

3. PRELIMINARIES

3.1 Notation
For a one-dimensional array A[1..n] of length n, A[i] indi-

cates the i-th element of A, and A[i..j] = A[i]A[i + 1]..A[j]
is the sub array of A between positions i and j inclusive.
For a two-dimensional array T [1..n][1..m] of n rows and
m cols, T [i][j] indicates the element of T at row i and
col j, row(T, i) = T [i][1]T [i][2]..T [i][m] indicates the one-
dimensional array extracted from row i from T , col(T, i) =
T [1][i]T [2][i]..T [n][i] indicates the one-dimensional array ex-
tracted from col i from T . For ease of explanation, we call a
one-dimensional array and a two-dimensional array just an
array and a table, respectively.

3.2 Spreadsheets
A Spreadsheet of n rows and m cols consists of two string

arrays, row headers of length n and col headers of length
m, and a numerical table of n rows and m cols, indicated as
rheader [1..n], cheader [1..m], T [1..n][1..m], respectively. Each
value T [i][j] is associated with rheader [i] and cheader [j]. In

http://publicdata.eu

Figure 1, the value ‘77305’ at row 1 and col 2 is associated
with ‘leather’ of the row header at row 1 and ‘from manu-
factures’ of the col header at col 2, and indicates the total
number of leather items from manufactures.
Spreadsheets may contain hierarchical header structures,

and in such case, the value at row i and col j associated
with not only the row header at i and the col header at j
but also the headers corresponding to their ancestors. For
example, row headers of the spreadsheet in Figure 1 have a
hierarchical structure of depth 2, ‘Leather’ at row 1 has two
children ‘chrome leather’ at row 2 and ‘vegetable leather’
at row 7, and each also has children at rows 3..6 and 8..11
respectively. A structure of parent row i and the preceding
or succeeding child rows j..k is expressed as (i, j...k). Let
T1 = T , L0 = ∅, and for x ≥ 1, let Lx be the set of struc-
tures of Tx and Tx+1 be the sub table of Tx whose rows do
not appear as child rows in Lx (see Figure 2). For a ta-
ble T , its hierarchical structures are expressed as a list of
sets of structures for each depth L = L1,L2, ...,Lh, where
Lx is the set of structures of depth x. For example, the
structures in Figure 1 are represented as L = L1,L2, where
L1 = {(2, 3...6), (7, 8...11)}, L2 = {(1, 2...3)} (the row in-
dices 1, 2, 3 of T2 correspond to the row indices 1, 2, 7 of T1).
The indices of Lx for x > 1 are different from the initial
table T1, but the indices corresponding to T1 in Lx can be
easily obtained by associating indices in Lx through Tx−1 to
T1 recursively. Note that the hierarchical structures we con-
sider in this paper are represented as trees, and the indices
of each parent and its children are consecutive.

3.3 Summation Relationship
In this section, we give a more precise definition of summa-

tion relationship. For ease of presentation, we only treat the
summation relationship when child rows succeed the parent
row, but it is the same for when the child rows precede the
parent row. For a table T [1..n][1..m] and 1 ≤ i < j ≤ n, row
i and its succeeding rows i + 1 to j satisfy a strict summa-
tion relationship when T [i][c] =

∑
i<k≤j T [k][c] for all cols

c. Unfortunately, a strict summation relationship does not
suit our objective because real spreadsheets may contain er-
rors such as rounding errors, measuring errors, or human er-
rors, so T [i][c] may be slightly different with

∑
i<k≤j T [k][c].

There is also a case in which the summation relationship sat-
isfies most but not all cols.
To avoid these problems, we adopt a more robust defini-

tion of summation relationship by using two criteria, error
rate and satisfaction rate. For an array A[1..n], 1 ≤ i < j ≤
n, erateA(i, j) indicates the error rate of the parent value
A[i] and sum of child vales A[i+ 1..j].

erateA(i, j) = 1−
min(A[i],

∑
i<k≤j A[k])

max(A[i],
∑

i<k≤j A[k])

This rate varies from 0 to 1, and erateA(i, j) = 0 means that
they exactly match. For a real number e, we say that the
summation relationship with error rate e is satisfied for A[i]
and A[i+1..j] if erateA(i, j) ≤ e, and the relation is denoted
as A[i] ≈e A[i + 1..j]. For a table T of n rows and m cols,
1 ≤ i < j ≤ n, and a real number e, srateT,e(i, j) indicates
the satisfaction rate of cols that satisfies the summation re-
lationship between row i and rows i+ 1..j.

srateT,e(i, j) =
|{c|col(T, c)[i] ≈e col(T, c)[i+ 1..j]}|

m

For real numbers e and s, we say that the summation rela-
tionship with error rate e and satisfaction rate s is satisfied
for row i and rows i + 1..j if srateT,e(i, j) ≥ s, and the
relation is denoted as T [i][1..m] ≈e,s T [i+ 1..j][1..m].

This new definition is more robust than that of the strict
one. However this robust definition may result in the ex-
traction of undesired structures. In such a case, some child
rows overlap, and the desired structure may be buried among
them. We discuss how to avoid the problem in Section 4.1

We further define the hierarchical summation relationship.
For a table T , let T1 = T , L0 = ∅. The hierarchical sum-
mation relationship of T is the list of the sets of summation
relationships for each depth L = L1,L2, ...,Lh, where Lx for
x > 0 is a set of the summation relationships for Tx whose
elements do not overlap, and Tx+1 for x > 0 is the sub table
of Tx whose rows do not appear as child rows in Lx.

4. OVERVIEW OF ALGORITHMS
Our objective is to compute the hierarchical summation

relationship for a given table T and output them as hierar-
chical structures of T . We tackle the following problem and
propose three algorithms to solve this problem.

Problem 1. Given a table T [1..n][1..m], and real num-
bers e, s, compute the hierarchical summation relationship
L = L1,L2, ...,Lh with error rate e and satisfaction rate s
for T .

Since our algorithms have many common parts, we first
give an overview of our algorithms then describe those com-
mon parts. The difference in the algorithms are discussed in
Section 5.

An overview of the algorithms is given in Algorithm 1.
Our algorithms recursively process to extract the hierarchi-
cal summation relationship. For each recursive step x, the
algorithms take the following three steps. Step 1 at Line 4
computes the set of all summation relationships Sx for a
spreadsheet Tx. Some child rows of Sx may overlap, so Step
2 at Line 5 computes the subset Lx of Sx whose elements
have higher reliability than the deselected ones and whose
child rows do not overlap. If Lx is empty, Tx does not contain
rows that satisfy the summation relationship, then outputs
the hierarchical summation relationship L = L1, ...,Lx−1,
and the algorithm terminates (See Line 6, 10). Otherwise,
Tx+1, which are deleted child rows of Lx from Tx , may con-
tain summation relationships, so Step 3 at Line 9 deletes
child rows of Lx from Tx and recursively processes the new
table Tx+1.

The difference between the three algorithms is only in Step
1 involving the extraction of the summation relationship Sx

from a table Tx, which is the most bottlenecked part of the
algorithm. Steps 1 and 2 are described in Sections 5, 4.1,
respectively. Step 3 can be done by simply deleting child
rows of Lx from Tx in O(n) time.

For a spreadsheet of n rows and m cols, our three algo-
rithms take the h step recursively, where h is the maximum
depth of the output structures, and for each recursive step
x, all of three take O(|Sx|m + |Sx| log |Sx|) for the com-
mon parts Step 2 and 3. Each algorithm additionally takes
O(n2m), O(dn2 + nm + |Mx|m), and O(dn logn + nm +
|Mx|m) times, respectively in Step 1, where d is a parame-
ter which is very small, and Mx is the candidate set of Sx

whose size can be O(n2) in the worst case, but is practi-

Algorithm 1: Extracting the hierarchical summation
relationship from a table

Input: Table T [1..n][1..m], and real numbers e and s
Output: Hierarchical summation relationship of T

1 T1 ← T ;
2 L← empty list ;
3 for x← 1 to n do
4 Sx ← extract(Tx, e, s) // extracts summation

relationship with error rate e and

satisfaction rate s for Tx

5 Lx ← filter(Sx, e, s) // computes subset of Sx

whose child rows do not overlap

6 if |Lx| = 0 then
7 Break;

8 L append Lx ;
9 Tx+1 ← delete rows(Tx,Lx) // deletes rows from

Tx that appear as child rows in Lx

10 Output L ;

cally small. The detail of algorithms and parameters are
described in Section 5.

4.1 Filtering
For a set of summation relationships Sx, we give a com-

parison criterion for relationships to compute the subset Lx

whose child rows do not overlap and are more reliable than
the deselected ones. Intuitively, a relation satisfying a higher
satisfaction rate looks more reliable than that satisfying a
lower satisfaction rate, and there is the same expectation for
lower and higher error rates for the relation of each col.
For two summation relationships, we say that a relation

is more reliable than the other if (1) its satisfaction rate is
higher or (2) the rate is the same and its average error rate
is lower. The satisfaction and average error rate for all re-
lationships of Sx can be computed in O(|Sx|m) time, and
all these relationships of Sx can be sorted in O(|Sx| log |Sx|)
time. We sort Sx by the above criterion then greedily se-
lect relationships from Sx in order according to reliability,
but not overlapping relationships that have been selected
previously. Computation of Lx from Sx can be done in
O(|Sx|m+ |Sx| log |Sx|) time in total.

5. EXTRACTION ALGORITHMS
For a table T of n rows and m cols, our three algorithms

extract the summation relationships of T . The naive algo-
rithm takes into account all O(n2) combinations of rows and
verify whether the combination satisfies the summation re-
lationship for each of m cols. The sample algorithm reduces
the amount of verifying rows by sampling d cols and runs
faster than the naive algorithm, where the parameter d is set
by users. The non-negative algorithm can be applied only
for tables with only non-negative values, but it runs faster
than the sample algorithm.

5.1 Naive Algorithm
For a table T [1..n][1..m], the naive algorithm takes into ac-

count all O(n2) combinations of rows then validates whether
each combination satisfies the summation relationship. Let
C be a table of n+1 rows and m cols such that C[1][k] = 0
for 1 ≤ k ≤ m and C[r][c] =

∑
1≤k<r T [k][c] is the accu-

mulation of values from row 1 to row r − 1 on col c for
1 < r ≤ n+ 1 and 1 ≤ c ≤ m. If we have C, for a col c, row
i, and rows i+1..j,

∑
i<k≤j T [k][c] = C[j+1][c]−C[i+1][c]

can be computed in O(1) time, and the summation relation-
ship T [i][1..m] ≈e,s T [i + 1..j][1..m] can be verified for row
i and rows i+ 1..j in O(m) time. Since C can be computed
in O(nm) time, the naive algorithm can compute the set of
summation relationships of T in O(n2m) time.

5.2 Sample Algorithm
For a table T [1..n][1..m] of n rows and m cols, an impor-

tant observation is that when T [i][1..m] ≈e,s T [i+1..j][1..m]
is satisfied on T , the summation relationship is satisfied in
most cols. The sample algorithm randomly samples d cols
from T and naively extracts the summation relationships
(i, i + 1...j) satisfying col(T, c)[i] ≈e col(T, c)[i + 1..j] for
each sampled col c in O(dn2) time. We treat them as candi-
dates of the summation relationships for T , and then verify
whether each candidate satisfies the summation relationship
for other cols. Let M be a set of such candidates. For each
element of M , verification can be done in O(m) time when
C, described in Section 5.1, has been preliminary computed
in O(nm). In total, the sample algorithm extracts the sum-
mation relationships of T in O(dn2 + nm + |M |m) time.
Though |M | can be O(n2) in the worst case, it is small in
many cases, and the algorithm practically runs faster than
the naive algorithm. The sample algorithm may overlook
some summation relationships; however, this does not occur
often and extraction accuracy becomes relatively better than
the naive algorithm for real spreadsheets (see Section 6).
This is because the sample algorithm can avoid extracting
undesired summation relationships when the input spread-
sheet is sparse and most values are zero and the summation
relationship accidentally satisfies at few cols.

5.3 Non-negative Algorithm
The non-negative algorithm for a table with only non-

negative values is very similar to the sample algorithm. The
difference is that the non-negative algorithm extracts the
candidate set M of summation relationships which is sat-
isfied on sampled d cols in O(dn logn) time. An impor-
tant observation is that for a col c and a table C, pre-
liminary described in Section 5.1, col(C, c) is arranged in
non decreasing order since T contains only non-negative
values. This implies that for a position i, the range of
positions j satisfying col(T, c)[i] ≈e col(T, c)[i + 1..j] are
contiguous, and such j can be found by the binary search
on col(C, c) in O(logn) time. Therefore the candidate set
M of summation relationships can be obtained by comput-
ing the summation relationships for all n positions on each
of sampled d cols in O(dn logn) time. In total, the non-
negative algorithm extracts the summation relationships of
T in O(dn logn+ nm+ |M |m) time in total.

6. EXPERIMENTS
We evaluated the extraction accuracy and runtime perfor-

mances of our naive, sample, and non-negative algorithms
described in Section 5.

All experiments involved spreadsheets that are publically
available in PublicData.eu. For ease of evaluation, we used
only spreadsheets that include no values represented by for-

Figure 3: Precision, recall, and F-measure for naive and
sample algorithms when e and d were fixed at 0.01 and 3,
respectively, and s was varied; 0.8, 0.9, and 1.0.

mulas or references to other values 4 .

6.1 Extraction Accuracy
We evaluated the extraction accuracy of the naive and

sample algorithms by comparing the hierarchical summation
relationships from these algorithms with the manually ex-
tracted one for 50 spreadsheets randomly chosen from Pub-
licData.eu. Since the non-negative algorithm outputs the
same result as the sample algorithm when the input spread-
sheet contains only non-negative values, we do not include
it in the comparison. We considered as the baseline for the
evaluation that the summation relationship satisfies s = 0.8
and e = 0.1 and the concept of a parent header is divided
into more specific concepts of child headers. Each relation-
ship, a pair of parent row and its child rows, is treated as a
unit, and the hierarchical summation relationship from an
algorithm is evaluated by counting the number of units that
exactly match with those of the baseline extracted manually.
Figure 3 shows the precision, recall, and F-measure of the

naive and sample algorithms when e and d were fixed at
0.01 and 3 and s was varied; 0.8, 0.9, and 1.0. When s
increased, the restriction that the summation relationship is
satisfied became more strict, so precision tended to increase.
On the other hand, recall tended to decrease. The recall at
s = 1.0 was worse than that at s = 0.9. This means that real
spreadsheets have a summation relationship that is satisfied
for most cols, but a few cols do not, as we discussed in
Section 3.3.
Figure 4 shows precision, recall, and F-measure of the

naive and sample algorithms when s and d were fixed at 0.9
and 3 and e was varied; 0.00, 0.10, and 0.01. In the same
way as Figure 3, when e decreased, the restriction became

4 Our algorithms can be applied to also spreadsheets in-
cluding formulas or references by preliminary replacing
them with real values. Though there are libraries support-
ing that such as Apache POI(https://poi.apache.org/)
or xlrd(https://github.com/python-excel/xlrd), they do
not support all formats of references and formulas.

Figure 4: Precision, recall, and F-measure for naive and
sample algorithms when s and d were fixed at 0.90 and 3,
respectively, and e was varied; 0.00, 0.01, and 0.10.

more strict, so precision tended to increase. On the other
hand, the recall tended to decrease.

In our experiments, when s and e were 0.9 and 0.01 re-
spectively, the F-measure was highest for both the naive and
sample algorithms. Moreover, the F-measure of sample al-
gorithm (0.73) was slightly better than that of the naive
algorithm (0.67). We believe this is because the sample al-
gorithm can avoid extracting undesired summation relation-
ships when the input spreadsheet is sparse and most values
are zero and the relationship is accidentally satisfied by a
few cols.

6.2 Runtime Performance
We used 1000 spreadsheets randomly chosen from Public-

Data.eu to evaluate the runtime performance for our algo-
rithms. Figure 5 shows the distribution of their rows. The
number of spreadsheets of up to 100 rows is 566(56.6%),
and that of up to 105 rows is 995(99.5%). The number of
spreadsheets of up to 105 rows with only non-negative values
is 779(77.9%). Figure 6 shows the runtimes of naive, sam-
ple, non-negative, and sample + non-negative algorithms for
spreadsheets of up to 10, 102, 103, 104, 105 rows, where sam-
ple + non-negative algorithm is the combination of sample
and non-negative algorithms that uses non-negative algo-
rithm if an input spreadsheet including only non-negative
values and sample algorithm otherwise, and e, s, and d were
fixed at 0.01, 0.9, and 3, respectively. The sample + non-
negative algorithm runs the fastest, and the non-negative
algorithms runs the fastest if an input spreadsheet includ-
ing only non-negative values. The sample + non-negative
algorithm suit to extract hierarchical structures from mas-
sive spreadsheets since its runtime is practically fast so that
it can process 566(56.6%) spreadsheets of up to 102 rows
within 28 seconds, and 995(99.5%) spreadsheets of up to
105 rows within 16200 seconds.

7. CONCLUSION

https://poi.apache.org/
https://github.com/python-excel/xlrd

Figure 5: The number of spreadsheets randomly chosen from
PublicData.eu of under 10, 102, 103, 104, 105 rows.

Figure 6: Times for extracting the hierarchical summation
relationship for spreadsheets of under 10, 102, 103, 104, 105

rows.

We proposed three algorithms to extract hierarchical struc-
tures from spreadsheets. The algorithms rely on the relation
of values in which their sum of values approximately equals
their preceding or succeding value, which we call summation
relationship. Therefore, we can apply these algorithms to
heterogeneous spreadsheets whose structures are not speci-
fied with fonts, space, indent, or keywords. Our experiments
showed that our algorithms can be applied to real spread-
sheets and their runtimes are practical so that they can be
applied to massive spreadsheets.
A future work is to develop methods that can be applied

to more heterogeneous spreadsheets with high extraction ac-
curacy. We believe that the combination of our approach,
which uses the relation of values, and the approach, which
uses the header features, has a potential to be a such better
method.

References
[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data

- the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[2] M. J. Cafarella, A. Y. Halevy, and N. Khoussain-
ova. Data integration for the relational web. PVLDB,
2(1):1090–1101, 2009.

[3] Z. Chen and M. J. Cafarella. Automatic web spread-
sheet data extraction. In 3RD International Workshop
on Semantic Search over the Web, SSW ’13, Riva del
Garda, Italy, August 30, 2013, pages 1:1–1:8, 2013.

[4] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[5] I. Ermilov, S. Auer, and C. Stadler. Csv2rdf: User-
driven csv to rdf mass conversion framework. In Pro-
ceedings of the ISEM ’13, September 04 - 06 2013, Graz,
Austria, 2013.

[6] O. Hartig, C. Bizer, and J.-C. Freytag. Executing sparql
queries over the web of linked data. In Proceedings of
the 8th International Semantic Web Conference, ISWC
’09, pages 293–309, Berlin, Heidelberg, 2009. Springer-
Verlag.

[7] V. Hung, B. Benatallah, and R. Saint-Paul.
Spreadsheet-based complex data transformation.
In Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management,
CIKM ’11, pages 1749–1754, New York, NY, USA,
2011. ACM.

[8] T. Igarashi, J. D. Mackinlay, B. Chang, and P. Zell-
weger. Fluid visualization for spreadsheet structures.
In Proceedings 1998 IEEE Symposium on Visual Lan-
guages, Nova Scotia, Canada, September 1-4, 1998,
pages 118–125, 1998.

[9] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y.
Halevy. Corpus-based schema matching. In Proceedings
of the 21st International Conference on Data Engineer-
ing, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages
57–68, 2005.

[10] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In Proceedings of
the 27th International Conference on Very Large Data
Bases, VLDB ’01, pages 381–390, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

	Introduction
	Related Work
	Preliminaries
	Notation
	Spreadsheets
	Summation Relationship

	Overview of Algorithms
	Filtering

	Extraction Algorithms
	Naive Algorithm
	Sample Algorithm
	Non-negative Algorithm

	Experiments
	Extraction Accuracy
	Runtime Performance

	Conclusion

