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ABSTRACT

In this paper we study the problem of water consumption forecast-
ing, an instance of the general time series forecasting problem,
that has not been explored adequately. We base our analysis on
two types of data: aggregate and individual consumptions mea-
sured by Smart Water Meters. We evaluate a series of state of the
art forecasting algorithms and showcase that these models are not
suitable for every instance of the forecasting problem: while they
work effectively on aggregated data that contain strong seasonal
patterns, their performance drops dramatically on individual user
consumption time series, where such patterns are weaker. To this
end, we identify open issues and challenges on the problem and,
also, demonstrate that a simpler model we propose can outperform
several of the aforementioned algorithms, although still needing
significant improvements.

1. INTRODUCTION

Time series forecasting methods aim at predicting the progress
of a time varying phenomenon in the future. The phenomenon is
described by a variable or a set of variables, measurements of which
are taken in different points in time. In our case, the observed phe-
nomenon is the consumption of water. Given observations of the
consumption in the past we wish to predict the future consumption.

The literature for water consumption forecasting is not very ex-
tensive [1, 8]. More work has been done on the relevant field of
electricity consumption forecasting, which, however, presents sig-
nificant differences [9, 10, 14, 11, 19, 20]. First of all, energy
metering tools can provide measurements of much higher accuracy
and granularity compared to water monitoring devices. Also, en-
ergy consumption patterns are much more canonical and, some-
times even fixed, than the respective water patterns. For example,
it is straightforward to calculate the energy consumption of most
household devices through their technical characteristics, while this
is not the case for the showers even of the same user.

Further, on both fields, the major focus of approaches in the liter-
ature is on the problem of predicting the aggregate consumption of
a large population (e.g a city). However there are cases where there
is need for prediction per user or even per specific activity (e.g.
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showering). Water sustainability and saving efforts have lately fo-
cused on increasing user-consumer awareness by devising interven-
tions that aim at educating users about their individual consumption
behavior and guiding them into reducing their consumptions. To do
50, R&D projects such as DAIAD' and smartH20? research on ma-
chine learning techniques for short-term water consumption fore-
casting and pattern recognition and on intervention methods that
exploit these techniques in order to inform consumers and induce
behavioral changes. Moreover, companies such as Amphiro® invest
on water monitoring devices that are installed on household faucets
and measure real-time water consumption, providing online statis-
tics and alerts to the users. These interventions and alerts require
that individual short-term consumption is forecasted as accurately
as possible and in real time, so that it can be compared with the
upcoming actual consumptions.

In this work we study the problem of short-term time series fore-
casting, specializing on water consumption data. We consider two
different scenarios/data cases: (a) Individual consumption data,
where hourly measurements are produced by Smart Water Meters
(SWM) and each time series is handled separately. (b) Aggregate
consumption data, where hourly measurements are produced by
SWM and aggregated into a single time series. We evaluate several
state of the art algorithms, including Regression, ARIMA, Expo-
nential Smoothing, and we demonstrate the significant variations in
their performance in each case. Specifically, we point out the poor
performance of all models in case (a) that is non-aggregate con-
sumption time series. Finally, we demonstrate that a simpler model
can outperform several of the aforementioned algorithms. How-
ever, since still the prediction performance remains rather poor, we
analyse the results of all evaluated algorithms and we discuss di-
rections for improving the precision of the prediction.

2. RELATED WORK

Extensive work is done in the field of time series analysis [15],
that includes forecasting, pattern recognition, classification, dis-
cretization and event detection. Several works handle the specific
cases of water/energy consumption [8, 9, 10, 14, 11, 19, 20]. There
are also a few projects studying the field of water timeseries fore-
casting and analysis [18, 17].

For forecasting large scale aggregate consumption similar ap-
proaches are adopted in most works, which focus on the strong sea-
sonal patterns of the data. [1] apply double seasonal ARIMA, Holt
Winters Exponential Smoothing and Garch models in 6 years of ag-
gregate water consumption in Spain. In [2], double seasonal Holt
Winters model and double seasonal ARIMA with daily and weekly
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cycles, a simple feedforward Neural Network (NN) and PCA are
applied on aggregate hourly electricity demand data. The best per-
formance comes from the Holt Winters model. In [3] the authors
propose triple seasonal Holt Winters and ARIMA models to capture
the daily, weekly and yearly cycles and demonstrate improvement
over the double seasonal models.

For the problem of forecasting on smaller scale of aggregation
there exists more variability in the approaches. [4] compare Linear
Regression (LR), NNs and Support Vector Regression (SVR), at
different scales of aggregation, on hourly electricity demand data.
They find that SVR outperforms the other models at higher aggre-
gation but the LR outperforms the SVR on lower aggregation (< 16
households). However, the prediction errors for individual forecast-
ing are much higher than the ones on aggregated data. In [5] the
authors compare three NNs with three ARIMA based algorithms
on aggregate electricity demand data from 90 and 230 households,
with the ARIMA achieving best average performance but with the
NNs having better performance at specific parts of the day. [7] pro-
pose a Kalman Filter on a single household electricity consump-
tion data. In [6] the SVR and NN algorithms are applied in single
household data and are found to have very similar performance.

3. DATASETS
3.1 Per user SWM hourly consumption data

The first dataset consists of time series produced by SWM, in-
stalled in 121 households, that provide hourly measurements of the
water consumption for a period of one year. In some cases, due to
malfunctions, the next measurement is taken sooner or later than
one hour. This causes two issues. First, most algorithms require as
input fixed time intervals between measurements. Second, in the
case we want to aggregate all the time series, we need them to be
aligned, i.e. to contain measurements for the same time intervals.
Thus, we align the time series using linear interpolation and use the
aligned dataset for the rest of our analysis.
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Figure 1: Water Consumption - Per user dataset
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Figure 2: Correlation - Per user dataset

Figure 1 presents a sample time series of the second dataset,
where there appear to be some coarse-grained patterns: the con-
sumption is low at night and is followed by some spikes in con-
sumption, usually three, during the day. There is also significant

noise that affects both the height and the position of the spikes in
time. As shown in the correlogram (Figure 2) there is a relatively
large correlation between each measurement and the previous one.
Also, there is a clear sign of seasonal structure. The seasonality is
daily and weekly, with the weekly component being more impor-
tant, as seen by the increased values around hours 24 (daily) and
168 (weekly). The correlation is relatively small but well above the
statistically significant level, because of the large size of the data
(~8000 measurements). Of course, non-linear relationships or re-
lationships including more than one previous values (that cannot be
captured in Figure 2) might exist.

3.2 Aggregate SWM hourly consumption data

The second dataset consists of a single time series representing
the aggregate consumption of 121 households, in hourly measure-
ments for a period of one year. It is created by summing the 121
time series of the first dataset. This time series tends to become
more regular as more time series are summed, because the noise
is cancelled out. Figures 3 and 4 show that the second dataset is
particularly regular. It presents a very clear daily seasonal pattern
and a less clear weekly pattern. This type of data is the one usually
addressed in water/energy consumption forecasting literature.
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Figure 3: Water Consumption - Aggregate dataset
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Figure 4: Correlation - Aggregate dataset

4. ALGORITHMS

This section presents the forecasting algorithms that were exam-
ined in this work. First, we briefly describe a set of state of the
art algorithms and discuss their expected performance on the spe-
cific problem, based on the logic behind the algorithms and their
empirical performance in the literature. We also present a simpler,
first-cut prediction method based on time series discetization and
probabilistic prediction of next values, given previous ones. The
model is based less on seasonality and more on the premise that the
latest consumption values influence the upcoming ones.

4.1 State of the art prediction algorithms

We evaluated the following state of the art algorithms, used in
the literature for short term water/energy time series forecasting.



e Linear Regression (LAR). The idea of LAR is to model the
values to be predicted as a linear function of the previous
values of the time series [13].

e Support Vector Regression (SVR). The algorithm aims at
finding the simplest hyperplane so that all the training points
(previous time series values) stay within a specified distance
from it [13].

o Autoregressive Integrated Moving Average (ARIMA). ARIMA

is a class of algorithms for univariate time series forecasting
that model the current value as a linear combination of the
previous values and the errors of the previous predictions [3].

e Exponential Smoothing (ES). ES [3] is another class of algo-
rithms used for univariate time series forecasting that com-
poses the time series from three parts: level, trend and sea-
sonality.

o Artificial Neural Network (aNN). aNNs [13] are composed
of layers of nodes, at each of which the output is a linear
combination of the inputs passed through an activation func-
tion. Each layer feeds the next one and the last layer gives
the dependent variable-prediction.

LAR, which is conceptually the simplest of the algorithms is ex-
pected to work well in the aggregate SWM dataset, where the lin-
ear correlations are large. However, it is not expected to have good
performance in the other datasets where such correlations are not
present. SVR has the advantage of using suitable kernels in order
to capture non-linear patterns. However, the complexity of most
widely used kernels is limited to relatively simple analytical func-
tions; defining an appropriate kernel for the respective datasets is
a problem of its own. The ARIMA and ES algorithms are mostly
used in the literature of water/energy consumption forecasting on
aggregate datasets. They both capture the seasonal patterns and
perform well in very regular datasets. ARIMA has the limitations
imposed by the model itself, i.e. the data must be generated from a
linear combination of the previous values and the previous errors,
which may not hold in general. ES can only follow changes in the
time series after they have happened, because it calculates the com-
ponents for its prediction from the previous values, so it is designed
for time series that are consistent in terms of level trend and sea-
sonality. Both those models are expected to work well on the SWM
aggregate and perhaps the per-user hourly dataset. The aNNs, sim-
ilarly to SVR, can be made arbitrarily complex. They are expected
to perform well in the aggregate SWM dataset but, because of their
black-box nature, it is hard to predict their performance on the per-
user dataset.

4.2 Proposed methods

4.2.1 Formal Description of the data.

A time series y is a vector of values (measurements). Value ¢ of
yis ¥;,0 < 4 < n. The algorithms we propose require discretized
data so we discretize our time series values. Given a set of symbols
S, s; € S,|S| = k and a function f : R — S, which corresponds
to the chosen discretization method, we transform the continuous
time series y to the discrete time series d,d; = f(y;). Also, we
assign a continuous value to each symbol which is the average of
all the values that map to symbol s; in the training set. This value
is used when we want to obtain a continuous prediction from the al-
gorithms that provide discrete outputs. The discretization methods
we examined are the following: (a) using equal ranges, (b) using
equiprobable ranges and (c) using k-means clustering.

In the method of equal ranges, the axis of consumption volume
is divided into equal ranges. In the method of equiprobable, ranges

the axis of consumption is divided into ranges such that an equal
number of points falls in each range. In the clustering method, the
k-means clustering algorithm is used to obtain k centroids. For each
centroid, a range is created that includes those points that are closer
to the given centroid than any other. After obtaining the ranges, a
symbol is assigned to each range and the time series is discretized
by substituting each measurement with the symbol of the range it
falls into.

4.2.2 Sequential Regression (SR).

In order to capture complex non-linear behaviour we propose
a simple non-parametric algorithm that first discretizes the values
and then searches for the most probable discrete subsequence.

The problem is defined as follows: given the classes of the previ-
ous b consumption events, predict the class of the next consumption
event. To calculate this, we count the occurrence of each subse-
quence of size b + 1. More formally, we define a mapping data
structure C. The elements of C' count the occurrences of subse-
quences; for example, C[0, 2, 1] = 4 means that the subsequence
0,2, 1 has occurred 4 times. We count all the subsequences of size
b + 1 by scanning the time series.

We denote the concatenation of symbol s; to sequence d as d +
s;. Our prediction for d;, 7 > b is:

d; = argmaxst(di_b;i_l + s5)

For subsequences that have never been observed before we give
as prediction the most probable symbol of the time series.

4.2.3 Sequential Regression 2 (SR2).

We also attempt to extend the SR algorithm by modelling the dis-
tribution of the time interval between two subsequent occurrences
of each symbol (consumption range). The intuition behind this is
that events of each class have an expected frequency (e.g. a user
takes a bath once every 3 days). Thus, we take into account the
probability of each subsequence, as well as the probability of the
recurrence time.

4.2.4 Classed Linear Regression (CLR).

Based on the discretization assumption, we also adjust LAR al-
gorithm to utilize discretized time series input. We perform lin-
ear regression considering the classes-ranges of the previous b con-
sumptions as explanatory variables. To indicate the classes we use
indicative variable vectors, i.e. vectors where each dimension cor-
responds to a class. The dimension of the current class is 1 and all
others are 0.

S. EVALUATION

Next, we present the detailed configurations we used on the eval-
uated algorithms, as well as their performance in terms of predic-
tion precision. For the SWM per user dataset, that consists of mul-
tiple time series, the reported values are the average ones on all the
examined time series. We note that we chose a train/test partition of
70%/30% in all cases and we did not use a validation set, since our
aim was not to perform a strict comparison of the methods, rather
than to highlight shortcomings of current state of the art on spe-
cific water consumption forecasting settings and identify possible
research directions towards improving the forecasting performance
on such settings.

5.1 Evaluation Metrics and Baselines

Mean Absolute Percentage Error (MAPE) is a widely used mea-
sure for assessing the prediction performance of forecasting algo-
rithms, which we adopt in our evaluation. However, in the case



of per user hourly data it is very common that there are zero mea-
surements, so MAPE cannot be defined. Due to this, for the per
user data, we use a variation, Normalized Mean Absolute Error
(NMAE), which divides, for each measurement, the absolute error
of the prediction with the average value of the time series. Given a
time series y, with y; a measured value and 7/, the respective pre-
dicted value in time ¢, NMAE is defined as:

1 1 -
/
nmean(y)izzlwl vil

In order to evaluate the performance of the algorithms we also
consider three baseline algorithms. The first baseline (BRO) gives
as prediction the median value of the training set. The median is
chosen instead of the mean, because it minimizes the MAPE met-
ric. The second one (BR1) gives as prediction the previous value of
the time series, so it takes advantage of possible similarity of suc-
cessive observations. The third baseline (BR2) gives as prediction
the value that occurred 24 observations ago, essentially consider-
ing that the same hours of each day correspond to exactly the same
consumption values.

NMAE =

5.2 Per-user hourly consumption data

In the case of per user SWM consumptions, we considered only
the b previous values of the time series, since no metadata were
available. We experimented with various b, 1 < b < 168. For
LAR and SVR, the best performance was for b = 24, which cor-
responds to identifying daily periodicity in consumptions. ARIMA
was used with configuration (3,0, 3)(2, 0, 2)24. ES was used with
two seasonal cycles, one of 24 (daily) and one of 168 (weekly)
hours. The aNN was also used with b = 24 in order to capture
the daily pattern. SRO achieves the best performance for b = 1.
The reason for this is probably the fact that, for large b the model
of SRO becomes sparse, i.e. there are not enough observations for
each combination of previous values.

For SRO, SR2 and CLR the number of classes corresponding
to the best performance were 18, 3, 15. For SVR we set C' = 0.1,
€ = 0.0001 and the linear kernel was used. For the aNN two hidden
layers of size 10 and 5 were used and the convergence threshold
was set to 0.1.
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Figure 5: Forecasting NMAE on per user hourly data

In Figure 5, we can see the performance of the algorithms in
terms of NMAE. The error is above 60% for all algorithms which
constitutes a poor performance. This can be partly justified by the
fact that the mean value of the time series, which is at the denom-
inator of the metric, is low and that results to big values for the
relative error. Nevertheless, the performance compared to the base-
lines is disappointing. The best performance comes from SVR with
62%. The performance of SRO is 83% which is 3% better than
the naive baseline (BR1). All other algorithms have worse perfor-
mance than BR1. This probably happens because the time series do
not follow some simple analytical model. However, there may be
patterns that can be captured by a more data-driven analysis, like
that of SRO.

The best performance of SVR is achieved by using the linear ker-
nel. The benefit of SVR is its ability to avoid overfitting and provide
good generalisation performance. However, its performance could
possibly be improved by analysing the residual errors (i.e. the ac-
tual observation minus the predicted value) for non-linear patterns,
possibly using our SRO algorithm or some other non-parametric
algorithm. In Figure 6, we see that (for an exemplary time se-
ries) there is significant linear autocorrelation left in the residual
errors of the second best performing algorithm, SRO. This can be
attributed to the fact that the algorithm is run with b=1 and correla-
tions of previous values are not used.
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Figure 6: Autocorrelation of the residual errors of SR0 on a
single time series on SWM per user data

All the above indicate a possible direction for improvement of
forecasting on the specific kind of data. Extending the SRO al-
gorithm to capture the seasonality relationships and also exploiting
the linear correlation in the residuals can lead to a better performing
algorithm. Moreover, trying to identify specific recurring patterns
by inspecting the time series seems to be more suitable for this kind
of data, than trying to identify an analytical model.

Our ongoing work on improving the prediction accuracy on indi-
vidual consumption time series involves attempting to extract fea-
tures in an unsupervised way, like in [16]. This can be coupled with
the problem of disaggregation which has been studied for the case
of energy consumption but is entirely open for the case of water
consumption. What we intend to do is extract features, such as re-
occurring patterns of the time series and consumption events, and
then use them as input in a prediction algorithm. A more direct
modification that could be tested is to treat different parts of the
time series independently (e.g. the nights), since the consumption
then has different behaviour as described in [5]. Relaxing the time
constraints of the prediction, i.e disregarding small time shifts in
prediction, can also be useful on this dataset.

5.3 Aggregate SWM hourly consumption data

Again, in the case of aggregate SWM consumptions, we consid-
ered only the previous consumption values as features. The number
of previous values b that were eventually selected were 1, 1, 168,
24, 24 and 24 for SRO, SR2, LAR, CLR, SVR and aNN respec-
tively. The configuration of ARIMA was (3,0, 3)(2,0,2)24 and
the cycles for exponential smoothing were 24 and 168. The num-
ber of classes were 18, 3, 24 for SRO, SR2 and CLR. For SVR we
set C' = 0.5, ¢ = 0.001 and the polynomial kernel was used. For
the ANN two hidden layers of size 10 and 5 were used and the
convergence threshold was set to 0.1.

In Figure 7 we can see the performance of the algorithms on
the aggregate SWM hourly data. The performance is much better
than in the other setting. This was expected because of the very
strong seasonal patterns of the time series. The best performance
comes from the aNN. SVR abd LAR are the second and third best
approaches, respectively. This is expected because of the high lin-



ear autocorrelation of the time series. However, we would expect
more problem-specific algorithms like ARIMA and ES to outper-
form, e.g., LAR which did not happen. This could be attributed to
the relatively high irregularity of the time series, which is explained
by the fact that it aggregates only 121 individual consumption time
series. In the literature, the errors reported for the same algorithms
on energy consumption datasets for one step ahead prediction are
even lower (< 5%). The datasets in those cases are aggregates of
much larger samples and, thus, even more regular. Also the time
series of energy consumption tend to be more canonical.
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Figure 8: Autocorrelation of the residual errors of the aNN on
SWM aggregate data

The path that we are considering for future research on this kind
of data is to attempt prediction on the residual errors of several of
the examined algorithms, and of the aNN specifically, which has
the higher performance, and use it to improve the prediction preci-
sion. The algorithm should, of course, take into account non-linear
relations because, as we see in Figure 8, there is no linear auto-
correlation left in the residuals. In this direction, we are currently
attempting to apply the Nearest Neighbour algorithm on the resid-
ual errors. More specifically, we search for instances with similar
previous errors to those observed at the current time and try to find
whether the next error follows some pattern.

6. CONCLUSIONS

In this work, we investigated the performance of several state of
the art forecasting algorithms on time series of two different water
consumption datasets. The results indicated that the performance
of each algorithm depends on the dataset. Another important is-
sue is that the performance of all algorithms becomes poor as the
scale of aggregation decreases from 121 households, to 1 house-
hold. Driven by this fact, we proposed a first-cut approach which
shows relatively better results in the latter case compared to most
soa algorithms and presents an interesting direction for future re-
search in the case of individual consumption forecasting.

7. ACKNOWLEDGMENTS

The research leading to these results has received funding from
the European Union Seventh Framework Programme - Collabo-
rative Project - DAIAD (http://www.daiad.eu/) under grant agree-
ment No. 619186.

8. REFERENCES

[1] J. Caiado, Forecasting water consumption in Spain using
univariate time series models, Proceedings of IEEE Spanish
Computational Intelligence Society, 2007.

[2] J. W. Taylor, L. M. Menezes, P. E. McSharry, A comparison of
Univariate Methods for Forecasting Electricity Demand Up to
a Day Ahead, International Journal of Forecasting, 2006.

[3] J. Taylor, Triple Seasonal Methods for Short-Term Electricity
Demand Forecasting, European Journal of Operational
Research, 2010.

[4] S. Humeau, T. K. Wijaya, M. Vasirani, K. Aberer, Electricity
Load Forecasting for Reisdential Customers: Exploiting
Aggregation an Correlation between Households, IFIP, 2013.

[5] A.Marinescu, C. Harris, 1. Dusparic, S. Clarke, V. Cabhill,
Residential Electrical Demand Forecasting in Very Small
Scale: An Evaluation of Forecasting Methods, 2nd
International Workshop on Software Engineering Challenges
for the Smart Grid, 2013.

[6] K. Gajowniczek, T. Zabkowski, Short term electricity
forecasting using individual smart meter data, 18th
International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, 2014.

[7] M. Ghofrani, M. Hassanzadeh, M. Etezadi-Amoli, M. S.
Fadali, Smart Meter Based Short-Term Load Forecasting for
Residential Customers, N. A. Power Symposium, 2011.

[8] S. Alvisi, M. Franchini, A. Marinelli, A short-term,
pattern-based model for water-demand forecasting, Journal of
Hydroinformatics, 2007.

[9] F. Martinez Alvarez, A. Troncoso, J. Riquelme, J.
Aguilar-Ruiz, Energy Time Series Forecasting Based on
Pattern Sequence Similarity, TKDE, 2011.

[10] R. Weron, A. Misiorek, Forecasting spot electricity prices: A
comparison of parametric and semiparametric time series
models, TKDE, 2011.

[11] A. Livera, R. Hyndman and R. Snyder, Forecasting time
series with complex seasonal patterns using exponential
smoothing, J. of the American Statistical Association, 2011.

[12] R. Kato, T. Shiohama, Model and Variable Selection
Procedures for Semiparametric Time Series Regression,
Journal of Probability and Statistics, 2009.

[13] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer 2007.

[14] R. Weron, Modeling and Forecasting Electricity Loads and
Prices, Wiley 2006.

[15] J. Lin, S. Williamson, K. Borne, D. DeBarr, Pattern
Recognition in Time Series, Advances in Machine Learning
and Data Mining for Astronomy, Chapman and Hall, 2012.

[16] M. LAd’'ngkvist, L. Karlsson, A. Loutfi A review of
unsupervised feature learning and deep learning for
time-series modeling, Pattern Recognition Letters, 2014.

[17] DAIAD Deliverable: State of the Art Report, available at
http://www.daiad.eu.

[18] ICeWater Deliverable: State of the Art Analysis, available at
http://www.icewater-project.eu.

[19] B. Chen, M. Chang, and C. Lin Load Forecasting Using
Support Vector Machines: A Study on EUNITE Competition
2001, IEEE Transactions on Power Systems, 2001.

[20] J. Chen, W. Wang, C. Huang Analysis of an adaptive
time-series autoregressive moving-average(ARMA) model for
short-term load forecasting, Electric Power Systems
Research, 1995.



