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ABSTRACT
With the development of various Cloud system, providing
powerful kNN query capability to DaaS (Database as a Ser-
vice) is an essential requirement for many applications. In
this paper, we are interested in two opposite approaches for
processing kNN query in Cloud system, parallel processing
and sequential processing, and we want to explore the an-
swer of which one performs better. For addressing such a
question, we devise a new distributed indexing structure VI-
HCO, which is characterized by fast locating Cloud nodes
capability. Then parallel and sequential processing methods
are designed upon the structure. For parallel one, we take
differential cells between two consecutive range queries into
consideration, and for sequential one, we elaborately design
an accurate message delivery algorithm. We verify our ideas
through experiments, which is conducted on both synthetic
and real dataset, and the results show that VIHCO outper-
forms a previous work RT-CAN, and the sequential method
is more efficient under small k query condition and small
system size, while parallel one suits for large k and large
scale of computing nodes.
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1. INTRODUCTION
With the development of Cloud computing, various lay-

ers of computing resources are used in terms of pay-as-you-
go, such as IaaS (Infrastructure as a Service), PaaS (Plat-
form as a Service) and SaaS (Software as a Service). Nowa-
days, Database as a Service (DaaS)[2][13] is a hot topic for
database community in Cloud computing era. For DaaS
users, it is not necessary to focus on the location of database
instance, nor the physical storage mechanism of schema or
tables, not even data partition fashion or query processing,
in one word, the inner of database is transparent to the
users. They just define the structure of table, and insertion,
query or other operations seem similar to use a centralized
local database. However, it is possible for one table, data are
spread over many computing nodes, and querying processing
needs the collaboration of these nodes. And as data volume
increases, the database should be adaptive to the new scale
and new query requirement, i.e., it should be elastic.

In this paper, we focus on kNN query in DaaS, which is
an essential function for spatial database. Given a point
in the space, kNN query aims to find k nearest objects to
the query point. This topic is addressed well in some previ-
ous works[13][9][14], however, there are two opposite ideas
to solve the problem in the state-of-the-art, namely, parallel
processing and sequential processing. Parallel method ex-
ploits the parallelism of Cloud nodes, and make them work
simultaneously, while sequential one uses the vicinity rela-
tionship between query point and Cloud nodes to accurately
deliver query messages. Nevertheless, which is better for
DaaS is not studied before. Hence, in this paper, we extend
our work in [14] to acquire the answer.

For comparing the two approaches, we use a previous work
RT-CAN as a baseline, and propose a new structure, called
VIHCO (VIcinity-based Hilbert Cloud Overlay), to index
spatial data in Cloud system and to process kNN query.
The feature of VIHCO is not only leveraged on fast look up
routing table (finger table), but also highlighted on vicinity
neighbors to quickly locate the nearby Cloud nodes. Based
on such structure, we present the designs of parallel and
sequential processing algorithms. Experiments on both syn-
thetic and real dataset show that VIHCO outperforms RT-
CAN, in efficiency and scalability, and the sequential method
is more proper under small k query condition and small sys-
tem size, while parallel one suits for large k and large scale
of computing nodes.



To summarize, we make the following contributions:

• We propose the problem of comparing performances
between parallel and sequential processing for kNN
query in Cloud computing architecture.

• We design an indexing structure VIHCO capable to
fast locate Cloud nodes.

• We devise parallel and sequential processing algorithms
based on VIHCO, and conduct experiments to com-
pare their performances under different parameters.

The rest of this paper is organized as follows. Section 2
reviews related works. Section 3 formally defines the prob-
lem and presents VIHCO structure. Algorithms for parallel
and sequential processing are presented in section 4 and 5,
respectively. And we experimentally evaluate VIHCO and
acquire comparison answers in section 6. Finally, section 7
concludes the paper with directions for future works.

2. RELATED WORKS
A similar work RT-CAN solving multidimensional queries

in Cloud system is proposed in [13]. Each peer firstly builds
R-tree to index multidimensional data locally, and then se-
lects the nodes in the level above the leaf level of R-tree to
publish to CAN by interacting with overlay node. RT-CAN
addresses point query, range query and kNN query for multi-
dimensional data in Cloud system. Later, the authors pro-
posed a framework for supporting DBMS-like indexes in the
Cloud[2], enabling users to define their own indexes without
knowing the complicated structure of the underlying net-
work, and three conventional indexes, namely hash indexes,
B+-tree-like indexes and multi-dimensional indexes are im-
plemented. The results of work [14] prove that our proposed
structure DRISTIX is better than RT-CAN, and in this pa-
per, we extend our last work to exclusively study kNN query
processing.

Several works from moving objects query and sensor net-
work are also related to our work. DTI[6] is a distributed
index for trajectory queries on moving objects. For each
moving object, it builds a SkipList overlay to index trajec-
tory. This method suffers from high overhead, because it
maintains complicated overlay connection when the number
of moving objects is large. Hua Lu et al.[7] address con-
tinuous queries for monitoring moving objects constrained
in road network in a distributed environment. However,
they adopt a central server to control the whole distributed
queries, which is a bottle neck in real application. DIST[8]
addresses tracking moving object in sensor network, it uses
quad-tree to divide space recursively and builds distributed
index hierarchically among sensors, and adopts efficient up-
date to reduce maintenance cost. However, due to lack of
scalability of tree structure, DIST suffers bottle neck prob-
lem.

A related work addresses multi-dimensional queries for
PaaS, MD-HBase[9] uses k-d tree and quad-tree to partition
space and adopts Z-curve to convert multidimensional data
points into one dimension, and supports multi-dimensional
range and nearest neighbor queries, which leverages a mul-
tidimensional index structure layered over HBase. However,
this work is limited in HBase, it could not be generalized to
many Cloud system.

3. PROBLEM DEFINITION AND OVERLAY
STRUCTURE

3.1 Problem Definition
In this paper, only two-dimensional space is considered.

A Cloud platform contains a set C of Cloud nodes, C={cni |
1 ≤ i ≤ n}, where cni denotes the i-th Cloud node with
stand alone storage and computational capability. A set O
of spatial objects is spread over Cloud nodes C according to
the underlying Cloud storing policy. And each object obj is
represented as (x, y, shp), where (x, y) denotes the location
of obj, and shp is a set of points denoting the shape of obj.
If obj is a point object, shp is null. Otherwise, i.e., obj is
an object with spatial extent, an MBR (Minimal Bounding
Rectangle) is used as the approximated shape of the obj,
and (x, y) means the center of the MBR.

A kNN query could be formally defined as: given a set
O of spatial objects, a kNN query (q=(xq, yq), k), aims to
find a set Oq ⊆ O , such that |Oq|=k, and d(o, q) ≤ d(o′, q),
∀o ∈ Oq, o′ ∈ O \ Oq, where d() is the Euclidean distance
function.

3.2 Overlay Structure
We propose an overlay structure called VIHCO (Vicinity-

based Hilbert Cloud Overlay), which takes advantage of
both linearization of Hilbert curve[5] and space vicinity. The
overview of the structure is presented in Figure 1.
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Figure 1: Overview of VIHCO

The whole space is partitioned by Hilbert curve, in par-
ticular, for a λ-order Hilbert, the space is divided into 22λ

cells, and each cell is attached a Hilbert value varied from
0 to 22λ − 1. Initially, Cloud nodes are formed into over-
lay network using Chord protocol[10], a distributed hash-
based (key-value) P2P network structure. Formally, a set
of 2m consistent keys [0, 2m − 1] is maintained by a set of
Cloud nodes, and each Cloud node is exclusively respon-
sible for maintaining a segment [keys, keye] (0 ≤ keys ≤
keye ≤ 2m − 1), each key of which is associated with data
items (value). According to the order of the segment main-
tained in the key domain, each Cloud node connects to its
predecessor node and successor node, in addition, it main-
tains a routing table called finger table containing m entries
where the i-th entry points the node maintaining the key
keye+2i−1. For the Cloud nodes maintaining the first and
the last segments of keys, they are also connected by each
other as predecessor and successor, so the whole structure
looks like a ring. Figure 1(b) illustrates an example, node



cn8 maintains key segment [9, 10], with connecting prede-
cessor cn4 and successor cn1, for maintaining figure table,
cn8 finds the nodes which maintain the key 10+20, 10+21,
10+22, 10+23, 10+24, 10+25, respectively, resulting cn1,
cn7, cn6, cn2.

For simplicity, let 2λ = m, which means that each cell in
the space is mapped to a key on the ring, i.e., each Cloud
node cni is responsible for maintaining a set of cells which
are continuous in Hilbert value domain, and we call these
cells as cni’s charge-cells and cni is these cells’ charge-node.
The term charge here means, if an object obj spatially in-
tersects with cell cj , obj is maintained (stored and indexed)
by cj ’s charge-node. Figure 1 illustrates an example of VI-
HCO, the whole space is partitioned by a 3-order Hilbert
(Figure 1(a)), and there are 8 Cloud nodes, namely, cn1 to
cn8, which connect to each other, forming a Chord (Figure
1(b)). Hence, for cn8, whose key is 10, its charge-cells are
cell 9 and 10, similarly, cn2 (key=48) is responsible from cell
42 to 48.

Hilbert curve merely tries best to preserve locality of origi-
nal space, hence, some spatial relation is lost after lineariza-
tion, e.g., in Figure 1, cell 10 and cell 53 are adjacent to
each other in original space, but they are distinguished by 43
in linear space, which consequently increases complexity of
query processing. So we propose a vicinity-based approach
to improve performance. Each Cloud node not only main-
tains finger table, but also connects to its vicinity neighbors,
in particular, for each Cloud node cni, assuming the Chord
key of it is keyi, then the vicinity neighbors are charge-nodes
of cell keyi’s left, lower, right, upper cells, if the charge-node
of left (lower, right, upper) cell is cni itself, then continue
searching the charge-node of left (lower, right, upper) of left
(lower, right, upper) cell, until the charge-node is not cni
itself. Take cn8 as an example in Figure 1(a), its Chord key
is 10, and left, lower, right, upper cells of cn8 are 11, 9, 53,
31, but cell 9 is cn8’s charge-cell, so cell 6 is selected, and
the vicinity neighbors are cn1, cn4, cn3 and cn6.

4. PARALLEL PROCESSING
In this section, parallel processing for kNN query is pre-

sented. The main workflow is leveraging a series of range
queries to accomplish kNN query. In particular, firstly, an
initial radius r is calculated by k and estimation of spa-
tial objects distribution[1][11], then a range query (q, r) is
formed, i.e., to find objects located in the circular range
centered at q, with the radius r.
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Figure 2: Parallel Processing

For processing such range query, first, the spatially near-

est Cloud node to q, say cnq, is found, and then according to
global Hilbert partition policy, cnq finds the set SCq of cells
intersecting with the circle, after that, the cells with contigu-
ous Hilbert values are formed into intervals, i.e., SCq={[csi ,
cei ] | si≤ei}, and then cnq uses its vicinity neighbors to
search these cells, in particular, for each interval [csi , cei ],
if there is a cell ck being cnq’s left, lower, right or upper
cell, then cnq sends the interval to the corresponding vicinity
neighbor, say cnv, to search the results, otherwise, i.e., there
is no cell being cnq’s neighbor cell, cnq uses its predecessor,
successor and/or finger table to find the proper charge-nodes
responsible for these cells to retrieve the results. Figure 2
illustrates an example, assuming cn8 (key=10) is the nearest
Cloud node to query point q, after obtaining radius r1, cn8

finds SCq={[6, 8], 11, [30, 32], [53, 54], 57}, note that cell
9 and 10 are cn8’s charge-cells, so they are not contained
in SCq. Then, for each interval (or value) in SCq, say [6,
8], cn8 examines that cell 6 is vicinity cell, so [6, 8] is sent
to cn4, similarly, 11, [30, 32] and [53, 54] are sent to cn1,
cn6 and cn5, respectively, and then cell 57 is routed through
looking up finger table and is forwarded to cn5.

After retrieving objects, cnq examines the number of re-
sults, if it is not less than k, then cnq sorts these objects
according to the distance to q and returns results, other-
wise, i.e., there are less than k objects, cnq increases r by δ,
a new range query (q, r+δ) is formed, and the intersecting
cells are also calculated and sent to corresponding charge-
nodes. Then the charge-nodes only search for the new com-
ing cells and return results to cnq, and again cnq examines
the number, and the above procedure is repeated until k
objects are obtained. Continuing the example in Figure 2,
when cn8 finds that the number of results is less than k,
it issues a new range query with radius r2, and the corre-
sponding cells are sent to charge-nodes until k objects are
retrieved, the iteration is terminated.

Algorithm 1 kNN Query Parallel Processing

Input:
q=(xq, yq), k

Output:
Qlist //result list

1: r = estimateR(k)
2: cnq = findNearestCN(q)
3: while true do
4: SCq = cnq.findIntersectingCells(q, r)
5: for each interi ∈ SCq do
6: if (cnv=cnq.vNeighbor(interi))6=null then
7: cnq.sendTo(cnv, interi)
8: else
9: cnq.forward(interi)

10: end if
11: end for
12: ret=cnq.receiveResults()
13: if |ret|≥k then
14: return k nearest neighbors to q
15: else
16: r = r+δ
17: end if
18: end while

Algorithm 1 presents our parallel processing for kNN query.
Line 1 calculates the radius r, and then the nearest Cloud
node cnq to q is found in line 2. From line 3 to the end,



range queries are issued, and the returned results are exam-
ined until k objects are obtained. Node cnq first finds the
intersecting cells SCq by (q, r) (line 4), and then for each
interval in SCq, cnq uses vicinity neighbor (line 6 and 7)
or finger table (line 8 and 9) to deliver the query messages,
and then checks the number of returned results, until gets k
objects.

5. SEQUENTIAL PROCESSING
In this section, we present the sequential processing for

kNN query, which is a progressive procedure to obtain k ob-
jects. The difference is that, parallel processing is composed
of a series of range queries, with constantly extending radius
of the circular range to retrieve results, while for sequential
processing, the query is progressively delivered to the cor-
responding Cloud nodes, i.e., the Cloud nodes receive the
query in an order according to the distance to the query
point. Although for parallel processing, query messages are
almost delivered to different Cloud nodes at the same time,
and then nodes process local search simultaneously, the crit-
ical point in parallel processing is the estimation of range ra-
dius r, i.e., with a large r, k results would be retrieved at one
time, but some useless objects beyond k objects are also ob-
tained, which promises waste of communication, while with
a small r, some query messages would be repeatedly deliv-
ered to the same Cloud nodes, which also lower down the
query performance. The advantage of sequential process-
ing is that, without prior knowledge of k, the results are
incrementally obtained according to sorting function, with-
out wasting communication cost. For achieving sequential
process, we propose to use histogram.

5.1 Design of Histogram
We use histogram to assist sequential processing. Each

Cloud node maintains its own histogram, which is com-
posed of several buckets. Each bucket is formatted with
〈bid, range, num〉, where bid identifies a bucket, and range
denotes an interval marked with a starting value and an
ending value of the Chord key domain, and num denotes
the number of items in range. Different buckets’ ranges
are non-overlapping with each other and all buckets’ ranges
constitute the key domain.

For each Hilbert cell, its charge-node calculates the MBR
(Minimum Bounding Rectangle) of objects intersecting with
the cell, hence for each Cloud node, there is a set of MBRs
corresponding to its charge-cells. Relying on continuous
maintaining routing tables of Cloud node[4], the MBRs are
able to be disseminated to other Cloud nodes, i.e., the MBR
information is piggy-back on the routing table maintenance
message. Such a design would reduce the communication
cost, thus the whole performance would not suffer. Af-
ter constant message exchanging, each Cloud node is able
to know the MBR for each Hilbert cell, and then for each
bucket in the histogram, a bucket MBR (b-MBR) is built,
which summarizes all objects in the bucket.

5.2 Processing Description
The main tool in sequential processing is priority queue[3],

which is controlled by query issuing node, the node con-
stantly fetches top element from the queue, and parses the
element into query, and deliver the query to corresponding
charge-nodes. To clearly specify such interaction, we call
the issuing node as requester, and the nodes receiving the

query then replying are called responders. Next issue is that
we consider both point objects and extent objects (the ob-
jects with spatial shape), so for an extent object, it may
cross more than one cells, which means one object might be
stored in different Cloud nodes, thus when query is sent to
different nodes, the results returned may contain duplicates,
hence the requester should detect duplicates and eliminate
them. Another issue is that, when a responder cnj receives
query message, it would be costly for cnj returning all ob-
jects maintained by it, hence cnj should just return the ob-
jects with distance to q not larger than that of the current
top element in the queue, however, such a fashion would lost
cnj forever, i.e., the rest objects in cnj have no chance to be
scanned. So we propose a concept called map object, which
means this map object is just attached to the current results
returned to requester, but it is not a result for this time, it
might be a result in the following iterations, and its function
is to lead the requester to send query to cnj if necessary. In
the following, we present the description for sequential pro-
cessing, assuming that, requester cnq issues a kNN query (q,
k), the processing in requester and responders are described
below:

(1) Processing in Requester. A min-priority queue PQ is
used here to store three kinds of elements: b-MBR (bM), ob-
ject (obj) and map object (mobj). The mobj is a structure
sent from responder, representing an obj stored in some re-
sponder, and is formatted as 〈dist, {CloudNodes}, range〉,
where dist is the distance between q and the obj being rep-
resented, and {CloudNodes} is a list of identifiers of Cloud
nodes which are responsible for the key interval range. El-
ements in PQ are sorted by distance, i.e., MINDIST (q,
bM), distance between q and obj or mobj.dist. In order to
break the tie that two elements have the same distance, we
make a convention that obj is preferred to mobj, and mobj is
preferred to bM. Initially, all bMs of cnq are enqueued into
PQ, in addition, a counter c storing the number of glob-
ally retrieved objs so far is set to zero. After that, the top
element e of PQ is dequeued.

• If e is a bM, cnq uses vicinity-connection or finger
table to route bM-request 〈q, ctopdist, interval〉, to
the charge-nodes (responders) of the cells in interval,
where ctopdist is distance between current top element
and q, and interval is the cell interval covered by e.
Then the thread for operating PQ is suspended until
cnq receives a reply from responders. The reply may
contain both objs and mobj, and objs are added into
result list, and c is increased by the number of objs,
and then cnq examines that, if c is larger than or equal
to k, meaning that k nearest objects are found, cnq in-
forms all responders to terminate, otherwise, i.e., c is
less than k, mobj is enqueued into PQ.

• If e is an mobj, cnq sends mobj-request 〈q, e.dist,
ctopdist, e.range〉 to the responders e.{CloudNodes}.
Similarly, PQ is blocked until cnq receives a reply and
follows process above.

• Otherwise, i.e., e is an obj, e is added to result list and
c is increased by one. If c is equal to k, cnq informs all
responders to terminate the processing.

(2) Processing in Responder. When a responder cnj re-
ceives a request, depending on the type of the request, two
cases are discussed below:



• If the request is a bM-request 〈q, ctopdist, interval〉,
for each obj stored in cnj , which is bounded in interval,
cnj calculates the distance between q and the obj.
Only the objs with the distance not larger than ctopdist
are added to the return list. To eliminate local dupli-
cates, we use a simple but effective method based on
the observation that, for a bM-request, the responders
are always located in a contiguous key set and in the
relationship of predecessor and successor. Assuming
that, three responders cn1, cn2 and cn3 are located for
a bM-request with the query key range [key1, key2].
In particular, [key1, keya) is maintained by cn1, [keya,
keyb) is for cn2 and [keyb, key2] is for cn3. After they
finds qualified objs, cn1 sends its results to its succes-
sor cn2, and cn2 sends the results found by itself to
cn3 as well as the ones from cn1. Now, cn3 is able to
use the identifiers of objs to filter the duplicates among
their findings, then a refined result list is determined.
After that, cn3 sends a reply to the requester, contain-
ing the refined results. To determine mobj, cn1, cn2

and cn3 follow the collaborative way above to find an
object nobj (next object) which is the immediate one
to the last object in current result in ascending order
by distance. After that, cn3 sends a mobj-reply to
the requester, mobj=〈nobj.distance, {cn1, cn2, cn3},
range〉.

• If the request is amobj-request 〈q, dist, ctopdist, range〉,
the responders search the objs with the distances be-
tween dist and ctopdist, whose associated keys are in
range. Then similar to the above processing, the re-
sponders aggregate the results and one of them sends
a mobj-reply to the requester.

We briefly describe sequential query processing in Algo-
rithm 2. From line 1 to line 18, the pseudo-codes show
processing in requester, and the processing in responder is
presented between line 20 and line 30.

Figure 3 shows an example for kNN query sequential pro-
cessing. Assume that cn6 in Figure 1 issues a 5-NN query
specified by a spatial query point q. We illustrate three near-
est bMs, bM1 for the bucket with range [30, 32], containing
obj3, obj4, with distance 0 to q; bM2 for [8, 11], containing
obj1, obj5, obj6, with distance 2 to q; and bM3 for [52, 55],
containing obj1, obj2, with distance 3 to q. And the dis-
tances for obj1 ∼ obj6 to q are 3, 7, 1, 4, 5, 2. Initially, cn6

enqueues the three bMs, resulting 〈bM1(0), bM2(2), bM3(3)〉,
then bM1 is dequeued, because cn6 is the charge-node of cell
30 to 32, it searches locally, and finds obj3 as the first result,
and the mobj is obj4, due to obj4 belonging to cn6 itself, so
obj4 is directly added into PQ, now the queue is 〈bM2(2),
bM3(3), obj4(4)〉. Next bM2 is dequeued, and cn6 sends a
bM-request with ctopdist=3 (bM3’s MINDIST ) to the re-
sponders cn4, cn8 and cn1 for [8, 11], then the reply is obj6,
obj1 and mobj5 (obj5 is not a result for this iteration, be-
cause in5’s distance(=5) is larger than ctopdist(=3), it is
the immediate object following obj1 according to the dis-
tance to q), so cn6 adds obj6 and obj1 into result list, and
enqueues mobj5, and increases c by 2, resulting 3. Similarly,
cn6 sends bM-request to cn3 and cn5 which are responsi-
ble for [52, 55], after searching, cn5 replies the result obj1
and mobj2, because obj1 is a duplicate, it is discarded, and
mobj2 is enqueued. Then obj4 is inserted into result list,
c is set to 4. After that, cn6 processes mobj5 and sends a

Algorithm 2 kNN Query Sequential Processing

Input:
q=(xq, yq), k

Output:
Qlist //result list

1: Requester cnq’s Process:
2: PQ=φ, c=0
3: cnq.enqueue(bMs, PQ)
4: while PQ 6= φ do
5: e=cnq.dequeue(PQ)
6: if e is type of bM then
7: cnq.deliver(〈q, ctopdist, interval〉)
8: else if e is type of mobj then
9: cnq.deliver(〈q, e.dist, ctopdist, e.range〉)

10: else
11: Qlist←e
12: end if
13: cnq updates Qlist and c when receives a reply
14: if c≥k then
15: cnq informs all related responders to terminate
16: return Qlist
17: end if
18: end while
19:
20: Responder cnj’s Process:
21: msg=cnj .receive()
22: if msg is type of bM-request then
23: 〈q, ctopdist, interval〉=parse(msg)
24: objlist=cnj .search&Filter(q, ctopdist, interval)
25: else
26: 〈q, dist, ctopdist, range〉=parse(msg)
27: objlist=cnj .search&FilterMObj(q, dist, ctopdist,

range)
28: end if
29: objlist′=duplicateEliminate(objlist)
30: cnj .return(objlist′)

mobj-request to cn4 with dist=5, ctopdist=7, and cn4 finds
obj5 and replies to cn6, then c is set to 5, which means the
processing is terminated.

6. EXPERIMENTAL EVALUATION
We use two different datasets to evaluate our approaches.

The first one is a synthetic dataset generated by GSTD[12]
in space domain [0, 1]2 and time domain [0, 1]. In particular,
500,000 objects, each specified by a two-dimensional rectan-
gle, are initialized at t=0, with center coordinates in Gaus-
sian distribution (mean=0.5 and variance=0.1) and size uni-
formly distributed in [0, 0.1]2. As t evolves uniformly, the
objects move from central part to the border of the space as
well as resizing themselves, which totally results in almost
100 million records. Figure 4 visualizes the synthetic dataset
(for the sake of legibility, only 5,000 objects are visualized).
The second dataset is a real one1 which records trajectories
of taxis in Beijing from Nov. 1st to 3rd, 2013. In particular,
each record in the dataset contains vehicle ID, geo-location,
recording time stamp, etc. The amount of the records in the
dataset is about 60 million.

We implement VIHCO in Java and run it on a set of com-
puting units. Each unit (Cloud node) is configured with

1http://activity.datatang.com/20130830/description
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Figure 3: Sequential Processing
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Figure 4: Visualization of Synthetic Dataset

Intel(R) Core2 Quad 2.5GHz processor, 2GB memory and
500GB disk. The number of nodes varies from 4 to 16.
And they are connected via 1Gbps network links. We use
RT-CAN for comparison and query throughput (number of
queries processed per second) as the metric in the exper-
iments. And we vary k and network size to measure the
performance, which are 16 and 8 as default, respectively.

6.1 Results on Synthetic Dataset
Figure 5 shows the performances of three query processing

methods on synthetic dataset. When we increase k from 4 to
64, both performances degrade, which can be explained that
a larger k involves more Cloud nodes to inspect distances
from objects to the query point, hence messages and com-
parisons are raised. However, we can see from Figure 5(a),
RT-CAN degrades faster than our two processing methods,
this is due to: first, VIHCO uses not only long-links (fin-
ger table) to find charge-nodes, but also vicinity neighbors
to quickly locate nearby nodes, second, our parallel process-
ing method takes differential cells between two consecutive
range queries into consideration, which reduces communica-
tion cost, on the other hand, our sequential method is able to
elaborately forward query to the related Cloud nodes, while
RT-CAN does not take these details into consideration.

For comparing parallel and sequential method, we can see
from Figure 5(a), when k is small, sequential processing out-
performs parallel one, while for a large k, the result is oppo-
site. This can be explained that when k is small, there are
fewer objects to be scanned, and parallel processing does not
exploit parallelism of Cloud nodes sufficiently, on the other
hand, sequential method is able to deliver messages accu-
rately, any no-related node would not be contacted, hence
the communication cost is reduced. While with a large k,
the disadvantage of sequential method increases, i.e., Cloud
nodes receive query messages one by one, and for parallel
method, the query range is enlarged, more nodes are able to
search results simultaneously, the performance is raised.

Next, we can see the comparison results from Figure 5(b)
under different system sizes. A small size gives better per-
formance to sequential processing and a large size gives to
parallel one. The reason is similar to the previous one.
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Figure 5: Results on Synthetic Dataset

6.2 Results on Real Dataset
Figure 6 shows the results on real dataset. The advantage

of VIHCO and our query processing methods are definitely
revealed in the results, where RT-CAN deteriorates more
seriously with k increased. A detail observation is that the
throughput of RT-CAN is only about 1,000 when k is equal
to 64, while our methods are above 4,000. We can see VI-
HCO is more suitable for the skewed dataset than RT-CAN
for kNN query.
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Figure 6: Results on Real Dataset



7. CONCLUSIONS
With the increasing of DaaS (Database as a Service) re-

quirement, kNN query processing methods would be paid
more attention by both academic community and industrial
circles. In this paper, we propose an interesting problem,
which is with better performance for Cloud computing, par-
allel method or sequential one. For answering such a ques-
tion, we first devise an distributed indexing structure VI-
HCO for constructing overlay network, featured by vicinity-
connection which is capable to fast locate the destinations.
Upon VIHCO, we present the algorithms of parallel and se-
quential processing, and explore the answers through exper-
iments both on synthetic and real dataset, and the results
show that our VIHCO is better than RT-CAN, and the se-
quential method is more efficient under small k query condi-
tion and small system size, while parallel one suits for large
k and large scale of computing nodes.

In the future, we plan to extend our work to in high di-
mensional space and road network space.
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