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ABSTRACT 
Today's big data era is described by intense variety in data 

management systems, query languages and programming 

paradigms. Each system targets well a specific application area, 

reinforcing the belief  that the era of one-size fits all has gone. 

Interoperability, systems' connectivity and high-level data models 

become once again the core of research initiatives. In this paper 

we present our vision for a layered architecture to support  

interoperability among different data management systems, 

generalized under the term data management entities (DMEs). 

DMEs range from JVMs running java programs to Hadoop 

systems employing complex MapReduce jobs to traditional 

RDBMS running SQL queries to stream engines and CEP scripts. 

The top layer consists of a universe of DMEs, communicating 

through a well defined http-like protocol: a DME transparently 

invokes another DME's  data manipulation task, regardless task's 

nature. Communicating DMEs share/operate on a shared data 

object, a key-value set (KVS) -  just a set of key-value pairs - 

which exists in the layer below and is referenced through a unique 

(internet-wide) address via a well-defined API. This layer serves 

as the transient common memory space for communicating DMEs 

and consists of globally addressable KVSs, organized in domains, 

sub-domains, etc. In a way, this approach constitutes a form of 

remote procedure call by reference (the KVS is the common 

reference). We argue that this architecture allows the construction 

of  high level query languages and cost-based distributed query 

processing engines, involving completely heterogeneous data 

manipulation tasks. For example, we show that MapReduce 

evaluation algorithm and distributed relational query processing 

are just instances of the proposed architecture. We also claim that 

it can easily facilitate the end-to-end processing in big data 

applications, an established goal in the research agenda set by the 

Beckman report. 

CCS Concepts 

• Information systems➝Information integration 

1. INTRODUCTION 
Currently, most big data deployments follow a highly ad hoc, non-

disciplined approach, entailing a high degree of data replication 

and heterogeneity, both in terms of storing options and analysis 

tasks. The system administrator has to choose one (or more) data 

management systems from a plethora of alternatives and facilitate 

the enterprise’s reporting needs utilizing a wide range of query 

languages and analysis techniques. Data management systems 

involve traditional RDBMSs, cluster of Hadoops, NoSQL and 

others. Reporting and analysis tasks include plain SQL, 

spreadsheet scripts, MapReduce jobs, R/Java/Python programs, 

complex event processing queries, machine learning algorithms, 

and others. A not-so-new challenge resurfaces: interoperability. 

How can these systems interact? How can these systems 

interoperate? For example, how can an excel spreadsheet use the 

data produced by a MapReduce job in a standardized way, using a 

well-defined protocol? 

This necessity has been identified by the current authors in [2] and 

more recently by the Beckman report [1] and Polystores [3]. 

Beckman report recognized the problems the "diversity in the data 

management landscape" creates and asserted "the need for 

coexistence of multiple Big Data systems and analysis platforms 

is certain" and that in order "to support Big Data queries that span 

systems, platforms will need to be integrated and federated." 

ODBC, a well-defined API between applications and RDBMs 

greatly contributed to the growth of relational systems. Prior to 

ODBC, applications had to rely on several, language- and DBMS- 

specific, APIs. Standardization of data connectivity greatly helped 

innovation and productivity, allowing developers to focus on the 

core of their ideas. What we need today is a similar breakthrough, 

with similar rewards.  

We argue that a standardized and protocol-based approach can 

significantly facilitate the unified dissemination, federation and 

analysis of data. Towards this direction a new connectivity 

protocol between data consumers and data producers should 

observe the following generic properties: 

Execution transparency: the data consumer should be 

completely unaware of the data producer's query language 

specifics. It should only know the signature of the data 

manipulation task at the data producer. In addition, the nature of 

the task should be completely transparent to the data consumer. 

This includes tasks involving stream data. 

Schemaless and simple data representations: the structure and 

representation of the exchanged data objects should be as simple 

as possible. In addition, it should not encapsulate schema 

information in any way, either regarding the data consumer or the 

data producer. 

Composability/Symmetricity: a data consumer should be able to 

participate as a data producer in a different connection instance 

and vice versa. I.e., whatever system  manipulates/manages data 

should be able to play the role of the data consumer and data 

producer at the same time, interchangeably. This composability 

principle would allow the definition of analysis workflows, an 

essential property in facilitating the data analysis pipeline [1]. 

ODBC is asymmetric in this sense. 

2. MOTIVATION 
As a simple motivational example, consider two data management 

systems, a RDBMS (system A) used by some application that 
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maintains data for a subset of facebook users and a remotely 

residing Hadoop (system B) that stores detailed data for all 

facebook users. Through a MapReduce (M-R) job M at system B, 

one can compute the average sentiment of the posts of each 

facebook user during the previous week. System A would like to 

use the output of M - only for those facebook users it manages - in 

its daily routines. With today's technology, a Hadoop job based on 

M has to be developed that reads in the user ids from system A 

and writes the results back to system A as a new column. For this 

to happen, custom connectors implementing hadoop's input/output 

specifications have to be developed, i.e. developers must 

implement hadoop's InputFormat and OutputFormat java 

interfaces for database access and pass the appropriate metadata 

(database url + port, table name, column name etc.) This approach 

has several disadvantages: a) for each data manipulation task 

aiming to use M of system B, custom-connectors and API 

implementations should be developed - an effort that involves 

significant human intervention, and b) M has to be aware of the 

schematic details of system A (in case of relational systems), thus 

limiting M's ability to act as an independent data producer. 

However, one can think of a different approach, easy to 

standardize, briefly depicted by Figure 1.  

System A, using a predefined API, creates an empty set of key-

value pairs, K (Step 1). This set can be referenced with an address 

(e.g. 1829), using this API. It then sends this address to B and 

declares its intention to execute M-R job M, possibly with some 

input parameters (Step 2). If system B agrees (as a reply) on the 

address suggested (because it may suggest a different address for 

the key-value set) and verifies the signature of M's invocation, 

system A populates K's keys with user ids and K's values with 

nulls (Step 3). Having done so, it requests system B to initiate job 

execution (Step 4).  From this point on, Hadoop can access K 

(Step 5) to retrieve the specific keys and values for its 

computation. As long as the job executes, it writes results to the 

common key-value set, K (Step 6). When the job finishes, system 

B notifies system A about it, by issuing a specific request to 

it (Step 7). From now on system A can directly access specific 

key-value pairs from K (Step 8) and incorporate them to the 

native relational model. Note that system A could access K at any 

time after Step 4, without waiting for Step 7. This is particularly 

useful if system B represents a standing query, continuously 

updating this key-value set K.  
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Figure 1. Communication workflow for a simple example 

This call sequence resembles the interface between applications 

and RDBMSs via private buffers before the introduction of 

ODBC: to read an object, the application calls the database 

system, giving the object id and the address of a buffer in its 

address space. The system reads the object from the disk in its 

own buffer pool and then copies the object to the application's 

private buffer. A similar approach takes place for writing an 

object to the database. Similar sequences of this nature can also be 

found in cloud-base storage system such as Cloudy [5]. In the 

following Section, we provide the big picture of the proposed 

framework.  

3. THE BIG PICTURE 
We propose a layer of addressable key-value sets to be used as a 

commonly-referenced memory space for communicating data 

management entities.  

A key-value set (KVS) is a set of key-value pairs  (ki, vi), i∈I, 

such that ki ≠ kj ∀ i, j ∈ I, i ≠ j. 

KVSs are simple constructs, easily understood, with no schema 

information. Key-value stores can easily support the management 

of KVSs, however almost any modern data management system 

could do it. We explain below why a KVS is an excellent 

candidate to represent shared data among communicating DMEs. 

We propose a layered architecture equipped with the appropriate 

protocols for intra- and inter-layer communication. The top layer 

(DME-layer) consists of DMEs, interacting with each other 

through a well-defined protocol (DME-to-DME protocol). 

Anything that manipulates data exists in this layer. The layer 

below (KVS-layer) consists of a collection of addressable key-

value sets, shared among communicating DMEs. This layer can 

be thought of as the transient common memory space for 

interacting DMEs. Another protocol is required for KVS 

management by a DME (DME-to-KVS protocol). There are no 

specific operators within the KVS-layer. We foresee "domains" of 

KVSs, implementing their own algebras. Figure 2 presents a 

description of the proposed concepts.  
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Figure 2. A layered architecture, DMEs and KVSs  

The idea is simple: A DME (the data consumer, DC) wants to use 

a data manipulation task at another DME (the data producer, DP). 

This could be an SQL statement, a MapReduce job, a standing 

query, a python program, etc. For that purpose, the DC should be 

able to invoke a remote execution at the DP, in a similar fashion 

to http or other remote procedure call protocols. The two DMEs 

access a shared data structure to exchange data: the DC to provide 

input to the remote execution at the DP and the DP to provide the 

output to the DC. Both should be able to access this shared data 

structure at any time during the connection.  

We foresee a specific pattern for such executions: the DC 

provides the DP with a set of keys and asks it to compute a value 

for each key. This pattern becomes commonplace in systems, 

queries and algorithms. Most modern applications simply produce 

a value that is associated to an ID (the key): a sentiment value of a 

document ID, the location of a facebook user, the average price of 



 

 

a 10-minute sliding window of a stock ID, the most recent 

reported value of energy consumption by a smart meter, etc. As a 

result, a key-value set seems quite appropriate for that shared data 

object. 

Currently there are efforts pointing towards a separate addressable 

memory layer, such as RAMCloud [7] and Piccolo [8], which 

both share the notion of in-memory addressable “tables” 

supporting key-value operations.  Clarifications, challenges and 

opportunities of the proposed architecture are presented below.  

4. CHALLENGES & OPPORTUNITIES 
As mentioned earlier, "we propose a layer of addressable key-

value sets to be used as a commonly-referenced memory space for 

communicating data management entities." There are several 

challenges and opportunities in this architecture. We start with the 

challenges and then discuss how this framework can be used to 

generalize, encapsulate - and leverage - distributed data 

management.  

4.1 Challenges  
Communicating Data Management Entities. This requires a 

well-defined protocol, consisting of a set of primitives to 

orchestrate the communication between  the data consumer and 

the data producer. The DC can use this protocol to establish a 

connection with the DP, invoke an execution at the DP and 

terminate the connection. The DP can notify the DC for the 

completion of the execution and terminate the connection. A high 

level of the basic primitives follows. The first challenge involves 

a thorough design of this protocol, regarding  primitives' 

signatures, replies, call sequence, security concerns, and other 

issues. 

-init(): this primitive is used to establish a connection between 

two DMEs and is issued by the DC. It should contain as 

parameters the address of the KVS to be shared and the invocation 

(name + arguments) of the program/query at the DP's side. We 

assume that some negotiation may take place during this phase. 

For example, the DP may propose a different address for the 

shared key-value set. This would be the case if DP's invocation is 

a standing query, already running, continuously updating a 

different KVS; or the DP has cached results for the specific 

execution in another KVS; or the DP already natively supports 

KVSs, and asks the DC to directly store data to one of its local 

KVS for performance reasons. Additional parameters for this 

primitive may include a key to encrypt/decrypt the contents of the 

KVS or other connection-related aspects. 

-execute(): this primitive is used to actually initiate the remote 

execution at the DP, after connection between DMEs has been 

established. It is issued by the DC. It is important to keep init and 

execute primitives separate, especially when there are time 

constraints on the remote execution (e.g. in case of stream data.) 

- notify_complete(): this primitive is issued by the DP and 

indicates the completion of the remote execution. This is required 

because access to the shared KVS is asynchronous by the DC and 

the DP, so the DC should be notified for the completion of the 

task. 

-terminate(): this primitive can be issued by either DME and  

terminate the connection. 

Commonly-Referenced Memory Space. This implies the 

presence of a well-defined API so a DME can create and manage 

a KVS. While CRUDE-like operations such as create, read, 

update and delete methods are clearly understood, a discussion is 

required for the exact format and behavior of each. In particular, 

the read operation should allow some filtering of the KVS, either 

through a simple predicate over keys and values or by providing a 

set of keys to be selected.  Our first implementation [2] allows 

filtering conditions over just the key, but in many industrial 

applications complex expressions  involving values are not 

uncommon. Other issues that have to be addressed are: what if a 

DME does not delete a KVS that has created? Should the 

corresponding KVS management system implement garbage 

collection? Who is the "owner" of a KVS? What is the "lifetime" 

of a created KVS? Which DMEs are allowed to access this KVS 

and in what mode (read/write)? For example consider Webdis [9], 

an http interface for Redis that provides some insights on these 

issues. A similar kind of middleware between data producers and 

consumers in the form of publish-subscribe is suggested in [4]. A 

commonly-referenced memory layer is also proposed in Tachyon 

system [6], constrained however within a cluster. 

A Layer of Addressable Key-Value Sets. This is a conceptual 

layer, consisting of systems that provide KVS management  

according to the proposed framework. To do so, it should (i) 

implement the DME-to-KVS API mentioned above, for a variety 

of  DMEs, and (ii) allow access to a KVS through an address, 

internet-wide, following some standardized addressing scheme. 

There is no restriction on what such a system could be. It could 

store KVSs anywhere in the memory hierarchy: main-memory, 

distributed-cache, disk, etc. It could organize KVSs to domains, 

subdomains, etc. It could be one of the DMEs in a DME-to-DME 

connection, i.e. one of the DMEs could also play the role of the 

KVS manager. Such a system could guarantee (or not) fault-

tolerance, availability, etc. In addition, it should provide answers 

on how it handles ownership, lifetime and access control of KVSs. 

Finally, a standardized addressing scheme should be designed in 

such a manner that  captures location hierarchies (e.g. domains, 

sub-domains, etc.) and identifies the position in the memory 

hierarchy of a KVS. This information could be useful in a 

generalized query processor, discussed in the next Section.  

Suitability for Stream Engines. Α layered architecture like this, 

essentially introduces a referencing layer (i.e. indirection) 

between communicating DMEs. This is particularly appropriate 

for collaborating applications involving stream data: a stream 

management DME can continuously produce aggregated data 

(e.g. the average stock price over a sliding window of 10 

minutes), consumed by a traditional DME, such as a RDBMS. 

The asynchronous access to the shared KVS, allows the data 

consumer to retrieve data whenever it deems appropriate (e.g. 

[7]). In addition, the shared KVS may be located near - or within - 

the stream processing DME (the data producer). 

Transactionality Issues. A potentially challenging aspect in the 

proposed architecture is the issue of transactional consistency at 

the KVS layer; especially in the case of complex workflows 

where multiple DMEs constantly request execution from another. 

That is, in scenarios of multiple DMEs using the same KVS, one 

could argue that DMEs may have an inconsistent view (different 

versions) of the KVS layer. For example, consider two separate  

DME-to-DME connections with the same data consumer, sharing 

a common KVS - in other words both data producers populate the 

same KVS. As another example, if a DME is using a remote 

address to store a continuously running query that returns a huge 

set of key-value pairs, is that large result updated atomically or 

incrementally?  If some data feeds are slow and some are fast, one 

might get an inconsistent (nonserializable) view of the KVS layer. 

While these problems already exist now, what (if anything) can 

the framework do to manage transactional requirements across 



 

 

systems? For instance, when a DME creates a KVS (and thus 

becomes "owner" of the KVS), it could also specify the required 

isolation level for that KVS.  

4.2 Opportunities 
The proposed architecture can be used to generalize various 

existing distributed data management frameworks, such as 

distributed relational query processors, MapReduce evaluation 

algorithm and column-oriented processing engines. However, 

given the diversity in DMEs, it opens up a wide range of 

interesting possibilities, both in terms of infrastructures and 

optimization opportunities.  

For example, in the case of distributed relational query 

processing, each node would act as a DME. The node receiving 

user's query would act as the master DME (the data consumer), 

establishing connections with all the participating nodes (the data 

producers), sending a node-specific query (the remote execution) 

to each of them. For each connection, the data consumer would 

specify a KVS address for the data consumer to place the results, 

or let the data producers to specify a KVS address. The KVSs 

would keep the results of the node-specific query (e.g. row-id as 

the key and the record's contents as the value), which would be 

collected by the master DME, assembled, and provided to the 

user. In other words, with the use of the proposed architecture and 

accompanying protocols, one can build a distributed relational 

query processor - possibly beyond cluster boundaries. In addition, 

KVSs could reside somewhere "between" the data consumer and 

the data producer, not necessarily in disk.  

The same holds for the traditional MapReduce evaluation 

algorithm: it could be represented as a collection of DMEs 

(Map/Reduce tasks), exchanging KVSs in a specific sequence, 

orchestrated by calls of the DME-to-DME protocol. One should 

also note that in the case of traditional Hadoop, HDFS nodes 

should be homogenous (i.e. running JVM instances). In our 

abstraction however, this is not the case; a node can be generally a 

DME (for example a JVM instance or a RDBMS) as long as it 

adheres to the protocol's primitives. 

Going one step further, given: (a) the generality of DME's 

definition, (b) the flexibility of the KVS to handle both structured 

and unstructured data, (c) the ability to represent with the KVS the 

input, output or both of the collaborating process, and (d) the 

capability to position the KVS close to either the data consumer or 

data producer and anywhere in the memory hierarchy, one can 

think of truly generalized, cost-based, distributed query 

processors, workflow-like, involving heterogeneous systems, data 

formats, tasks and application profiles. 

In another direction, one can think of scenarios where a KVSs' 

management system implements a set of operators to manipulate 

KVSs and provides some basic functionality to DMEs through 

these operators. Examples include filtering, outer-joins and 

intersection. A DME could map an operator in its native model to 

one of the KVS's management system's operators for performance 

How to specify this in the DME-to-KVS protocol is a challenge. 

End-to-end processing and understanding of data is another 

crucial database research challenge [1]. The proposed architecture 

can significantly facilitate all data analysis tasks across the raw-

data-to-knowledge data pipeline. Indeed, one can argue that each 

one of these steps is performed by a DME acting as a node of a 

unified data supply chain. Currently those nodes collaborate in an 

ad-hoc manner based on system or language-specific APIs and 

bindings. Once however communication between DMEs is 

standardized the whole process becomes truly seamless. 

Developers can focus on highly-specialized data tools 

implementing the appropriate API and need not to worry for 

specific bindings. Data scientists can experiment with novel 

combinations of those tools and systems leveraging the symmetry 

property of the DME-to-DME communication protocol. It is also 

important to note that the data pipeline is far from straightforward, 

it is rather an iterative process where an initial dataset can have 

multiple versions across the pipeline (for example different 

methods to handle missing data). Instead of re-computing every 

possible transformation on an initial dataset the data scientist can 

cache the results of each transformation at the KVS layer 

(different versions) and access different versions in subsequent 

steps of the pipeline. Furthermore, one can think of scenarios 

where multiple data supply chains share the common (global) 

KVS layer. This fact allows the definition of synergistic data 

flows and economies of scale in data management across systems 

and organizations. Of course such a “globalization” in the data 

economy poses new challenges in the area of privacy and data 

ownership at the KVS layer. 

5. DISCUSSION AND CONCLUSIONS 
In this paper we presented a layered architecture to data 

interoperability based on a ubiquitous universe of remotely 

accessibly KVSs. In essence, with the proposed architecture we 

completely decouple the computation and memory layer of any 

data management scenario.  By doing so we are able to generalize, 

abstract and effectively encapsulate all the key components of 

distributed data computation, storage and management.  
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