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ABSTRACT
To deliver powerful smart city environments, there is a re-
quirement to analyse web produced data streams in close to
real time so that city planners can employ up to date pre-
dictive models in both short and long term planning. Data
cubes, fused from multiple sources provide a popular input
to predictive models. A key component in this infrastructure
is an efficient mechanism for transforming web data (XML
or JSON) into multi-dimensional cubes. In our research, we
have developed a framework for efficient transformation of
XML data from multiple smart city services into DWARF
cubes using a NoSQL storage engine. Our evaluation shows
a high level of performance when compared to other ap-
proaches and thus, provides a platform for predictive models
in a smart city environment.
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1. INTRODUCTION
Many smart city applications are fed information from

their online services and repositories through XML and JSON
data objects. As part of our research, we are seeking to
maintain up to date cubes of information taken from multi-
ple sources in a European capital city (Dublin) in order to
make predictions about the usage of various services. The
data streams in our research include car parks, bicycle shar-
ing schemes, online auction data, air quality sensor data, and
sales data. While some are not directly associated with the
smart city project, they may influence decision making and
are thus, included in our data cubes. Our data cubes adopt
the DWARF approach [12] which was shown to offer signif-
icant savings in terms of both storage and computational
efficiencies for relational data. Previously, we demonstrated
how the DWARF model processes XML data [2], [3] with
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Figure 1: Sample DWARF input

the same levels of efficiency. However, with the migration of
many large data repositories to the NoSQL model, we inves-
tigate if DWARF cubes based on the NoSQL model can de-
liver similar efficiencies and thus, allow a canonical approach
to managing XML and JSON smart city data streams.

Contribution. Our overall research goal is the mainte-
nance of data cubes, fused from the multiple sources listed
above. For this paper, we limit ourselves to development
and performance testing the DWARF cubes creation times
and storage size as this provides the fundamentals for our
system. Our contribution is the development of a DWARF
to NoSQL (bi-directional) mapping mechanism, which facili-
tates the creation of a DWARF cube from XML data and its
storage in a NoSQL database for future retrieval and query-
ing. Our evaluation takes one of these datasets (the bicycle
sharing scheme) and uses a variety of cube definitions to
robustly test and compare its performance.

Structure. This paper is organised as follows: Section
2 outlines the structure and implementation of DWARF
cubes; Section 3 describes DWARF cube storage; Section 4
details the transformation of the in-memory DWARF cube
to a NoSQL database; Section 5 presents our evaluation; re-
lated research is presented in Section 6; and in Section 7,
conclusions are presented.

2. STRUCTURE AND IMPLEMENTATION
OF DWARF CUBES

The DWARF [12] compression algorithm produces data
cubes of a compressed form. While clustering algorithms
[10], use a form of suffix coalescing for storage efficiency,
DWARF uses both suffix and prefix coalescing to detect du-
plicate aggregates before they can be computed. The result
of this process is a DWARF cube which takes input in the
form of a series of tuples which are used to create a DWARF.
Each tuple takes the form:
(dimension_1,dimension_2,...,dimension_n,measure).
For example the input in Fig. 1 would produce the DWARF
cube in Fig. 2.

A DWARF cube is a tree-like structure which contains



Figure 2: A sample DWARF cube created by Fig. 1 input

two main structures: a DWARF cell and a DWARF node.
A DWARF node is a container for groups of cells which

share the same parent. At the top level of the tree in a
DWARF cube there is a root node. This contains the top
cells of the tree at the highest dimension level.

A DWARF cell represents a single item in a DWARF
cube. It has a reference key and points to a DWARF node
which contains all of its child cells. The cell itself is con-
tained in a DWARF node. The value for a particular cell
can be retrieved by starting at the top of the tree and fol-
lowing the cell paths until the target cell is found. The value
of a DWARF cell is synonymous with its child’s aggregate
cell. If a DWARF cell does not point to a DWARF node
further down the tree, it is at the bottom level of the tree
and is called a leaf cell. A leaf cell is the smallest struc-
ture in a DWARF cube. The value of a leaf cell is derived
from the measure item in the tuple list supplied to create
the DWARF cube. This is identical to the measure found in
a traditional Fact Table.

3. A NOSQL DWARF MODEL
The terminology and notation used in columnar NoSQL

databases provide the basis of our NoSQL DWARF model.
Briefly, a columnar NoSQL database is composed of keyspaces
and column families. A keyspace can be roughly equated to
a database in a relational schema and column families are
similar to tables in a RDBMS.

In order to correctly model a DWARF Schema, three col-
umn families must be created: DWARF_Schema, DWARF_Node
and DWARF_Cell. Together, these column families represent
the tree-like structure of a DWARF shown in Fig. 2. This
model necessitates the construction of a bi-directional model
mapper where a full DWARF Schema can be rebuilt from
the records stored in the NoSQL database. This is achieved
by reading the records of the DWARF cells and nodes from
the NoSQL database and joining them based on their unique
ids.

• The DWARF_Schema column family stores information
regarding an individual DWARF Schema. This is to
ensure that multiple schemas can be stored in the same
NoSQL database and is the entry point for query and
traversal functions.

• The DWARF_Node column family stores information about

a particular DWARF Node such as its parent and child
cells.

• The DWARF_Cell column family contains information
regarding a particular DWARF Cell, specifically the
id of its parent and pointer node and the measure as-
sociated with the cell.

The role of the DWARF_Schema column family in Table 1-A
is to record an individual DWARF Schema and its metadata.
node_count is the amount of DWARF nodes in the schema,
cell_count is the amount of cells and size_as_mb is an ap-
proximation of the size taken up on disk by the DWARF
Schema. The entry_node_id attribute contains the id of
the top-level node in the DWARF schema and serves as the
entry point for all traversal functions. Finally, the is_cube

attribute is a flag which indicates whether or not this par-
ticular record is a full DWARF Schema or a DWARF cube
constructed from querying a DWARF schema. The role of
the DWARF_Cell column family outlined in Table 1-C is to
store information about a DWARF Cell. The role of the
DWARF_Node column family (Table 1-B) is to model all DWARF
Nodes in a DWARF cube.

4. TRANSFORMATION APPROACH
We now outline the process used to convert an in-memory

DWARF Schema into a NoSQL model. This process involves
transforming each Node and Cell in the DWARF structure
into the relevant NoSQL query which will be used to insert
it into the database.

The first step in this process is the creation of a DWARF_Schema

item which is inserted into the DWARF_Schema column fam-
ily seen in Table 1-A. The id field is obtained by query-
ing the DWARF_Schema column family in the NoSQL data
warehouse to determine the next id to be used. The fields
node_count and cell_count are obtained by scanning the
DWARF structure in-memory. The field size_as_mb is pop-
ulated separately by querying the NoSQL data warehouse to
determine the size of the DWARF structure when stored.

In order to map a DWARF Schema to a NoSQL model,
each Node and Cell in the DWARF must be visited which
involves a full traversal of the DWARF. Starting from the
root node of the DWARF, the tree is traversed in a breadth-
first top-down fashion. Using the DWARF presented in Fig.
2 the root node is processed, then the cell Ireland. From
here the descendant node of Ireland is processed. This con-
tinues until all leaf cells which are descendant from Ireland

are processed. Afterwards, the root node is revisited and the
cell France is visited and all of its descendants are evaluated.
However, as a DWARF structure contains multiple-inheritance
(Nodes can have multiple parent cells) precautions must be
taken in order to prevent Nodes and Cells from being pro-
cessed multiple times. This is accomplished by a lookup
table which records each Node and Cell visited by assign-
ing them a unique ID. Upon visiting a Cell or Node in the
DWARF structure, the lookup table is first checked to en-
sure that is has not already been transformed.

During traversal, the structure of a DWARF Node or Cell
is evaluated and the relevant INSERT command for a NoSQL
database is created. Using Cassandra [6] as a sample NoSQL
database and the Cassandra Query Language (CQL) as a
sample query language, a transformation is presented in Fig.
3 where the values of an in-memory DWARF cell are pre-



DWARF Schema
id node count cell count size as mb entry node id is cube
int int int int int bool

A: DWARF Schema column family

DWARF Node
id parentIds childrenIds root schema id
int set< int > set< int > boolean int

B: DWARF Node schema

DWARF CELL
id key measure parentNode pointerNode leaf schema id dimension table name
int text int int int boolean int text

C: DWARF Cell schema

Table 1: NoSQL DWARF Schema

Sample DWARF Cell Values
parentNode: DWARF Node (id 3)
pointerNode null

key ”Fenian St”
measure 3
id 3

INSERT INTO DWARF CELL (id,key,measure,parentNode,

pointerNode,leaf, schema_id, dimension_table_name)

VALUES (3,"Fenian St", 3,3,null,true,1,"Station");

Figure 3: Sample DWARF Cell values and CQL query after
transformation

sented along with the corresponding NoSQL INSERT com-
mand which is generated after visiting the cell.

Additionally, if a dimension table is specified in the schema
definition, the dimension_table_name is also updated to in-
clude the name of the dimension table which contains addi-
tional information about the DWARF Cell.

As each appropriate NoSQL query is created, it is added
a list of Insert expressions. These queries are subsequently
executed in a bulk process to populate the column families
shown in Table 1. Finally, when all column families have
been populated, the NoSQL store is queried to determine
the size of the DWARF structure and the size_as_mb field
in the DWARF_Schema column family is updated.

5. EXPERIMENTS
All experiments were run on Ubuntu 14.04 LTS 64-bit

with an ASUS Z87-PRO V motherboard, an Intel Core i7
4770K processor and 8GB 1600 MHz RAM. For both MySQL
and Cassandra the DWARF cubes were inserted in bulk. All
DWARFs contain 8 dimensions however, they differ in the
number of source tuples used in construction.

As part of our evaluation of NoSQL-DWARF cubes and
Cassandra as a storage mechanism for a DWARF cube, we
used 4 schema models (as shown in Tables 4 and 5) for
the purpose of comparison. The first two schema models
MySQL and MySQL-Min, represent a DWARF schema in a
relational model and a single table DWARF representation
respectively. The next two schema models NoSQL-DWARF
and NoSQL-Min represent the DWARF model described
here and a single NoSQL table format respectively. The

Day Week Month TMonth SMonth
Size (MB) 2.1 17.1 54.1 113 338
Number of tuples 7358 60102 118934 396756 1181344

Table 2: The datasets used in the experiments

Figure 4: MySQL-DWARF Schema for a DWARF cube

purpose of these schemas is to firstly show how a NoSQL-
DWARF compares to its SQL counterpart and subsequently,
how an unnormalised DWARF model (for the purpose of
speed in MySQL) performs overall. Five DWARF cubes
were created each in increasing size. Each one representing
a time period of bikes data. The five period chosen were
one day (Day), one week (Week), one month (Month), two
months (TMonth) and six months (SMonth). All periods
chosen use bikes data based on the CitiBikes dataset [7].

We now briefly describe the comparison schemas used in
our evaluation.

MySQL-DWARF.
A diagram of the schema can be seen in Fig 4. This schema

was chosen as it most accurately describes a dwarf structure
in a relational database. The reason for the NODE CHILDREN
and CELL CHILDREN tables is that nodes can contain
multiple cells and multiple cells can point to the same node.
This multi-inheritance like structure is hard to represent ac-
curately in a traditional RDBMS.

NoSQL-Min.
This schema was created to show that the construct of

a dwarf node does not need to be stored since the dwarf
cells contain the ids of their parent and pointer nodes and
these nodes can be rebuilt at a later stage. An outline of
the schema can be seen in Table 3.



DWARF CUBE
id node count cell count size as mb
int int int int

DWARF Cell
id item name leaf root cubeid parentNodeId childNodeId
int int text bool bool int int int

Table 3: NoSQL-Min Schema

Table 4: DWARF storage performance

Size (MB) use to store a DWARF cube
Day Week Month TMonth SMonth

MySQL-DWARF 2 20 80 169 424
MySQL-Min < 1 8 33 70 178
NoSQL-DWARF < 1 9 35 73 182
NoSQL-Min < 1 11 45 96 243

This schema contains only two tables. DWARF Cube and
DWARF Cell. DWARF Cube contains information for a
particular DWARF cube inside the database. the DWARF CELL
column family contains information regarding the individual
cells of the cube.

MySQL-Min..
This schema was designed to test how well MySQL per-

forms using a schema without joins. It is based on the ap-
proach presented in the NoSQL-Min schema.

5.1 Results and Analysis
Storage Space. In terms of storage size our work out-

performs that presented in [1] where the authors stored a
DWARF containing 400,000 tuples with 8 dimensions in
200MB using their standard DWARF implementation and
260MB using their recursion clustering method. Conversely
using Cassandra and our DWARF implementation we were
able to store a DWARF cube of 1,181,344 tuples across 8 di-
mensions in 182MB. However, it is important to note that as
different datasets were used the degree of compression pro-
vided by the DWARF algorithm differs which can affect the
resulting size on disc. The MySQL-Min schema performed
best for the small datasets with < 1 MB for the smallest
dataset and 70MB for the TMonth dataset. However, for the
largest dataset the NoSQL-DWARF has a smaller resulting
size (182MB for NoSQL-DWARF and 185MB for MySQL-
Min). MySQL-DWARF (Fig. 4) performed worst overall
with a size of 2MB for the smallest dataset and 424MB for
the largest. This is due to its relational design. A DWARF
Node can have many child cells. Each individual relation-
ship between a node and a cell must be individually recorded
in the Node_Children table. Cassandra does not encounter
such problems as these relations can be stored in a single
set datatype. The MySQL-Min schema had the smallest
size with < 1MB for the smallest cube and a size of 178MB
for the largest cube. This schema had small cube sizes due
to the absence of the DWARF Node construct. This sig-
nificantly reduces the size on disc as the relationships be-
tween a Node and a Cell (which has greatest impact on the
MySQL-DWARF schema) need not be stored. However, we

Table 5: DWARF storage time performance

Time (Milliseconds) taken to insert a DWARF cube
Day Week Month TMonth SMonth

MySQL-DWARF 1768 12501 47247 100466 255098
MySQL-Min 1107 5955 22243 47936 121221
NoSQL-DWARF 927 4368 15955 34203 89257
NoSQL-Min 5699 57153 222044 484498 1219887

anticipate the absence of a DWARF Node construct will
have a significant impact on query times as DWARF Node
reconstruction is required.

Storage Time. The time taken to insert a DWARF cube
into each schema is outlined in Table 5. The NoSQL-Min
schema performed worst overall with an insertion time of
1220 seconds for the largest dataset. This is due to the num-
ber of indexes present on each schema. With the NoSQL-
DWARF schema having one index per table containing the
id of the DWARF Cell, Node and Cube respectively, the ab-
sence of a DWARF Node table in the NoSQL-Min schema
necessitates the addition of two secondary indexes on the
DWARF Cell table parentNodeId and childNodeId. The
presence of these indexes increase the resulting insertion
time and size of the cube. The MySQL-DWARF schema had
the second largest insertion time for the largest dataset with
255 seconds to insert. This is due to the relational nature
of the schema, where each relationship between a Node and
Cell must be recorded and thus, a large volume of inserts
is necessary to represent the DWARF cube. Conversely,
with Cassandra, this construct can be described using a set
datatype which can complete in one insert operation. The
NoSQL-DWARF schema performed best with an insertion
time of 89 seconds for the largest dataset.

6. RELATED RESEARCH
In [5] and [8], the authors describe the creation of an

OLAP cube from XML sources. Both methods involve com-
bining the XML data sources with data obtained from a rela-
tional database, where the data obtained from both sources
is abstracted. In [5], they model an XML cube using an
UML Snowflake diagram. A similar method of integrating
XML and UML for data warehousing was presented in [13].
The data is combined using a data integrator to determine
which data source is to be queried. The end user of the sys-
tem queries the OLAP server using standard OLAP query
languages e.g. MDX queries. The results are presented in
relational form to the user. A similar method of abstract-
ing the data from its source format is used in our approach
to create the DWARF cube and provide the functionality
for a DWARF cube to be constructed from multiple source



formats. In [8], they propose an XML based representation
of a resulting data cube but do not address the underlying
problems associated with OLAP cubes (construction time,
storage space). In addition, the source data must be kept
intact in its original format which could lead to issues when
updating data.

In [4] and [9], they also store data cubes in native XML for-
mat similar to our NoSQL-DWARF model. However, their
goals are primarily aimed towards interoperability between
data warehouses as opposed to querying or data mining.

In [1], the authors employ a DWARF clustering model for
storing DWARF cubes on a hard disk. They propose a Node
indexing approach where a DWARF Node or DWARF Cell
does not contain a pointer to its sub Nodes/Cells but in-
stead contains the unique ID of its children. This method is
adopted in our Cassandra schema. They propose two algo-
rithms for storing a DWARF cube as a flat file; a hierarchical
clustering model optimised for range queries on a DWARF
structure and a recursive algorithm which is optimised for
point queries on a DWARF (the recursive algorithm is also
adequate for range queries). However as our approach uses
Cassandra as a storage model instead of a flat file we do not
encounter these problems.

Finally, in [14], the authors use MapReduce to improve
cube construction time but this is only true for the most
common queries with the rest being constructed in real-time
so there is potentially a large overhead in cube construction
time depending on the query. In [11], they propose extend-
ing DWARF to include dimensional hierarchies, a property
of OLAP cubes which is not present in DWARF. [5] states
that a hierarchical structure of a cube is necessary for a
cube constructed from XML sources. They propose stor-
ing partial DWARFs (where all views are not materialised)
to contain information pertaining to a dimension hierarchy.
The result of this is a modified DWARF structure which can
use the traditional OLAP operations ROLLUP and DRILL
DOWN. The resulting Hierarchial DWARF structure is sim-
ilar to a traditional DWARF structure (Fig 2). However,
a DWARF Node can also point to another Node occupying
the same dimension level, where this node would contain the
dimensional hierarchy. An extension of the DWARF Node
schema outlined in Table 1-B where it contains the id of a
pointer node would accommodate this functionality.

7. CONCLUSIONS AND FUTURE WORK
Today’s cities have an important new resource, their knowl-

edge infrastructure, which is generated from low level sensor
networks, public databases and online information services.
Before this knowledge can be exploited in order to generate
real impact, we require a number of layers in the technology
stack for the smart city. Above the data harvesting level,
it is necessary to read and transform data streams and to
create the structures (cubes) that higher level applications
such as data mining can exploit. In this paper, we presented
our novel cube generation approach which takes web gener-
ated data and efficiently constructs data cubes. Our usage
of the DWARF and NoSQL models delivers new layers of
efficiency in terms of speed and compression. Our current
focus is on cube updates through efficient query primitives
for our DWARF cubes.
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