

The Data Management Entity: A Simple Abstraction to
Facilitate Big Data Systems Interoperability

Damianos Chatziantoniou Florents Tselai
Department of Management Science & Technology

Athens University of Economics and Business (AUEB)

{damianos,tselai}@dmst.aueb.gr

ABSTRACT
Today's big data era is described by intense variety in data

management systems, query languages and programming

paradigms. Each system targets well a specific application area,

reinforcing the belief that the era of one-size fits all has gone.

Interoperability, systems' connectivity and high-level data models

become once again the core of research initiatives. In this paper

we present our vision for a layered architecture to support

interoperability among different data management systems,

generalized under the term data management entities (DMEs).

DMEs range from JVMs running java programs to Hadoop

systems employing complex MapReduce jobs to traditional

RDBMS running SQL queries to stream engines and CEP scripts.

The top layer consists of a universe of DMEs, communicating

through a well defined http-like protocol: a DME transparently

invokes another DME's data manipulation task, regardless task's

nature. Communicating DMEs share/operate on a shared data

object, a key-value set (KVS) - just a set of key-value pairs -

which exists in the layer below and is referenced through a unique

(internet-wide) address via a well-defined API. This layer serves

as the transient common memory space for communicating DMEs

and consists of globally addressable KVSs, organized in domains,

sub-domains, etc. In a way, this approach constitutes a form of

remote procedure call by reference (the KVS is the common

reference). We argue that this architecture allows the construction

of high level query languages and cost-based distributed query

processing engines, involving completely heterogeneous data

manipulation tasks. For example, we show that MapReduce

evaluation algorithm and distributed relational query processing

are just instances of the proposed architecture. We also claim that

it can easily facilitate the end-to-end processing in big data

applications, an established goal in the research agenda set by the

Beckman report.

CCS Concepts

• Information systems➝Information integration

1. INTRODUCTION
Currently, most big data deployments follow a highly ad hoc, non-

disciplined approach, entailing a high degree of data replication

and heterogeneity, both in terms of storing options and analysis

tasks. The system administrator has to choose one (or more) data

management systems from a plethora of alternatives and facilitate

the enterprise’s reporting needs utilizing a wide range of query

languages and analysis techniques. Data management systems

involve traditional RDBMSs, cluster of Hadoops, NoSQL and

others. Reporting and analysis tasks include plain SQL,

spreadsheet scripts, MapReduce jobs, R/Java/Python programs,

complex event processing queries, machine learning algorithms,

and others. A not-so-new challenge resurfaces: interoperability.

How can these systems interact? How can these systems

interoperate? For example, how can an excel spreadsheet use the

data produced by a MapReduce job in a standardized way, using a

well-defined protocol?

This necessity has been identified by the current authors in [2] and

more recently by the Beckman report [1] and Polystores [3].

Beckman report recognized the problems the "diversity in the data

management landscape" creates and asserted "the need for

coexistence of multiple Big Data systems and analysis platforms

is certain" and that in order "to support Big Data queries that span

systems, platforms will need to be integrated and federated."

ODBC, a well-defined API between applications and RDBMs

greatly contributed to the growth of relational systems. Prior to

ODBC, applications had to rely on several, language- and DBMS-

specific, APIs. Standardization of data connectivity greatly helped

innovation and productivity, allowing developers to focus on the

core of their ideas. What we need today is a similar breakthrough,

with similar rewards.

We argue that a standardized and protocol-based approach can

significantly facilitate the unified dissemination, federation and

analysis of data. Towards this direction a new connectivity

protocol between data consumers and data producers should

observe the following generic properties:

Execution transparency: the data consumer should be

completely unaware of the data producer's query language

specifics. It should only know the signature of the data

manipulation task at the data producer. In addition, the nature of

the task should be completely transparent to the data consumer.

This includes tasks involving stream data.

Schemaless and simple data representations: the structure and

representation of the exchanged data objects should be as simple

as possible. In addition, it should not encapsulate schema

information in any way, either regarding the data consumer or the

data producer.

Composability/Symmetricity: a data consumer should be able to

participate as a data producer in a different connection instance

and vice versa. I.e., whatever system manipulates/manages data

should be able to play the role of the data consumer and data

producer at the same time, interchangeably. This composability

principle would allow the definition of analysis workflows, an

essential property in facilitating the data analysis pipeline [1].

ODBC is asymmetric in this sense.

2. MOTIVATION
As a simple motivational example, consider two data management

systems, a RDBMS (system A) used by some application that

(c) 2016, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2016 Joint Conference (March 15,

2016, Bordeaux, France) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

maintains data for a subset of facebook users and a remotely

residing Hadoop (system B) that stores detailed data for all

facebook users. Through a MapReduce (M-R) job M at system B,

one can compute the average sentiment of the posts of each

facebook user during the previous week. System A would like to

use the output of M - only for those facebook users it manages - in

its daily routines. With today's technology, a Hadoop job based on

M has to be developed that reads in the user ids from system A

and writes the results back to system A as a new column. For this

to happen, custom connectors implementing hadoop's input/output

specifications have to be developed, i.e. developers must

implement hadoop's InputFormat and OutputFormat java

interfaces for database access and pass the appropriate metadata

(database url + port, table name, column name etc.) This approach

has several disadvantages: a) for each data manipulation task

aiming to use M of system B, custom-connectors and API

implementations should be developed - an effort that involves

significant human intervention, and b) M has to be aware of the

schematic details of system A (in case of relational systems), thus

limiting M's ability to act as an independent data producer.

However, one can think of a different approach, easy to

standardize, briefly depicted by Figure 1.

System A, using a predefined API, creates an empty set of key-

value pairs, K (Step 1). This set can be referenced with an address

(e.g. 1829), using this API. It then sends this address to B and

declares its intention to execute M-R job M, possibly with some

input parameters (Step 2). If system B agrees (as a reply) on the

address suggested (because it may suggest a different address for

the key-value set) and verifies the signature of M's invocation,

system A populates K's keys with user ids and K's values with

nulls (Step 3). Having done so, it requests system B to initiate job

execution (Step 4). From this point on, Hadoop can access K

(Step 5) to retrieve the specific keys and values for its

computation. As long as the job executes, it writes results to the

common key-value set, K (Step 6). When the job finishes, system

B notifies system A about it, by issuing a specific request to

it (Step 7). From now on system A can directly access specific

key-value pairs from K (Step 8) and incorporate them to the

native relational model. Note that system A could access K at any

time after Step 4, without waiting for Step 7. This is particularly

useful if system B represents a standing query, continuously

updating this key-value set K.

RDBMS

Id Value
1829:

Hadoop

1

2

3

4

5

6

7

8

Figure 1. Communication workflow for a simple example

This call sequence resembles the interface between applications

and RDBMSs via private buffers before the introduction of

ODBC: to read an object, the application calls the database

system, giving the object id and the address of a buffer in its

address space. The system reads the object from the disk in its

own buffer pool and then copies the object to the application's

private buffer. A similar approach takes place for writing an

object to the database. Similar sequences of this nature can also be

found in cloud-base storage system such as Cloudy [5]. In the

following Section, we provide the big picture of the proposed

framework.

3. THE BIG PICTURE
We propose a layer of addressable key-value sets to be used as a

commonly-referenced memory space for communicating data

management entities.

A key-value set (KVS) is a set of key-value pairs (ki, vi), i∈I,

such that ki ≠ kj ∀ i, j ∈ I, i ≠ j.

KVSs are simple constructs, easily understood, with no schema

information. Key-value stores can easily support the management

of KVSs, however almost any modern data management system

could do it. We explain below why a KVS is an excellent

candidate to represent shared data among communicating DMEs.

We propose a layered architecture equipped with the appropriate

protocols for intra- and inter-layer communication. The top layer

(DME-layer) consists of DMEs, interacting with each other

through a well-defined protocol (DME-to-DME protocol).

Anything that manipulates data exists in this layer. The layer

below (KVS-layer) consists of a collection of addressable key-

value sets, shared among communicating DMEs. This layer can

be thought of as the transient common memory space for

interacting DMEs. Another protocol is required for KVS

management by a DME (DME-to-KVS protocol). There are no

specific operators within the KVS-layer. We foresee "domains" of

KVSs, implementing their own algebras. Figure 2 presents a

description of the proposed concepts.

DME

(Data Consumer)

DME

(Data Consumer)
DME-to-DME

Communication

DME-to-KVS

Communication

Addressable KVS Space

DME-to-KVS

Communication

KVS

KVS

KVS

KVS

Figure 2. A layered architecture, DMEs and KVSs

The idea is simple: A DME (the data consumer, DC) wants to use

a data manipulation task at another DME (the data producer, DP).

This could be an SQL statement, a MapReduce job, a standing

query, a python program, etc. For that purpose, the DC should be

able to invoke a remote execution at the DP, in a similar fashion

to http or other remote procedure call protocols. The two DMEs

access a shared data structure to exchange data: the DC to provide

input to the remote execution at the DP and the DP to provide the

output to the DC. Both should be able to access this shared data

structure at any time during the connection.

We foresee a specific pattern for such executions: the DC

provides the DP with a set of keys and asks it to compute a value

for each key. This pattern becomes commonplace in systems,

queries and algorithms. Most modern applications simply produce

a value that is associated to an ID (the key): a sentiment value of a

document ID, the location of a facebook user, the average price of

a 10-minute sliding window of a stock ID, the most recent

reported value of energy consumption by a smart meter, etc. As a

result, a key-value set seems quite appropriate for that shared data

object.

Currently there are efforts pointing towards a separate addressable

memory layer, such as RAMCloud [7] and Piccolo [8], which

both share the notion of in-memory addressable “tables”

supporting key-value operations. Clarifications, challenges and

opportunities of the proposed architecture are presented below.

4. CHALLENGES & OPPORTUNITIES
As mentioned earlier, "we propose a layer of addressable key-

value sets to be used as a commonly-referenced memory space for

communicating data management entities." There are several

challenges and opportunities in this architecture. We start with the

challenges and then discuss how this framework can be used to

generalize, encapsulate - and leverage - distributed data

management.

4.1 Challenges
Communicating Data Management Entities. This requires a

well-defined protocol, consisting of a set of primitives to

orchestrate the communication between the data consumer and

the data producer. The DC can use this protocol to establish a

connection with the DP, invoke an execution at the DP and

terminate the connection. The DP can notify the DC for the

completion of the execution and terminate the connection. A high

level of the basic primitives follows. The first challenge involves

a thorough design of this protocol, regarding primitives'

signatures, replies, call sequence, security concerns, and other

issues.

-init(): this primitive is used to establish a connection between

two DMEs and is issued by the DC. It should contain as

parameters the address of the KVS to be shared and the invocation

(name + arguments) of the program/query at the DP's side. We

assume that some negotiation may take place during this phase.

For example, the DP may propose a different address for the

shared key-value set. This would be the case if DP's invocation is

a standing query, already running, continuously updating a

different KVS; or the DP has cached results for the specific

execution in another KVS; or the DP already natively supports

KVSs, and asks the DC to directly store data to one of its local

KVS for performance reasons. Additional parameters for this

primitive may include a key to encrypt/decrypt the contents of the

KVS or other connection-related aspects.

-execute(): this primitive is used to actually initiate the remote

execution at the DP, after connection between DMEs has been

established. It is issued by the DC. It is important to keep init and

execute primitives separate, especially when there are time

constraints on the remote execution (e.g. in case of stream data.)

- notify_complete(): this primitive is issued by the DP and

indicates the completion of the remote execution. This is required

because access to the shared KVS is asynchronous by the DC and

the DP, so the DC should be notified for the completion of the

task.

-terminate(): this primitive can be issued by either DME and

terminate the connection.

Commonly-Referenced Memory Space. This implies the

presence of a well-defined API so a DME can create and manage

a KVS. While CRUDE-like operations such as create, read,

update and delete methods are clearly understood, a discussion is

required for the exact format and behavior of each. In particular,

the read operation should allow some filtering of the KVS, either

through a simple predicate over keys and values or by providing a

set of keys to be selected. Our first implementation [2] allows

filtering conditions over just the key, but in many industrial

applications complex expressions involving values are not

uncommon. Other issues that have to be addressed are: what if a

DME does not delete a KVS that has created? Should the

corresponding KVS management system implement garbage

collection? Who is the "owner" of a KVS? What is the "lifetime"

of a created KVS? Which DMEs are allowed to access this KVS

and in what mode (read/write)? For example consider Webdis [9],

an http interface for Redis that provides some insights on these

issues. A similar kind of middleware between data producers and

consumers in the form of publish-subscribe is suggested in [4]. A

commonly-referenced memory layer is also proposed in Tachyon

system [6], constrained however within a cluster.

A Layer of Addressable Key-Value Sets. This is a conceptual

layer, consisting of systems that provide KVS management

according to the proposed framework. To do so, it should (i)

implement the DME-to-KVS API mentioned above, for a variety

of DMEs, and (ii) allow access to a KVS through an address,

internet-wide, following some standardized addressing scheme.

There is no restriction on what such a system could be. It could

store KVSs anywhere in the memory hierarchy: main-memory,

distributed-cache, disk, etc. It could organize KVSs to domains,

subdomains, etc. It could be one of the DMEs in a DME-to-DME

connection, i.e. one of the DMEs could also play the role of the

KVS manager. Such a system could guarantee (or not) fault-

tolerance, availability, etc. In addition, it should provide answers

on how it handles ownership, lifetime and access control of KVSs.

Finally, a standardized addressing scheme should be designed in

such a manner that captures location hierarchies (e.g. domains,

sub-domains, etc.) and identifies the position in the memory

hierarchy of a KVS. This information could be useful in a

generalized query processor, discussed in the next Section.

Suitability for Stream Engines. Α layered architecture like this,

essentially introduces a referencing layer (i.e. indirection)

between communicating DMEs. This is particularly appropriate

for collaborating applications involving stream data: a stream

management DME can continuously produce aggregated data

(e.g. the average stock price over a sliding window of 10

minutes), consumed by a traditional DME, such as a RDBMS.

The asynchronous access to the shared KVS, allows the data

consumer to retrieve data whenever it deems appropriate (e.g.

[7]). In addition, the shared KVS may be located near - or within -

the stream processing DME (the data producer).

Transactionality Issues. A potentially challenging aspect in the

proposed architecture is the issue of transactional consistency at

the KVS layer; especially in the case of complex workflows

where multiple DMEs constantly request execution from another.

That is, in scenarios of multiple DMEs using the same KVS, one

could argue that DMEs may have an inconsistent view (different

versions) of the KVS layer. For example, consider two separate

DME-to-DME connections with the same data consumer, sharing

a common KVS - in other words both data producers populate the

same KVS. As another example, if a DME is using a remote

address to store a continuously running query that returns a huge

set of key-value pairs, is that large result updated atomically or

incrementally? If some data feeds are slow and some are fast, one

might get an inconsistent (nonserializable) view of the KVS layer.

While these problems already exist now, what (if anything) can

the framework do to manage transactional requirements across

systems? For instance, when a DME creates a KVS (and thus

becomes "owner" of the KVS), it could also specify the required

isolation level for that KVS.

4.2 Opportunities
The proposed architecture can be used to generalize various

existing distributed data management frameworks, such as

distributed relational query processors, MapReduce evaluation

algorithm and column-oriented processing engines. However,

given the diversity in DMEs, it opens up a wide range of

interesting possibilities, both in terms of infrastructures and

optimization opportunities.

For example, in the case of distributed relational query

processing, each node would act as a DME. The node receiving

user's query would act as the master DME (the data consumer),

establishing connections with all the participating nodes (the data

producers), sending a node-specific query (the remote execution)

to each of them. For each connection, the data consumer would

specify a KVS address for the data consumer to place the results,

or let the data producers to specify a KVS address. The KVSs

would keep the results of the node-specific query (e.g. row-id as

the key and the record's contents as the value), which would be

collected by the master DME, assembled, and provided to the

user. In other words, with the use of the proposed architecture and

accompanying protocols, one can build a distributed relational

query processor - possibly beyond cluster boundaries. In addition,

KVSs could reside somewhere "between" the data consumer and

the data producer, not necessarily in disk.

The same holds for the traditional MapReduce evaluation

algorithm: it could be represented as a collection of DMEs

(Map/Reduce tasks), exchanging KVSs in a specific sequence,

orchestrated by calls of the DME-to-DME protocol. One should

also note that in the case of traditional Hadoop, HDFS nodes

should be homogenous (i.e. running JVM instances). In our

abstraction however, this is not the case; a node can be generally a

DME (for example a JVM instance or a RDBMS) as long as it

adheres to the protocol's primitives.

Going one step further, given: (a) the generality of DME's

definition, (b) the flexibility of the KVS to handle both structured

and unstructured data, (c) the ability to represent with the KVS the

input, output or both of the collaborating process, and (d) the

capability to position the KVS close to either the data consumer or

data producer and anywhere in the memory hierarchy, one can

think of truly generalized, cost-based, distributed query

processors, workflow-like, involving heterogeneous systems, data

formats, tasks and application profiles.

In another direction, one can think of scenarios where a KVSs'

management system implements a set of operators to manipulate

KVSs and provides some basic functionality to DMEs through

these operators. Examples include filtering, outer-joins and

intersection. A DME could map an operator in its native model to

one of the KVS's management system's operators for performance

How to specify this in the DME-to-KVS protocol is a challenge.

End-to-end processing and understanding of data is another

crucial database research challenge [1]. The proposed architecture

can significantly facilitate all data analysis tasks across the raw-

data-to-knowledge data pipeline. Indeed, one can argue that each

one of these steps is performed by a DME acting as a node of a

unified data supply chain. Currently those nodes collaborate in an

ad-hoc manner based on system or language-specific APIs and

bindings. Once however communication between DMEs is

standardized the whole process becomes truly seamless.

Developers can focus on highly-specialized data tools

implementing the appropriate API and need not to worry for

specific bindings. Data scientists can experiment with novel

combinations of those tools and systems leveraging the symmetry

property of the DME-to-DME communication protocol. It is also

important to note that the data pipeline is far from straightforward,

it is rather an iterative process where an initial dataset can have

multiple versions across the pipeline (for example different

methods to handle missing data). Instead of re-computing every

possible transformation on an initial dataset the data scientist can

cache the results of each transformation at the KVS layer

(different versions) and access different versions in subsequent

steps of the pipeline. Furthermore, one can think of scenarios

where multiple data supply chains share the common (global)

KVS layer. This fact allows the definition of synergistic data

flows and economies of scale in data management across systems

and organizations. Of course such a “globalization” in the data

economy poses new challenges in the area of privacy and data

ownership at the KVS layer.

5. DISCUSSION AND CONCLUSIONS
In this paper we presented a layered architecture to data

interoperability based on a ubiquitous universe of remotely

accessibly KVSs. In essence, with the proposed architecture we

completely decouple the computation and memory layer of any

data management scenario. By doing so we are able to generalize,

abstract and effectively encapsulate all the key components of

distributed data computation, storage and management.

6. ACKNOWLEDGMENTS
The authors would like to thank Ted Johnson, Ken Ross and

Diomidis Spinellis for their valuable comments during the

preparation of this paper.

7. REFERENCES
[1] Abadi, D. et al. The Beckman Report on Database Research.

In ACM SIGMOD Record, 43(3), 61-70, 2014

[2] Chatziantoniou, D., and Tselai, F. Introducing Data

Connectivity in a Big Data Web. In DanaC Workshop

SIGMOD, 2014

[3] Duggan, J. et al. The BigDAWG Polystore System. In ACM

Sigmod Record, 44(3), 2015

(http://users.eecs.northwestern.edu/~jennie/research/bigdawg

_record.pdf).

[4] Joshi, R. Data-Oriented Architecture: A Loosely-Coupled

Real-Time SOA. Real-Time Innovations, Inc, (TR), 2007

[5] Kossmann, D., Kraska, T., Loesing, S., Merkli, S., Mittal, R.,

and Pfaffhauser, F. Cloudy: A modular cloud storage system.

In PVLDB, 3(1-2), 2010

[6] Li, H., Ghodsi, A. , Zaharia, M., Shenker, S., and Stoica, I.

Tachyon: Reliable, Memory Speed Storage for Cluster

Computing Frameworks. In SoCC, 2014, 6:1-6:15

[7] Ousterhout, J. et al. The case for RAMClouds: scalable high-

performance storage entirely in DRAM. SIGOPS Op. Sys.

Rev., 43:92–105, 2010

[8] R. Power and J. Li. Piccolo: Building fast, distributed

programs with partitioned tables. In OSDI, 2010

[9] Webdis http://webd.is

