
Using Robust Estimation Theory to Design Efficient 
Secure Multiparty Linear Regression 

Fida K. Dankar 
Sidra medical and Research Center 

Doha, Qatar 
fdankar@sidra.org 

Sabri Boughorbel 
Sidra medical and Research Center 

Doha, Qatar 
sboughorbel@sidra.org 

Radja Badji 
Sidra medical and Research Center 

Doha, Qatar 
rbadji@sidra.org 

 
 

ABSTRACT 
Various biomedical research studies, such as large-population 
studies and studies on rare diseases, require sharing of data across 
multiple sources or institutions. In fact, data sharing will enable 
the collection of more cases for analysis and thus increase the 
statistical power of the study. However, combining data from 
various sources poses privacy risks. A number of protocols have 
been proposed in the literature to address the privacy concerns; 
but these protocols do not fully deliver either on privacy or 
complexity. The main reason lies in the methodology used to 
design these secure algorithms. It is based on translating regular 
algorithms into secure versions using cryptographic procedures 
and tricks rather than on establishing robust theory for designing 
secure and communication free distributed algorithms. In this 
paper, we use well-established theoretical results to design a 
secure and low communication linear regression protocol. The 
method used is comprehensive and can be generalized to other 
estimators. 

CCS Concepts 
• Security and Privacy➝Cryptography • Security and 
Privacy➝Security services➝Privacy-preserving protocols.  

Keywords 
Data sharing; secure multiparty computation; linear regression; 
information privacy. 

1.   INTRODUCTION 
To advance large-scale biomedical studies, and to strengthen the 
statistical power of research studies (such as complex 
associations), researchers frequently need to share data with 
colleagues from around the world. Such data sharing activities are 
contingent on the protection of patient anonymity. Traditionally, 
researchers would strip the data from its identifying information -
such as names and unique IDs- before sharing it with each other. 
However, as many recent studies have shown [1]–[3], it is now 
possible to deduce the identity of research participants from 
genomic and/or clinical data that was considered anonymized. 

In the face of these growing privacy concerns, researchers are 
looking more and more at cryptographic secure computations 
(also known as secure multiparty computations).  

 

These secure techniques enable data holders to compute a 
function over their data while keeping these data private. Only the 
final result of the computation is revealed to all parties.  

Although secure computation protocols exist for multiple data 
mining/ statistical functions, these protocols are mostly 
inappropriate for real world application due to their computational 
overhead. Communication cost is the main factor driving this 
inefficiency (extensive message passing between the different 
concerned parties is the main bottleneck of existing secure 
computations). The main reason lies in the methodology used to 
design these secure algorithms. It is based on translating regular 
algorithms into secure versions using cryptographic procedures 
and tricks rather than on establishing robust theory for designing 
secure and communication free- distributed algorithms.  

There is considerable research devoted to designing distributed 
algorithms that are communication free. In such algorithms, data 
is partitioned into multiple subsets, subsets are stored on different 
machines, processes run on the different subsets simultaneously 
and the final outcome is calculated as a function of the individual 
ones, thus limiting communication to the final step. In this paper, 
we import some of this theory into the design of a secure and low 
communication linear regression protocol. The method used is 
comprehensive and can be generalized to other estimators 
(geometric median, principal component analysis, etc). The theory 
is described in the next section followed by a description of the 
secure protocol. The paper concludes with a discussion of the 
limitations and future directions. 

2.   THEORY 
We introduce the classical setting of a linear regression problem. 
Let 𝑋 = {𝑥%,'} be an 𝑛×𝑝 matrix of features and 𝑌 = (𝑦/, … , 𝑦1)3 
a corresponding 𝑛×1 response vector, where 𝑛 is the number of 
samples and 𝑝 is the number of features. The linear regression 
problem consists of solving the linear model, 𝑌 = 𝑋𝛽 + 𝜖 [4]. To 
improve the computational efficiency of the linear regression 
problem, Wang et al [5] designed a distributed linear regression 
algorithm. The algorithm, referred to as message, partitions the 
dataset into multiple subsets and processes these subsets in 
parallel. Formally, the data (𝑋, 𝑌) is divided horizontally into 𝑘 
subsets (𝑋/, 𝑌/ ; … ; (𝑋:, 𝑌:)}, with 𝑋% = (𝑥/% , … , 𝑥;% ) the 𝑛%×𝑝 
feature matrix for subset 𝑖 and 𝑌% = (𝑦/% , … , 𝑦1=

% )3 the 
corresponding  𝑛%×1 response vector. The algorithm then 
executes the following two steps: 

1.   In the first step, the feature selection vector for each 
subset is calculated separately using the Lasso algorithm 
[6]. After that, the overall model is obtained by 
including the features selected by the majority of the 
subsets.  Thus, if 𝛾% = {𝛾/% , … , 𝛾;%} is the feature 

 (c) 2016, Copyright is with the authors. Published in the Workshop 
Proceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 
2016, Bordeaux, France) on CEUR-WS.org (ISSN 1613-0073). 
Distribution of this paper is permitted under the terms of the Creative 
Commons license CC-by-nc-nd 4.0 



selection vector for site 𝑖, (with 𝛾'% = 1 if feature 𝑗 is 
included and 0 otherwise), then the overall vector is 
obtained by: 
𝛾 = {𝑚𝑜𝑑𝑒 𝛾//, … , 𝛾/: , … ,𝑚𝑜𝑑𝑒 𝛾:/, … , 𝛾:: }  

2.   In the second step, the coefficients of the selected 
features are estimated separately for each subset, and 
the final result is obtained by averaging the coefficient 
estimates of each feature. Thus, if 𝛽% = {𝛽/% , … , 𝛽;% } is 
the feature coefficients vector for site 𝑖, then the overall 
vector is obtained by: 
𝛾 = {𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛽//, … , 𝛽/: , … , 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛽:/, … , 𝛽:: }  

The message algorithm fairs well not only in terms of 
computational time, but also in terms of feature selection 
performance. In fact, the authors prove that under certain 
assumptions (that will be detailed in the discussion section) the 
feature inclusion vector converges exponentially to the optimal 
model [5]. A result that is better than applying Lasso to the whole 
dataset.  

Privacy is not a concern in the message algorithm. In fact, sharing 
of intermediate and local results between the different subsets is 
supported in the algorithm. Prior work, [7], demonstrated through 
multiple scenarios, how identifying information can be inferred 
from local and intermediate statistics using various different 
attacks.  

This paper uses the theory behind the message algorithm to 
formulate an efficient and private linear regression algorithm. The 
proposed algorithm performs efficiently with regards to feature 
selection and model calculation under certain assumptions. The 
algorithm is presented in the next section and the assumptions are 
discussed in Section 5. The paper concludes with a discussion of 
future work. 

3.   SECURE PROTOCOL 
We assume that a dataset (𝑋, 𝑌) is horizontally distributed among 
𝑘 ≥ 2 data holders (or sites) 𝑆/, … , 𝑆:. The different sites are 
interested in cooperatively performing linear regression on the 
union of their datasets, however they are not willing to share their 
data. Only the final result of the computation should be revealed 
to all parties. The secure algorithm is depicted in Algorithms1 and 
2, it requires a semi-trusted third party whose role is the 
generation of keys for a public encryption cryptosystem as well as 
the decryption of some results.  

Paillier cryptosystem [8] will be used due to its nice homomorphic 
properties. These properties will be introduced in the next 
subsection followed by a presentation of the secure protocol. 

3.1   Paillier Public Cryptosystem 
In public key cryptosystems, The ciphertext (the encryption) 𝑐 of 
a message 𝑚 (usually an integer) is obtained by applying an 
encryption function: 𝑐 = 𝐸𝑛𝑐;:(𝑚), where 𝑝𝑘 is the public 
encryption key. The ciphertext 𝑐 can be decrypted using another 
key 𝑠𝑘 (referred to as the secret key) and a decryption function: 
	
  𝑚 = 𝐷𝑒𝑐Q:(𝑐). Paillier public cryptosystem is additively 
homomorphic, as such the sum of two messages can be obtained 
from their respective cyphertexts. For Paillier, this translates to 
𝐸𝑛𝑐;: 𝑚/ + 𝑚R = 𝐸𝑛𝑐;: 𝑚/ ×𝐸𝑛𝑐;: 𝑚R  [8]. Moreover, 
Paillier allows a limited form of homomorphic multiplication, in 
that we can multiply an encrypted message by a plaintext. It is 
done as follows: 𝐸𝑛𝑐(𝑚/)ST = 𝐸𝑛𝑐(𝑚/𝑚R).  

3.2   Protocol 
The main algorithm is described in Algorithm 1; it can be roughly 
divided into 4 steps: 

1.   The third party generates the keys for the Paillier 
cryptosystem and propagates the public key to all 
parties 

2.   Each party calculates its local feature selection vector 
via Lasso, the overall feature selection vector is then 
calculated via a secure mode protocol (Algorithm 2). 
The secure mode protocol retains all features that have 
an overall inclusion probability greater than ½. The 
calculated mode vector is then propagated to the 
different parties without leaking any information about 
individual feature selection vectors. 

Algorithm 1. Main algorithm 
 

Initialization 

1: Input                    

  𝑛, 𝑝, 𝑘, {𝑆/, … , 𝑆:}, {(𝑋/, 𝑌/); … ; (𝑋:, 𝑌:)}, {𝑛/,… , 𝑛:} # 
𝑛 is the total sample size, 𝑝 is the number of features, 𝑘 is 
the number of sites, {𝑆/,… , 𝑆:} are the different sites, 
𝑋%, 𝑌% represent the data set held by site 𝑖, and 𝑛% is the 
sample size at site 𝑖. 

 

Third party  

2: Propagates a public encryption key to all sites 

Each party calculates 

 

3: 𝛾% ∈ {0,1}; # the feature inclusion model via lasso  

All parties calculate 

4: 𝛾 = 𝑚𝑜𝑑𝑒(𝛾% , 𝑖 ∈ {1, … , 𝑘}) via Secure mode protocol 

Each party calculates 

5: 𝛽% = (𝑋%3𝑋%)W/𝑋%3𝑌%# the estimated coefficients for 
features 𝛾 

Each party calculates 

6: 𝐸𝑛𝑐(X
=

:
)  

All parties calculate 

7: 𝐸𝑛𝑐(𝛽) = 𝐸𝑛𝑐 Y∑ X=

:
:
%[/ \ = ∏ 𝐸𝑛𝑐(X

=

:
:
%[/ )     

#Calculation is done sequentially: party 1 calculates 

𝐸𝑛𝑐(X
^

:
) and sends it to party 2, party 2 calculates 

𝐸𝑛𝑐 YX
^

:
\ ∗ 𝐸𝑛𝑐(X

T

:
) and sends it to party 3, and so on … 

8: 𝐸𝑛𝑐(𝛽) is sent to the third party 

 

Third party 

9: Decrypts and propagates 𝛽	
  



3.   After receiving the overall feature selection vector, each 
party calculates the coefficients of the selected features 
separately. The encrypted average of these features is 
then securely computed using Paillier encryption as 
follows: each site 𝑖 calculates  𝐸𝑛𝑐(X

=

S
), then all sites 

calculate 𝐸𝑛𝑐 X=

:
:
%[/ = 𝐸𝑛𝑐(X

=

:
:
%[/ ) sequentially. 

The encrypted result is sent to the third party. 
4.   The third party decrypts and propagates the estimated 

feature coefficients. 

The secure mode protocol is described in Algorithm 2, it 
computes the mode of the 𝑘 feature inclusion vectors without 
revealing any information about the different sites (in other words, 
the inclusion information for the sites is kept confidential, only 
the mode is revealed to the different parties).  

 

Algorithm 2. Secure mode protocol 

 

If 𝜕 = 𝛾%:
%[/  is the sum of the feature inclusion vectors of the 

different parties, then  𝑤 = 𝜕 − { :
R
}; would indicate whether the 

feature should be included or not through its sign: if w is positive 
at position 𝑗 (𝑤 𝑗 > 0) this implies that the majority of sites had 
1 at the 	
  𝑗th position in their feature inclusion model, and thus the 
overall feature inclusion vector should be set as 𝛾 𝑗 = 1, 
otherwise it is set to 0. Thus, in order to calculate the feature 
inclusion vector, it is enough to securely calculate 𝑤. However, as 
𝑤 presents aggregated information about the sites (the number of 
sites that include every feature), our secure protocol will instead 
calculate an obfuscated version: 𝑤𝑥, where 𝑥 is a positive integer 
whose factors are distributed among the different parties: 𝑥 =

𝑥%:
%[/ , where 𝑥% is held by site 𝑖	
   and is kept confidential. As 𝑥 is 

positive, 𝑤𝑥 would still indicate whether the feature should be 
included or not through its sign. The protocol is explained in 
detail in Algorithm2. 

3.3   Protocol Modification 
It is important to note that the algorithm can be slightly changed 
to operate without the need of a third party. In such case, a 
threshold Paillier cryptosystem can replace the third party [9]–
[11]. In a threshold cryptosystem, the secret decryption key is 
distributed among a preset number, 𝑡, of entities (the data holders 
in our case). For the decryption to occur, each of the 𝑡 entities has 
to perform its share of the decryption. The decryption shares are 
then combined to obtain the final result. This way, the protocol 
will be robust against the corruption of at most 𝑡 − 1 entities [12] 
(note that the current version works under the assumptions that all 
sites are non-corruptible, because if one party is corrupted, then 
they can communicate with the third party to decrypt intermediate 
results). 

The threshold Paillier cryptosystem can be set up through a 
trusted party that will generate and distribute the public and secret 
keys. The trusted party can then erase all information pertaining to 
the key generation. If no such trusted party is available, the keys 
can be generated using secure multiparty computations [13]. 
Although this requires more computation overhead from each data 
owner, it only has to be done once. As such, it is an acceptable 
tradeoff. 

4.   COMPLEXITY 
In this section, we evaluate the additional computational burden 
of the algorithm incurred to achieve security. This burden is 
evaluated on each participating party. The complexity will be 
expressed in terms of the number of messages and in terms of 
basic functional units. These units are homomorphic 
multiplication (HM) and homomorphic addition (HA). Assuming 
an instance of Paillier modulus 𝑚R [8], HA is equivalent to 
multiplying two integers modulo 𝑚R, and HM is equivalent to 
computing an exponentiation modulo 𝑚R where the exponent is at 
most 𝑚. As such, an HM operation is equivalent to log	
  (𝑚) HA. 
With these considerations, it follows that a message encryption is 
dominated by 2HM, while a decryption is dominated by HM. 

The algorithm performs 2 encryptions per party (step 6 of main 
algorithm and step 4 of secure protocol), and one homomorphic 
multiplication per party (step 6 in secure protocol). This amount 
to a total of 5 HM per party. On the other hand, the number of 
message passing per party is constant, amounting to 5 to 7 
messages. 

Initialization 

1:  𝜃 = {/
R
}; 

 

Each party 𝒊 

2: Generates a random positive integer 𝑥% # denote by 𝑥 =
∏ 𝑥%:
%[/  

Each party calculates 

3: 𝑤% = (𝛾% − 𝜃)  

4: 𝐸𝑛𝑐k𝑤%l  

 

All parties calculate 

5: 𝐸𝑛𝑐(𝑤) = ∑ 𝐸𝑛𝑐(𝑤%):
%[/  # note if 𝑤 is positive at 

position 𝑗 (𝑤[𝑗] > 0) this implies that the majority of sites 
had 1 at the 	
  𝑗 position in their feature inclusion model 

Sequentially the parties calculate 

6: 𝐸𝑛𝑐(𝑤𝑥) = {𝐸𝑛𝑐(𝑤[1])o,… , 𝐸𝑛𝑐(𝑤[𝑝])o} # party1 
calculates 𝐸𝑛𝑐(𝑤𝑥/) = {𝐸𝑛𝑐(𝑤[1])o^ ,… , 𝐸𝑛𝑐(𝑤[𝑝])o^} 
and sends it to party2,  party 2 calculates 𝐸𝑛𝑐(𝑤𝑥/𝑥R) = 
{𝐸𝑛𝑐(𝑤𝑥/)oT, … , 𝐸𝑛𝑐(𝑤𝑥/)oT} and so on. 

7: 𝐸𝑛𝑐(𝑤𝑥) is sent to third party 

 

Third party 

8: Decrypts 𝐸𝑛𝑐(𝑤𝑥)  

9: Propagates 𝑤𝑥 

Each site  

10: Calculate γ as follows q
γ[j] = 1	
  if	
  W[j] > 0
γ[j] = 0	
  otherwise  	
  



Prior secure linear regression algorithms bear much higher 
computational burdens on the participants [7], [12], [14]–[16]. 
The best algorithm [12] requires 𝑂(𝑘 ;

T

R
+ ;|

}
) messages per party 

and 𝑂(;
~

�
) HM operations per party. 

5.   DISCUSSION 
Algorithm consistency for regression or classification is a well-
studied property in the field of statistical learning. It gives a 
theoretical guarantee that an algorithm converges to a optimal 
algorithm when the number of training samples becomes very 
large. In practical situations, the number of samples is not that 
large and therefore the (theoretical) consistency property is not of 
critical importance, what’s more critical is the validation of the 
proposed algorithms on multiple diverse datasets as it provides 
confidence in their performances on real datasets and under 
different settings.  

In general, both consistency and good performance on 
experimental datasets are well-desired properties for regression 
algorithms. The algorithm message (that was used to derive our 
algorithm) was tried in various experiments using multiple 
datasets in [5], and it showed good consistency and good 
performance. Nonetheless, in what follows, we discuss the 
required assumptions to ensure the theoretical property of 
consistency. There are four assumptions for the consistency of the 
selection algorithm [5]: 

•   A.1 Consistency condition for estimation: This 
condition is usually required for high dimensional 
model regression.  

•   A.2 Conditions on model parameters. It imposes a 
restriction on model noise, parameter estimate and the 
number of selected features. 

•   A.3 (Lasso) The strong irrepresentable condition. 
•   A.4 The sparse Riesz condition. 

Where A.2 is a basic assumption that is required for high-
dimensional model estimation [17], [18], A.3 and A.4 are the 
specific conditions for model selection consistency in Lasso.  

In [5] a theoretical analysis of assumptions A.1, A.3 and A.4 is 
proposed. This analysis indicates that it is possible to ensure the 
validity of these three assumptions under the assumption that 𝑛 ≥
𝑘 ∗ (𝐴 + 𝑘𝐶) where 𝑛 is the total number of samples; 𝑘 is the 
number of sites and the number of samples per site is assumed to 
be equal (𝑛% =

1
:
). 𝐴 and 𝐵 are complex terms that depend on the 

training data and model parameters. The previous equation 
guarantees that the three assumptions are valid in probability 
provided that 𝑘 and 𝑛 are chosen such that 𝑘 = 𝑂(𝑛).  

The experimental results in the paper that introduced message 
algorithm are obtained for both synthetic data and real-world data 
[5]. For the synthetic data, the chosen values for 𝑘 is 200 and the 
sample size 𝑛 is varied between 2000 and 10000. The number of 
features 𝑝 is 10000, 𝑘 =50 and 𝑛 varied between 2000 and 10000. 
For the real-world data (household electric power consumption 
dataset), the sample size is defined as 𝑛 =2 million for training 
and 𝑛 =75259 for testing. The number of sites is 𝑘 = 200. For the 
second real-world data (HIGGS classification dataset), 𝑛 =11 
million and 𝑘 =1000. For the previously described experimental 
settings, the median selection algorithm showed very good results.   
Table 1 summarizes the values of 𝑛 and 𝑘 chosen in [5]. 

 

 
Table 1. Choices of sample sizes (𝒏) and number of sites (𝒌) as 

in [5]. 

Experimental data Number of 
samples (𝑛) 

Number of sites 
(𝑘) 

Synthetic 2000-10000 50,200 

household electric 
power 

consumption 
75259, 2 millions 200 

HIGGS 
classification 11 millions 1000 

 

In summary, the previous experimental results showed that a ratio 
between the number of samples and sites of about 50 might ensure 
the nice consistency property.  

6.   FUTURE WORK 
As future work, we plan to investigate the optimal choice of the 
number of sites as a function of the number of samples to 
guarantee the trade-off between accurate regression and efficient 
computation. The consistency assumption gives an inequality 
condition between the number of sites and samples. We plan to 
look deeper into this relation and validate the theoretical findings 
using experimental data. 

We also plan to test our algorithm on real data sets and compare it 
(i) to existing secure computation protocols, and (ii) to the 
ordinary Lasso technique (applied on the combined dataset) in 
terms of both accuracy and performance. 

Additionally, we plan to extend our method to other estimators 
such as principal component analysis. This may require designing 
new secure protocols for dealing with intermediate statistical 
calculations among the different sites, analogous to the presented 
secure mode protocol. 
 

7.   REFERENCES 
[1] Y. Erlich and A. Narayanan, “Routes for breaching and 

protecting genetic privacy,” Nat. Rev. Genet., vol. 15, no. 
6, pp. 409–421, 2014. 

[2] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. 
Gunter, J.-P. Hubaux, B. A. Malin, and X. Wang, “Privacy 
in the genomic era,” ACM Comput. Surv. CSUR, vol. 48, 
no. 1, p. 6, 2015. 

[3] E. Check Hayden, “Researchers wrestle with a privacy 
problem,” Nature, vol. 525, no. 7570, pp. 440–442, Sep. 
2015. 

[4] D. C. Montgomery, E. A. Peck, and G. G. Vining, 
Introduction to linear regression analysis, vol. 821. John 
Wiley & Sons, 2012. 

[5] X. Wang, P. Peng, and D. B. Dunson, “Median Selection 
Subset Aggregation for Parallel Inference,” in Advances in 
Neural Information Processing Systems, 2014, pp. 2195–
2203. 

[6] R. Tibshirani, “Regression shrinkage and selection via the 
lasso,” J. R. Stat. Soc. Ser. B Methodol., pp. 267–288, 
1996. 



[7] K. El Emam, S. Samet, L. Arbuckle, R. Tamblyn, C. Earle, 
and M. Kantarcioglu, “A secure distributed logistic 
regression protocol for the detection of rare adverse drug 
events,” J. Am. Med. Inform. Assoc. JAMIA, vol. 20, no. 3, 
pp. 453–461, May 2013. 

[8] P. Paillier, “Public-key cryptosystems based on composite 
degree residuosity classes,” in Advances in cryptology—
EUROCRYPT’99, 1999, pp. 223–238. 

[9] Y. Desmedt, “Threshold cryptosystems,” in Advances in 
Cryptology — AUSCRYPT ’92, J. Seberry and Y. Zheng, 
Eds. Springer Berlin Heidelberg, 1993, pp. 1–14. 

[10] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft, 
“Efficient rsa key generation and threshold paillier in the 
two-party setting,” in Topics in Cryptology–CT-RSA 2012, 
Springer, 2012, pp. 313–331. 

[11] R. Canetti and S. Goldwasser, “An efficient threshold 
public key cryptosystem secure against adaptive chosen 
ciphertext attack,” in Advances in Cryptology—
EUROCRYPT’99, 1999, pp. 90–106. 

[12] F. Dankar, “Privacy Preserving Linear Regression on 
Distributed Databases,” Trans. Data Priv., vol. 8, pp. 3–28, 
2015. 

[13] T. Nishide and K. Sakurai, “Distributed paillier 
cryptosystem without trusted dealer,” in Information 
Security Applications, Springer, 2011, pp. 44–60. 

[14] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple 
linear regression based on homomorphic encryption,” J. 
Off. Stat., vol. 27, no. 4, p. 669, 2011. 

[15] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. 
Boneh, and N. Taft, “Privacy-Preserving Ridge Regression 
on Hundreds of Millions of Records,” 2012. 

[16] F. Dankar, R. Brien, C. Adams, and S. Matwin, “Secure 
Multi-Party linear Regression.,” in EDBT/ICDT 
Workshops, 2014, pp. 406–414. 

[17] P. Zhao and B. Yu, “On model selection consistency of 
Lasso,” J. Mach. Learn. Res., vol. 7, pp. 2541–2563, 2006. 

[18] Y. Kim, S. Kwon, and H. Choi, “Consistent model 
selection criteria on high dimensions,” J. Mach. Learn. 
Res., vol. 13, no. 1, pp. 1037–1057, 2012. 

 


