
EvoGen: a Generator for Synthetic Versioned RDF

Marios Meimaris
1University of Thessaly,

2ATHENA Research Center,
Greece

m.meimaris@imis.athena-innovation.gr

ABSTRACT
Synthetic data are widely used for evaluation, testing, and
experimentation. However, there is a lack of systems, tools
and datasets that can be used for benchmarking in the con-
text of evolution. In the case of RDF, generation of synthetic
data that change through time must take into account evolv-
ing paradigms and characteristics that make sense, rather
than arbitrary insertions and deletions of triples. In this
paper, we discuss requirements for generation of synthetic
evolving datasets by abstracting several characteristics of
the process, and present EvoGen, a tool for evolving dataset
generation that is based on the widely used Lehigh Univer-
sity Benchmark (LUBM) generator.

Categories and Subject Descriptors
H.2.8 [Information Systems Applications]: Database
Management—Database Applications

Keywords
RDF, Data Management, Benchmarks, Synthetic Data

1. INTRODUCTION
The Resource Description Framework1 (RDF) is a W3C

recommendation for modelling and publishing data in Linked
Data and Semantic Web contexts. Due to the wide adop-
tion of RDF, as well as the dynamicity of data published
in the Data Web, the need for handling evolution in such
datasets becomes increasingly relevant. The importance of
evolution management in the context of the Data Web has
been stressed out in the literature as a means of addressing
issues such as provenance tracking, longitudinal querying,
semantic change detection and representation, dealing with
broken URIs and so on [6, 1]. Evolution in RDF data, in
its simplest form, is the act of inserting and deleting triples
over time. However, in real settings, evolution takes place
in different schemes and settings, depending on the context.

1http://www.w3.org/RDF/

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

For instance, versioning can take place on either the resource
level, or the dataset level, and at the same time, changes can
be detected and represented as simple (e.g. triple addition-
s/deletions), or more complex (e.g. schema changes, group-
ings of triple additions that result in higher level changes).
Moreover, other requirements that are often present in evolv-
ing RDF have to do with metadata, such as provenance and
temporal annotations. There exist several tools for storage
and archiving that come with varying functionalities, how-
ever, there is a lack of support when it comes to benchmark-
ing them. Two main aspects must be considered towards
this goal. First, the existence of real and synthetic datasets
of varying size and complexity that represent several cases
of evolution is an important element of such a benchmark.
Then, the performance evaluation of these tools require the
existence of appropriate query workloads and representative
evolving operations. In this paper, we intend to address
the former, i.e. generation of synthetic datasets in evolving
contexts.

Contributions. The contributions of this paper can be
summarized as follows:

• we discuss the requirements and characteristics of the
process of creating synthetic versioned RDF data,

• we describe EvoGen, a prototype implementation for
configurable synthetic dataset generation in evolving
contexts that extends the Lehigh University Bench-
mark (LUBM) generator with support for the defined
characteristics.

This paper is outlined as follows. Section 1 introduces
the subject. Section 2 provides an overview of related work.
Section 3 discusses conceptual aspects of different evolution
paradigms in RDF. Section 4 describes the implemented sys-
tem, and Section 5 concludes the paper.

2. RELATED WORK
The Lehigh University Benchmark (LUBM) [7] includes

an implementation for RDF synthetic data generation. LUBM
was originally aimed at providing datasets for benchmarking
reasoners and systems with reasoning/inferencing capabili-
ties for OWL and DAML ontologies. In fact, the generator
creates both explicit and implicit relationships between the
data. Nevertheless, it has been used extensively in the evalu-
ation of SPARQL engines and RDF stores in general as well
[19, 9, 10, 2, 4, 8, 15]. LUBM provides a set of 14 bench-
mark queries consisting of 1-6 conjunctive triple patterns,
however, these have been appended to include queries with

more complicated patterns in several other works, especially
when it comes to evaluating SPARQL engines that need
more complicated queries (e.g. in [9]). SP2Bench [17] is a
benchmark RDF dataset generator for evaluating SPARQL
engines. It is targeted at query efficiency rather than rea-
soning and has been widely used in the literature [18, 8,
11]. There exist several other works in benchmarking RDF
systems and tools, such as FedBench [16] and the Berlin
SPARQL Benchmark [3], however not all of them provide
synthetic data generation capabilities, even less so in the
case of evolving data. An extensive comparison of RDF
benchmarks is done in [5]. Fernandez et al. [6] provide met-
rics for benchmarking archiving systems in RDF and Linked
Data settings.

Our approach aims at filling the gap of synthetic data
generation in evolving contexts. For this purpose, we have
chosen to extend LUBM in order to provide capabilities of
versioned data, because it is a widely adopted and estab-
lished benchmark, and can be used in storage, querying, as
well as reasoning scenarios.

3. CHARACTERISTICS OF EVOLUTION
Generation processes for evolving datasets have to meet

several functional, as well as non-functional requirements
regarding the data creation. These include parameterization
and configurability, as well as scalability and efficiency. The
generation of evolving datasets must be abstracted from the
generation of synthetic data in general, in order to identify,
and consequently quantify, the inherent characteristics that
are specific to evolving contexts.

In order to define and quantify input parameters, we go
on to outline high-level, dataset-independent characteristics
that will enable parameterization in the generation process.
We consider D as a diachronic RDF dataset as defined in
[13, 12], and a set of n + 1 distinct temporal instantiations
of D at time points ti . . . ti+n. A diachronic dataset D is
a time-agnostic representation that is used to refer to D
statically through time, without referencing its particular
versions. In the scope of this work, we regard versions to be
discrete snapshots of a dataset through time. Given these,
we introduce the notions of shift, monotonicity and strict-
ness to capture the type, volume, and structural aspects of
changes that D undergoes between ti and ti+n. These are
defined as follows.

1. Shift: the shift of an evolving dataset captures the
modification of its size through different versions. In
essence, it represents the direction towards which its
size leans through the passing of time. The shift of a
dataset is given with respect to a time period [ti, ti+n],
and depending on its value, it can lead to incremental,
decremental or unchanged data. For example, when
comparing two versions of an RDF dataset D, at times
ti and tj , the shift of D will be incremental if the
dataset size increased (i.e. more insertions than dele-
tions), decremental if it decreased (i.e. more deletions
than insertions) and unchanged if it remained the same
(i.e. equal number of insertions and deletions). In or-
der to quantify the shift h of D between ti and ti+n, we

regard it as a function h(D)|ti+n
ti

of low-level changes
(triple insertions/deletions) in D between ti and ti+n

with respect to ti:

h(D)|ti+n
ti

=
|Di+n| − |Di|

|Di|
(1)

When defining h in a given time period, the changes
are distributed across all versions that exist within that
period.

2. Monotonicity: the monotonicity of a dataset captures
whether or not a dataset with an incremental or decre-
mental shift changes monotonically in a given time pe-
riod [ti, tj]. A shift is monotonic when only additions
or deletions of triples occur in all consecutive versions
of a dataset between ti and tj . For example, the evo-
lution of a dataset between ti and tj with incremental
(decremental) shift is monotonic iff between ti and tj
only triple additions (deletions) take place. More for-
mally, an RDF dataset D is monotonically incremental
if it has an incremental shift, and the following holds
for any arbitrary time points tk and tl:

@tk, tl : |Dl| > |Dk| , ti ≤ tk < tl ≤ tj (2)

and decremental when

@tk, tl : |Dl| < |Dk| , ti ≤ tk < tl ≤ tj (3)

Monotonicity is an important characteristic that can
be used for supporting use cases where datasets are
only changing in one direction. In real-world scenarios,
this is especially useful for creating datasets that are
only increasing (e.g. log files, publication databases
etc.).

3. Strictness: strictness is a boolean property that a dataset
exhibits when it follows predictable schema patterns
through time. Because of the schema looseness typi-
cally associated with RDF, an abstraction of schema
in RDF datasets is needed in order to define strictness.
We recall the notion of Characteristic Sets [14] as the
needed abstraction. A characteristic set of a subject
node s is essentially the collection of all distinct prop-
erties p that appear in triples with s as subject. Given
an RDF dataset D, and a subject s, the Characteristic
Set Sc(s) of s is:

Sc(s) = {p | ∃o : (s, p, o) ∈ D}

and the set of all Sc for a dataset D at time ti is:

Sc(D) = {Sc(s) | ∃p, o : (s, p, o) ∈ D}

A dataset D is strict in a given time period [ti, tj] if the
set of all Characteristic Sets Sc(D) remains the same within
this time period:

@tk, tl : Sc(Dtk) 6= Sc(Dtl), ti ≤ tk < tl ≤ tj (4)

Whether the actual subject and object nodes change is not
relevant unless it causes a change in SC(D), as we are essen-
tially interested in structural changes, rather than instance-
level changes. In essence, (4) holds when there are no inher-
ent structural changes between versions of D within a given
time period.

4. IMPLEMENTATION
For our purposes, we implemented EvoGen2, a generator

of RDF datasets with configurable parameters according to
the characteristics discussed in Section 3. The system is
an extension of the existing Lehigh University Benchmark
(LUBM) generator, which is written in Java and is a pure
write-only solution that does not contain any abstractions
and models for RDF datasets. While the original LUBM
provides support for generation of OWL as well as DAML
files, our implementation is only aimed at RDF/XML files,
mainly because, unlike the original LUBM generator, Evo-
Gen is not meant to be a benchmark for reasoning systems.
The high-level architecture of EvoGen can be seen in Figure
1.

In this first version of EvoGen, the requirement for con-
figurable strictness has not been implemented and is left as
future work. Thus, the implemented functionality only con-
cerns changes on the instance level, with a strict structure.
In fact, the strictness of the structure is inherited from the
schema used by LUBM in its original implementation.

Along with LUBM’s original system, which requires pa-
rameters concerning the size of the dataset (in number of
universities), EvoGen’s generation process requires the fol-
lowing parameters:

1. number of versions: an integer denoting the total num-
ber of distinct versions (dataset materializations at dif-
ferent time points). The number of versions needs
to be larger than 1 in order for EvoGen to generate
datasets, else the original LUBM generator is invoked.

2. shift: this is the value h(D)|tjti defined in equation (1)
for a time period [ti, tj], i.e. a percentage of changes
between versions Di and Dj with respect to the size
of Di. In this version of EvoGen, only strictly in-
cremental and decremental shifts between consecutive
versions have been implemented. This means that ev-
ery version will be shifted with respect to its previ-
ous version, instead of generating an aggregated shift
between the first and the last version, which would
require distributing the required changes along a num-
ber of versions and maintaining the h(D) value only
between the first and the last version in the given pe-
riod. Instead, this is left as future work.

3. monotonicity: A boolean denoting the existence of
monotonicity in the shift, or lack thereof.

The above parameters instantiate the generation process
with the use of two basic components, namely the Version
Management component and the Change Creation compo-
nent. These are responsible for translating input parameters
dynamically and mapping them to appropriate structures,
holding information on the types of entities to create, the
size and quantity of the created entities, as well as the deci-
sions on which existing entities to evolve. These sit on top of
an extended LUBM generator, which in essence is the core
LUBM generator modified to accommodate serializations of
different versions in the file system. The functionality is ex-
posed through a Java API that can be invoked by importing
the system’s jar file and accessing its methods directly.

The Change Creation component is responsible for creat-
ing the elements to be added, or determining the elements

2Source code is available at:
https://github.com/mmeimaris/EvoGen

Figure 1: High-level architecture of EvoGen.

to be deleted, calculating the actual number of insertion-
s/deletions for each class, based on dynamic weighting of
the instances of each class with respect to the total dataset
size, randomizing parts of the process with respect to ac-
tual created/removed instances and so on. This component
is responsible for communicating with the Extended LUBM
Generator component, which performs the actual serializa-
tion of dataset versions in the file system. The core LUBM
implementation generates data based on a fixed schema, by
iterating through each class and creating elements in each
respective schema-imposed sub-structure. It performs some
degree of randomization on URIs, mappings of elements to
other elements (e.g. Professor32 teaches at University21).
In order to distribute the required changes so that the gen-
eration process outputs versions with the desired shift, we
assign weights to each class-based sub-structure and dictate
the cardinality of the instances of each class to the gen-
erator. This weighting is done in the Weight Assignment
Module, which uses hard coded, normalized weights in the
range of 0 . . . 1 for each class, based on ranges acquired by
observing the output of the original, non-versioned LUBM
datasets for varying sizes. By multiplying these weights with

the desired shift value h(D)|tjti , we can get an approximate
number of instances that need to be created for each class.

The Version Management component holds and updates
session information on each version during runtime, the schema
of the dataset, the mapping of versions to descriptive meta-
data and files in the file system and so on.

5. PRELIMINARY EVALUATION
In order to preliminarily evaluate and validate the output

of EvoGen, we perform a series of generation tasks for dif-
ferent combinations of numbers of universities and changes,
and a fixed number of 10 versions, and we measure the
achieved shift with respect to the required one. Specifically,
we perform 10 runs of generations for three different val-
ues of h, namely h(D) = 0.2, h(D) = 0.4, and h(D) = 0.6
and we report the percentage difference between the mean
of the achieved h and the required one. The results can
be seen in Figure 2. With a small number of universities,
the achieved shift differs significantly with respect to the
required one, but as the number of universities, i.e. the
dataset size, increases, the error decreases. Therefore, for
a reasonably large number of dataset size, (e.g. > 5 uni-
versities), EvoGen performs as expected. Note, however,

Figure 2: Average of achieved shift over 10 runs for 10 ver-
sions, for increasing number of universities.

that this preliminary evaluation does not take into account
scalability and efficiency issues, which is left as future work.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we discuss several characteristics of gen-

erating synthetic versioned RDF datasets, and we describe
EvoGen, an implementation that addresses a subset of these
characteristics. Furthermore, we perform a preliminary eval-
uation of the system in order to measure how well the desired
shift is achieved.

As future work, we intend to fully address the discussed
characteristics, enable the insertion and deletion of schema
elements as well, and address issues of scalability and effi-
ciency when creating very large datasets. Finally, we intend
to design query workloads based on the created data, in
order to further support benchmarking versioning and evo-
lution management systems for RDF datasets.

Acknowledgements. This work is supported by the EU-
funded ICT project ”DIACHRON”(agreement no 601043).

7. REFERENCES
[1] S. Auer, T. Dalamagas, H. Parkinson, F. Bancilhon,

G. Flouris, D. Sacharidis, P. Buneman, D. Kotzinos,
Y. Stavrakas, V. Christophides, et al. Diachronic
linked data: towards long-term preservation of
structured interrelated information. In Proceedings of
the First International Workshop on Open Data, pages
31–39. ACM, 2012.

[2] A. Bernstein, M. Stocker, and C. Kiefer. Sparql query
optimization using selectivity estimation. In Poster
Proceedings of the 6th International Semantic Web
Conference (ISWC), 2007.

[3] C. Bizer and A. Schultz. The berlin sparql benchmark,
2009.

[4] M. A. Bornea, J. Dolby, A. Kementsietsidis,
K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient rdf store over a
relational database. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, pages 121–132. ACM, 2013.

[5] S. Duan, A. Kementsietsidis, K. Srinivas, and
O. Udrea. Apples and oranges: a comparison of rdf
benchmarks and real rdf datasets. In Proceedings of

the 2011 ACM SIGMOD International Conference on
Management of data, pages 145–156. ACM, 2011.

[6] J. D. Fernández, A. Polleres, and J. Umbrich. Towards
efficient archiving of dynamic linked open data. In
Proceedings of the 1st DIACHRON workshop, 2015.

[7] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. Web Semantics:
Science, Services and Agents on the World Wide Web,
3(2):158–182, 2005.

[8] M. F. Husain, L. Khan, M. Kantarcioglu, and
B. Thuraisingham. Data intensive query processing for
large rdf graphs using cloud computing tools. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 1–10. IEEE, 2010.

[9] E. G. Kalayci, T. E. Kalayci, and D. Birant. An ant
colony optimisation approach for optimising sparql
queries by reordering triple patterns. Information
Systems, 50:51–68, 2015.

[10] Z. Kaoudi, K. Kyzirakos, and M. Koubarakis. Sparql
query optimization on top of dhts. In The Semantic
Web–ISWC 2010, pages 418–435. Springer, 2010.

[11] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries.
ACM Transactions on Database Systems (TODS),
38(4):25, 2013.

[12] M. Meimaris, G. Papastefanatos, and C. Pateritsas.
An archiving system for managing evolution in the
data web. In Proceedings of the 1st DIACHRON
workshop, 2015.

[13] M. Meimaris, G. Papastefanatos, S. Viglas,
Y. Stavrakas, and C. Pateritsas. A query language for
multi-version data web archives. arXiv preprint
arXiv:1504.01891, 2015.

[14] T. Neumann and G. Moerkotte. Characteristic sets:
Accurate cardinality estimation for rdf queries with
multiple joins. In Data Engineering (ICDE), 2011
IEEE 27th International Conference on, pages
984–994. IEEE, 2011.

[15] N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2rdf: adaptive query processing on rdf
data in the cloud. In Proceedings of the 21st
international conference companion on World Wide
Web, pages 397–400. ACM, 2012.

[16] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig,
A. Schwarte, and T. Tran. Fedbench: A benchmark
suite for federated semantic data query processing. In
The Semantic Web–ISWC 2011, pages 585–600.
Springer, 2011.

[17] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
Sp 2 bench: A sparql performance benchmark, icde.
Shanghai, China, 2009.

[18] M. Schmidt, M. Meier, and G. Lausen. Foundations of
sparql query optimization. In Proceedings of the 13th
International Conference on Database Theory, pages
4–33. ACM, 2010.

[19] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. Sparql basic graph pattern optimization
using selectivity estimation. In Proceedings of the 17th
international conference on World Wide Web, pages
595–604. ACM, 2008.

	Introduction
	Related Work
	Characteristics of Evolution
	Implementation
	Preliminary Evaluation
	Conclusions and Future Work
	References

