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ABSTRACT 

As the number of provenance aware organizations increases, 

particularly in workflow scientific domains, sharing provenance 

data becomes a necessity. Meanwhile, scientists wish to share their 

scientific results without sacrificing privacy, neither directly 

through illegal authorizations nor indirectly through illegal 

inferences. Nevertheless, current work in workflow provenance 

sanitizing approaches do not address the disclosure problem of 

sensitive information through inferences. In this paper, we propose 

a comprehensive workflow provenance sanitization approach 

called ProvS that maximize both graph utility and privacy with 

respect to the influence of various workflow constraints. 

Experimental results show the effectiveness of ProvS through 

testing it on a graph-based system implementation.  
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1. INTRODUCTION 
Securing provenance particularly in workflow domain is a 

significant challenge that is still open for research  [1], [4], [6], [7], 

[15], [22].  As provenance stores the history, in some cases 

provenance are becoming more precious than traditional data. 

Hence, it can give a chance for adversary users to employ it for 

breaking security and attacking privacy. Sharing provenance is 

needed, particularly in scientific workflows. While scientists may 

wish to share their experiments and results with others, they may 

have privacy concerns about their scientific results. Also, releasing 

provenance query graph results should meet strict security rules to 

prevent disclosure of sensitive information. 

Securing provenance data has been studied in recent years. Hiding, 

anonymization, and grouping are well known sanitization 

approaches that are used to preserve privacy of sensitive 

provenance graph components[nodes/edges] [3], [6], [8], [9], [12]–

[14], [18], [19], [25]. In fact, these approaches vary in terms of 

graph utility, privacy and conformance to provenance policies that 

guarantee the completeness and correctness of the provenance 

graph [3], [14]. Hiding approach removes the required sensitive 

graph components which cause dangling nodes and edges [11]. 

Anonymization approach only hides the identification attributes. 

This approach gave anonymization approach the privilege of 

satisfying provenance graph policies and increasing the graph 

utility at the same time [14], [29]. However, they do not guarantee 

the privacy of sensitive information as the attacker can re-identify 

the anonymized graph components. Grouping approach provides an 

abstract graph view that preserves the privacy of sensitive graph 

components, their major drawback is decreasing the graph utility 

[5], [19]. In addition, they require checking the resulting graph 

validity according to provenance policies and handling invalid 

graphs either by grouping more nodes and edges or inventing new 

dummy nodes to satisfy the provenance graph policies [13].  

On the other hand, in the application domain, workflow systems are 

impacted by industrial laws and regulations that control the 

workflow execution to ensure the compliance of business rules and 

regulations that prevent business failures [31]. There are multiple 

types of workflow constraints that specify the control flow between 

business processes, define restrictions on the resources or define 

exception handling procedures. Actually, these workflow 

constraints are good seeds for attacking privacy particularly in a 

provenance area as provenance stores a complete history of the 

workflow execution. 

This paper focuses on the problem of attacking graph privacy by 

re-identifying sanitized graph components through using domain 

knowledge. The domain knowledge that we address is the 

workflow constraints.  We study the main factors that affect the 

provenance graph sanitization privacy, utility, and provenance 

graph policy. The paper introduces a sanitization approach called 

ProvS that utilizes anonymization, grouping and workflow 

constraints to produce a set of sanitization actions. These 

sanitization actions need to be applied to the workflow provenance 

graph to preserve its privacy while considering the graph utility and 

provenance graph policies. The key contributions of this paper are: 

- Proposing a comprehensive sanitization approach 

tailored to preserve privacy of workflow provenance 

graphs. 

- Handling the privacy problem in anonymization 

approach 

- Increasing the graph utility of the grouping approach  

- Automatically decides which properties (nodes/edges) of 

the graph need to be grouped and which properties need 

to be anonymized without user intervention. 

The rest of the paper is organized as follows: Section 2 presents a 

brief background information about provenance graphs in addition 

to the various types of workflow constraints. Related work is 

reviewed in Section 3. A motivating example is presented in 

Section 4. Section 5 introduces the proposed approach ProvS. 

Finally, Section 6 concludes the paper and presents some points for 

future work.  
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2. BACKGROUND 
This section provides a brief introduction to the most common 

keywords that will be used along this paper. 

 

Figure 1. OPM [20]  

2.1 Workflow Provenance Graph 
Workflow provenance records the history of workflow executions 

[17]. There are several tools for capturing workflow provenance 

[2], [23], [29].  These tools capture information about the sequence 

of workflow process executions used to produce a data item, as well 

as the intermediate data passed between these processes. Most of 

these tools use the Open Provenance Model (OPM) that was 

proposed in [20] as their standard model for representing 

provenance data. OPM in Figure 1 models provenance as a Directed 

Acyclic Graph (DAG) which consists of three types of nodes: 

artifacts represent the data used, processes represent actions 

performed on or caused by artifacts, and resulting in new artifacts, 

and agents that represent actors executing the process. The edges 

of the OPM graph represent a relationship between two nodes. 

Provenance graphs are captured automatically by the workflow 

system. Provenance graph can be formally defined as G=(V,E,L,F) 

where V is the set of vertices, E V V is a set of edges, L is a set 

of labels, and F is a labeling function F:EL that assigns each edge 

a label.  

There are some provenance policies that ensure the correctness and 

completeness of the provenance graph which discussed in [14]. 

Table 1. Provenance graph policy [14] 

2.2 Workflow Constraints 
The executions of workflow systems are always governed by a set 

of constraints that guarantee the correctness of the execution [24].  

These constraints can be defined by the user or can be captured 

from the Business Process Model (BPM) that acts as a schema for 

the workflow system. Processes and its related constraints are the 

key elements of workflow constraints. There are different types of 

workflow constraints: some constraints based on data values where 

the end result of the process determines the following workflow. 

Constraints that control the flow of the processes, constraints based 

on time while other constraints based on roles that determine who 

is responsible for what. A brief description of workflow constraints 

that are considered in this paper are outlined in Table 2. 

Table 2. Workflow constraints 

2.3 Graph Privacy and Utility 
Workflow provenance graphs contain sensitive information. For 

example, in healthcare, activities including patient diagnoses, 

treatments, and processes performed by health care professionals are 

considered sensitive information. A major goal of preserving 

privacy is to assure that sensitive information is properly protected. 

Hence, we need to define what is meant by sensitive information. 

Sensitive information is the information that needs to be hidden 

from unauthorized users. In this paper, sensitive information can be 

a provenance graph node (process, data, or actor) or a provenance 

graph edge (used, generated by, controlledBy).  

We formalize two privacy goals in workflow provenance graphs.  

- Node Privacy: node privacy concerns with hiding the 

identity or attribute values of a node. Let G be the original 

graph and V be a node belonging to G. Let G' be the 

sanitized graph view of G. The privacy of V means if an 

adversary is given G' and extra domain knowledge 

information then he should not reveal the identity of E in 
the original graph G. 
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Provenance Policy Description 

No Write Conflict 

(NWC)  

A data artifact can be written by 

only one process 

No Cyclic 

Dependency (NCD) 

There is no cycle between any two 

nodes 

No-Type Error Two nodes with a direct 

dependency are of different types. 

No-False Dependency 

(NFD) 

Two nodes are dependent in the 

resulted graph only if they are 

dependent in the original graph 

No-False 

Independency (NFI) 

Two nodes are independent in the 

resulted graph only if they are 

independent in the original graph 
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Separation of 

Duty (SOD)  

Mutual exclusive processes must be 

executed by different persons or 

roles 

Binding of 

Duty (BOD)  

Multiple processes must be 

executed by the same person or 

role. 

Role Constraint  
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Process must be executed by a 

specific role(s) 
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Sequential 

Processes (SP) 

A process output is used as an input 

to another process 

Parallel  

Processes  (PP) 

Processes are working 

concurrently, they start at the same 

time 

Multiple  

Merge Pattern 

(MMP)  

The process is taking its input from 

multiple processes 

Same Input 

Processes (SI) 

Multiple processes are using the 

same input data 

Exclusive 

Processes (EP) 

Only one of the exclusive processes 

is executed 

Time 

Constraints 

(TC) 

The execution time of a process 

depends on the execution time of 

another process 
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Certain Process 

(CP) 

If the condition on a process output 

data is true this output should be 

used by a certain process 

Different 

workflow 

(DWF)  

If the condition on a process output 

data is true this output must be used 

by a specific process certain 

number of times 



- Edge Privacy: edge privacy concerns with hiding the 

relationships between two of the graph nodes. Let G be 

the original graph and E be an edge belonging to G. Let 

G' be the sanitized graph view of G. The privacy of E 
means if an adversary is given G' and extra domain 

knowledge information then he should not reveal the 

existence of E in the original graph G.  In this paper, Edge 

privacy can be specified in terms of node privacy as it 

requires hiding the identity of the two connected nodes. 

Note that, we do not consider removing edges in our 
proposed approach.  

 

Inspired by the fact that a process uses input data to produce output 

data, the following is a subset of the inference rules presented in 

[30] to prevent disclosure of sensitive information that will be 

considered in our approach. 

R1: Revealing the input and output would identify the process 

R2: Revealing the process and output would reveal the input and 

revealing the input and process would reveal the output 

 

Utility is concerned with the amount of information presented in 

the sanitized graphs to be useful for sharing. Utility of the graph is 

measured by the utility of its nodes and utility of its connections 

(edges). There are different utility measures for graph. In this paper, 

we use the utility measure that introduced in [3] where the utility of 

nodes is measured by the average percentage of nodes in the 

original graph that are retained the sanitized graph. The utility of 

edges is measured by the average percentage of edges in the 

original graph that are retained in the sanitized graph. 

3. RELATED WORK 
Provenance sanitization  via  provenance graph transformation is 

discussed  by  several  researchers  [32],  [33],  [18],  [13],  [34]. 

The authors in [35] proposed ZOOM which controls access to 

sensitive provenance data by driving provenance views from 

workflow views.  The  main  advantage  of  ZOOM  it  allows 

provenance  to  be  derived  at  different  levels  of  granularity. 

However, it cannot be used for complex scientific workflows. The  

authors  in  [11]  proposed  an  anonymization  approach named 

Surrogate Parenthood that derives a protected graph G' from  the  

original  graph  G  that  preserves  the  provenance policies. In 

Surrogate Parenthood each path in G' exists in G. The main 

advantage of this work is the fact that it preserves the utility of the 

original graph. The authors in  [12]  presented a framework called 

ProPub to publish  provenance data based on the data log which 

stores user privileges, portions of the graph that need to be 

abstracted, deleted, or retained, as well as graph policies. The main 

advantage of this framework is that it detects conflicts between 

sanitization policy and provenance policies. 

The authors in [19] proposed a model known as Provenance 

Abstraction Model (PAM) and implemented a tool called ProvAbs 

which uses a grouping approach with a defined clearance level of 

both graph components and users to get a secured graph view. The 

main advantage of this model is that the resulting graph preserves 

the confidentiality of the provenance graph. On the other hand, it 

may require multiple grouping to preserve to provenance policies. 

The authors in [6] proposed a graph grammar rewriting rules that 

generate a safe provenance graph. Their proposed rewriting rules 

involve some graph operations such as vertex contraction, path 

contraction, edge contraction, and node relabeling. The main 

limitation of this work is its negligence of provenance policies as 

well as they do not study the disclosure threat.   

To conclude, previous attempts proposed different approaches to 

preserve the privacy of the OPM provenance graph but sacrifice 

either the graph privacy or the graph utility.  Grouping approaches 

preserve the privacy of the OPM graph, but it sacrifices utility in 

addition, it requires handling conflicts between the resulted graph 

and the provenance policies. On the other hand, anonymization 

approaches increase the utility of the sanitized OPM graph (as it 

just changes the nodes to less sensitive ones and do not change the 

structure of the graph) but they do not guarantee its privacy. 

Moreover, anonymization and grouping depend on the user 

specification which is very hard specifically for large OPM graphs. 

Nevertheless, previous efforts ignored the importance of preserving 

graph privacy and provenance policies while preserving an 

acceptable level the graph utility. In the remaining of this paper, we 

present a novel approach for protecting provenance graphs from 

disclosing sensitive information that caused by workflow 

constraints without sacrificing neither graph privacy nor its utility.  

4. MOTIVATING EXAMPLE 
In this Section, we show how the knowledge of workflow 

constraints may allow adversary users to infer sensitive information 

from a sanitized workflow provenance graph. In the following 

discussion, Pa denotes an anonymized view of a process node. Da 

denotes an anonymized view of a data node. While Pg and Dg 

denote a grouped process node and a grouped data node 

respectively. 

Figure 2 represents graph G which is a fragment of a workflow 

provenance graph. Consider the following set of constraints that 

govern the workflow execution where P1, P2, P4, P5 are workflow 

processes.  

C1: P1 and P2 have the same input data  

C2: P4 must be executed by a manager 

C3: P2 and P5 must be executed by the same actor 

C4: P2 and P4 are sequential processes 

C5: If the output data of P4 is greater than 5 then it must be 

processed by P5 

 

Figure 2. Workflow provenance graph G 

In the following discussion, we discuss two scenarios with different 

types of sensitive information and the effectiveness of different 

sanitization approaches mainly anonymization and grouping to 

prevent disclosure of sensitive information. 

Scenario 1: Sensitive information is a process node P2. Figure 3 

represents different sanitized views of graph G that are displayed 

in Figure 2. Figure 3(a) represents G1, which is produced using 

anonymization. P2 is anonymized to Pa and its output D2 is 
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anonymized to Da to ensure that Pa cannot be detected from its 

input and output data values. G1 prevents direct attacks to P2. 

However, an attacker can infer that Pa is P2 via constraint C1. The 

utility of graph G1 is [node utility=19/19 and edge utility=19/19]. 

Using the grouping approach, P1, P2 and their output data D3 and 

D4 are grouped to process Pg1. This grouping will preserve the 

privacy of P2, however, it violates the provenance policies as two 

nodes from the same type Pg1 and P4 are connected. Hence, we 

need to group more nodes to satisfy all the provenance policies.  

Figure 3 (b) represents graph G2 that is produced via grouping P4 

and its actors with Pg1 and D1 to Pg2.we had to group D1 to handle 

NFD policy (Table 1). G2 preserves the privacy of sensitive process 

P2 and preserves the provenance policies. However, it affects the 

graph utility (node utility=12/19, edge utility=12/19) as it groups 

many of the graph components. 

Scenario 2: Sensitive information is a data node D5. Figure 4(a) 

represents G3 that anonymizes D5 to Da and anonymizes P3 to Pa. 

the utility of G3 is [the node utility=19/19 and edge utility=19/19]. 

Figure 4(b) represents G4 that groups P3, D5, and D2 to Pg. Both 

G3 and G4 preserve the privacy of D5, but the utility of G3 has 

been better than G4 utility [node utility= 16/19 and edge 

utility=16/19]. 

This example proves that one approach will not fit in all cases. The 

choice of the optimal sanitization approach depends on the defined 

workflow constraints. 

5. ProvS Architecture 
In the following discussion, we state some general assumptions to 

ensure the effectiveness of our proposed approach. Those 

assumptions basically define the general workflow structure to 

distinguish other structures that can be a result of firing workflow 

constraints. First, workflow processes are in sequential order. 

Second, the cardinalities of the relationships between the 

provenance graph components are unknown. Third, different 

processes are executed by different actors (SOD). Fourth, the input 

provenance graph is valid according to provenance graph policy 

(see Table 1). We used the graph utility measure that proposed in 

[18]. Finally, ProvS produces the set of sanitization actions that 

need to be applied to a provenance graph to be secured. We are not 

concerned with how the nodes will be anonymized as there are 

many approaches exits in the literature for anonymization [27] [16].  

The architecture of ProvS is portrayed in Figure 5. The 

architecture encapsulates two main phases which will be described 

in the following discussion. 

5.1 The Design Phase 
The design phase is concerned with collecting and refinement 

workflow constraints by the workflow experts to be used for 

controlling the workflow execution. This phase is performed only 

once in offline. It may be repeated only when workflow constraints 

are updated. Actually, the main incentive behind studying 

workflow constraints are twofold:  

- Sanitization will work under supervision of a Workflow 

Management System (WFMS) that enforces these 

constraints during workflow runs. Therefore, the 

workflow constraints will play an integral part in 

securing workflow provenance graphs. 

- Determining what nodes need to be anonymized and 

what nodes need to be grouped in order to preserve the 

graph privacy with respect to the knowledge of workflow 

constraints. 
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Workflow constraints specify either the values of nodes' attributes 

or the relationships between processes. For illustration, BOD 

constraint defines a link structure as multiple process nodes are 

connected to the same agent node through controlledBy 

relationship. MMP constraint defines a link structure as multiple 

data output nodes are connected to the same process node. SP 

constraint defines a link structure as a process output node is 

connected to the other process node. PP constraint defines a value 

of two process nodes, it does not specify any link structure between 

them. Similarly, PEP constraint defines a value of a process node. 

From the previous discussion and our motivation example we can 

conclude some remarks, First, constraints that affect the identity 

disclosure, attribute disclosure or define the general workflow 

structure (discussed earlier in this section) can be secured using 

anonymization approach. On the other hand, constraints which 

specify a link structure different from the general workflow 

structure cannot be secured against illegal inferences using an 

anonymization approach as the structure of the graph is the key 

player and anonymization does not hide this structure. Therefore, it 

should be sanitized using a grouping approach to hide the graph 

structure. A complete assessment of workflow constraints using 

anonymization and grouping against privacy is discussed in [21].  

Subsequently, we classify the workflow constraints (Table 2), 

according to their influence on graph privacy as follows:  

- Configuration constraints are the types of constraints 

that define link structure different from the general 

workflow structure. 

- Identity constraints are the types of constraints that 

define a node identity or attribute values such that relate 

actor or role to a process or define relationships between 

processes and/or data.  

Orthogonal to this classification, Binding of duty, different 

workflow and same input constraints are considered configuration 

constraints while the other constraints are considered identity 

constraints. 

Table 3. Workflow constraints classification 

Classification Workflow Constraints 

Identity constraints CP,  SOD, SP, PP, EP, TC, RC 

Configuration constraints BOD, MMP, SI, DWF 

Table 3 classifies the workflow constraints presented in Table 2 

according to our constraints classification approach. As we 

mentioned, SP is the general graph structure therefore, it will not 

be considered as a configuration constraint.  

Driven by the following facts: workflow constraints may have 

different influence on the privacy of OPM graphs. 1) Some 

constraints might not affect the privacy of OPM graph, 2) One 

constraint may be used to reveal sensitive information; 3) Multiple 

constraints can be combined to reveal sensitive information. We 

propose a constraint network graph (ConNet) which offers a means 

of identifying potential relationships between workflow 

components.  

ConNet is an undirected graph that represents the workflow 

constraints exist among different workflow components. A ConNet 

node can be a process, data, or actor that exists in a workflow 

constraint. The edges represent constraints between the connected 

nodes. These edges are labelled with the workflow constraint name 

that governs the execution of the two connecting nodes. The main 

incentive behind this graph is to discover all the paths that an 

attacker can go through to infer sensitive information. ConNet is 

constructed as follows: 

For each constraint in the workflow constraints 

1. Draw a node for each OPM component in the 

constraint  

2. Label these nodes with the component's name in the 

constraint 

3. Connect the nodes in each constraint with an edge 

and label this edge with the constraint name 

(specified in Table 2). 

Continuing with our motivating example discussed in Section 4, the 

ConNet is illustrated in Figure 6 ConNet graph is stored in ConNet 

repository to be used later in the execution phase. 
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5.2 The Execution Phase 
This phase is concerned with generating the sanitization actions 

that need to be applied to a workflow provenance graph based on 

privacy policy and present these sanitization actions to the graph 

owner. The main components of this phase are: 

Privacy Policy: the privacy policy stores the privacy preferences. 

It contains the sensitive graph components [nodes/edges] that need 

to be hidden.  

Provenance Graph Repository: stores the workflow provenance 

graphs that need to be sanitized for sharing. 

The Inference Engine Module: The main purpose of this module 

is to find the set of provenance graph nodes that are related to the 

sensitive information using ConNet graph.  The InferenceEngine 

procedure in Figure 7 generates two sets, one for the anonymized 

nodes AA set which is composed of individual nodes that are 

required to be anonymized, while the other is for the grouped nodes 

GA set which is a set of nodes set which are required to be grouped 

together. The procedure first checks if the sensitive node N exists 

in the ConNet (line 2) then, for all the edges that exist in the paths 

connected to N, it gets the edge label to determine its classification 

type (line 4-8). Then, based on the edge classification the connected 

nodes of this edge it is added either to AA or GA (line 9-11). 

The Sanitizer Module: the sanitizer has three main functions (i) 

preparing the sensitive node set, (ii) Filtering; (iii) get the 

supplement actions.  The sanitizer algorithm is presented in Figure 

9. Preparing sensitive nodes set by acquiring the sensitive nodes 

from the privacy policy and for each sensitive edge it get its 

connected nodes and add them to the sensitive nodes set. Next, the 

sanitizer sends these sensitive set to the InferenceEngine module 

(line 5). Further, it filters the AA set and GA set generated from the 

InferenceEngine. For multiple sensitive nodes which have different 

sanitization actions the sanitizer merge the anonymization sets and 

grouping sets. In addition, it uses the following rules in the filtering 

step. 

Rule 1: If a process exists in both AA set and GA set then remove 

it from AA (as grouping is more restricted than anonymization). 

Rule2. If a process exists in multiple groups in GA then merge these 

groups to one group (as a node cannot exist in more than one 

group). 

 

Finally, the sanitizer gets the supplement actions (Line 8 and 221) 

to handles the limitations of anonymization and grouping. For 

grouping set it uses Rule 3 (Line 8-12).  

 

Rule 3: For each grouped process set, group the data outputs nodes 

of the grouped processes into a data group node (to prevent NFD 

and NWC problem in Table 1).  

For the anonymization set. It computes the related actions using 

procedure RelatedActions in Figure 8. Which uses the following 

rules to generate related actions that need to be added to AA set.  

Rule 4: for each anonymized data node, anonymize its generated 

process and used process (to prevent disclosure of this data using 

R1 and R2 in Section 2.3). 

Rule 5: for each anonymized process in AA anonymize its output 

data and the process that used this output data (to prevent 

disclosure of the anonymized process using R1 and R2). 

The sanitizer output the final anonymization set and grouping set 

to the graph owner. 

Continuing with our motivating example discussed in Section 4, for 

the first scenario, the anonymization set AA= {P4, D6, A3, A4} 

and the grouping set GA= {{P1, P2, P5}, {D3, D4, D7}}. The 

resulted graph utility will be [nodes utility=15/19 and the edge 

utility= 15/19].  

 

Table 4. Features comparison for sanitization approaches 

 ZOOM [10] Surrogates [3] ProPub [12] ProvAbs [18] ProvS 

Sanitization 

Method 

Anonymization X √ X X √ 

Grouping √ X √ √ √ 

Conflict Detection and resolution X - √ √ - 

Study the utility of graph X √ X √ √ 

Preserve Graph Privacy X X X X √ 

 

Procedure: InferenceEngine (Node N, Graph ConNet, AA 

output, GA output)  

1. Define set AA=, GA=  
2. IF (N exists in ConNet) Then 

3. Begin 
4.   For each path connected to N 
5.      For each edge in the path 

6.         (N1, N2)= Get the connected nodes  

7.         C= Get label of the edge  
8.         IF((C=BOD)˅(C=MMP)˅(C=SIP)˅(C=DNC)) Then 

9.              GA= {{N1, N2}} 

10.         Else  
11.             AA= {N1, N2} 

12.         End IF 

13. End 

Procedure: RelatedActions (Node N, Graph G, AA output)        

1. Begin 

2. IF(N is a data node) Then  

3.     AA=AA{process used N}{process generated N} 

4. Else IF (N is a process node) Then  

5.     AA=AA{data generated from N as v}{processes used v} 

6. End IF 

7. End 
 

Figure 7. InferenceEngine procedure 

Figure 8. RelatedActions procedure 



In the second scenario, the anonymization set AA= {P3, D5, P5} 

and the grouping set GA=. The resulted graph utility will be [node 

utility= 19/19 and edge utility=19/19].  

5.3 Evaluation 
 In Table 4, we compare the main features of different existing 

sanitization approaches against ProvS. It is clear from the table that 

both Surrogates and ProvS do not cause conflicts in the resulting 

graph while other approaches detect and solve conflicts. The reason 

is that anonymization preserves the graph structure and ProvS uses 

homogenous grouping which handles this issue. For the utility issue 

surrogates provides a utility measure for paths and nodes to 

measure the informative of the surrogates. ProvAbs annotates each 

node in the graph with a utility value which defines the nodes to be 

retained in the resulted graph.  ProvS uses utility for paths and 

nodes to measure the informative of the resulted graph. For the 

privacy feature, all the approaches that use grouping preserve the 

graph privacy.  

We perform experiments to ensure the effectiveness of ProvS. 

Experiments were conducted on a HP PC with 2.53GHz Intel Core 

i5 CPU, 4GB RAM and 160 disk space running MS Windows 7. 

Neo4j 2.2.5 graph database is used to store OPM provenance 

graphs and constraints network (ConNet). Java is used as the main 

programming language for writing the logic of the code and we 

used Cypher queries to retrieve data from the provenance graph and 

ConNet.A set of workflow constraints was generated along with a 

series of synthetic provenance graphs that satisfy the generated 

workflow constraints. The experiments were conducted on 3 

different sets of workflow constraints. The first a set of type 

configuration constraints which were sanitized via grouping, the 

second a set of type identity constraints which were sanitized via 

an anonymization approach. The third set is mixed half of them 

from identity constraint type and the other half from the 

configuration constraint type which was sanitized using a 

combination of anonymization and grouping. The results of the 

experiments are shown in Figure 10 , which shows clearly that 

ProvS increases the graph utility even if the workflow constraints 

are configuration constraints. This is due to homogenous grouping 

that decreases the number of graph properties which are needed to 

be grouped.  

Figure 10. Utility measure for different types of constraints 

Figure 11. Utility measure for different ConNet topology 

Additionally, an additional series of tests to determine the effect of 

ConNet topology on the provenance graph utility in case of 

configuration constraints. Figure 11 shows a comparison of the 

ConNet topology versus graph utility while keeping the sensitive 

information, provenance graph size and ConNet size constant. This 

comparison shows that unconnected ConNet graphs increase the 

utility of the graph as the groups in the grouping set will not be 

overlapping and hence, will not be joined. On the other hand, highly 

connected ConNet graphs decrease the resulted graph utility as 

many nodes will be in different groups and hence these groups will 

be joint to be one group.                                                                                 

6. CONCLUSION AND FUTURE WORK 
Traditional sanitization approaches which are tailored to secure 

provenance graphs are no longer sufficient as they ignore an 

important source of security, namely graph privacy attacks due to 

the use of workflow constraints. In this paper, we first illustrated 

the main problems of anonymization and grouping approaches.  

Then, we highlighted different types of workflow constraints that 

could be used in disclosing sensitive information. Further, we 

classified these constraints according to their influence on graph 

privacy. Consequently, we introduced ProvS that ensures secure 

and valid provenance graphs.  ProvS combines anonymization and 

grouping for sanitizing sensitive provenance graph. Experimental 

results show the effectiveness of ProvS through testing it on a 

graph-based system implementation. 

For future work, we plan to enhance the performance of ProvS in 

the presence of large provenance graphs and large number of 

workflow constraints. In addition, applying our approach to 

different case studies.  

The Sanitizer Algorithm 

1. Input: OPM graph G(V,E), Sensitive Set SS, ConNet C(V,E) 

2. Output: Anonymization set AA and Grouping set GA 

3. Method:  

1. Define Anonymization Actions Sets AA  

2. Define Grouping Actions Set GA 

3. Define Output Data Set OD 

4. For each S  in SS 

5.   InferenceEngine (S, ConNet, AA,GA)   

6. IF (AA !=  ˅ GA != ) Then 

7.    Begin 

8. For each group in GA 

9.  Begin 

10. OD=set of all generated data from this group 

11. GA=GA OD 

12.   End 
13. IF (an element exists in different pairs in GA) Then 

14.       union these pairs to be one group  

15.        For each  element e in AA 

16.  IF(e h where hGA) Then 

17.      AA=AA-{e} 

18.          For each element e in  AA 

19.              RelatedActions(e, G, AA output)   

20.       End IF 
21. Else// S is not in the ConNet 

22. Begin 

23.   AA=AA{S} 

24.   RelatedActions(S, G, AA output)   

25.      End 

26. End 
 

Figure 9.The sanitizer algorithm 
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