
Structural type inference in Java-like languages
– Extended abstract –

Martin Plümicke

Baden-Wuerttemberg Cooperative State University Stuttgart/Horb
Florianstraße 15, D–72160 Horb

pl@dhbw.de

Abstract

In the past we considered type inference for Java with generics and
lambdas. Our type inference algorithm determines nominal types in
subjection to a given environment. This is a hard restriction as separate
compilation of Java classes without relying on type informations of
other classes is impossible. In this paper we present a type inference
algorithm for a Java-like language, that infers structural types without
a given environment. This allows separate compilation of Java classes
without relying on type informations of other classes.

1 Introduction
Let us consider an example that shows the idea. In [Plü15] for the following program no type can be inferred,
as there is no type assumption for elementAt.

class A { m (v) { return v.elementAt(0); } }

Only with an import declaration import java.util.Vector; a type can be inferred.

In this paper we give an algorithm that infers for v a structural type α, which has a method elementAt. Our
algorithm is a generalization of an idea, that is given in [ADDZ05]. In the introducing example from [ADDZ05]
the method E m(B x){ return x.f1.f2; } is given. The compilation algorithm generates the polymorphic
typed Java expressions E m(B x){ return [[x:B].f1:α].f2:β; }, where α and β are type variables. In this
system m is applicable to instances of the class B with the field f1 with the type α, where α must have a field
f2 with the type β and the constraint β ≤∗ E. In this approach B and E are still nominal types.
We generalize this approach, such that also untyped methods like m(x){ return x.f1.f2; } can be compiled,
that means the type of x and the return type are type variables, too.

The idea

The result of our type inference algorithm is a parameterized class, where each inferred type is represented by a
parameter that implements by the algorithm generated interfaces.

2 The language
We consider a core of a Java-like language without lambdas. In Figure 1 the syntax of the language is given. It
is an extension of Featherweight Java [IPW01]. The syntax is differed between input and output syntax. The
input is an untyped Java program L and the output is a typed Java program Lt, including generated interfaces.

Copyright c© 2016 for the individual papers by the papers’ authors. Copying permitted for private and academic purposes. This
volume is published and copyrighted by its editors.

109

Input syntax :

L ::= class C extends (CT)∗ {f; M}

M ::= m(x){ return e; }

e ::= x | e.f | e.m(e) | new NCT(e) | (CT)e

NCT ::= CT | C<TVar = CT>

CT ::= C<CT>

Output syntax :

Lt ::= I∗ CLt

CLt ::= class C<TVar>[CONS] extends (CT)∗ {T f; Mt}

CONS ::= T extends T

T ::= CT | TVar

MH ::= T m(T x);

Mt ::= MH { return et; }

et ::= x : T | e.f : T | e.m(e) : T | new NCT(e) : CT | (CT)e : CT

I ::= interface I<TVar>{T f; MH}

Figure 1: The syntax

There are some extensions in comparison to usual Java. The class declarations in the output syntax have the form
class C<TVar> [CONS]. TVar are the generics and [CONS] is a set of subtype constraints T extends T′, that
must fulfill all instances of the class. In any class there is an implicit constructor with all fields (including them
from the superclasses) as arguments. There is no differentiation between extends and implements declarations.
Both are declared by extends. Interfaces can have fields. Furthermore, the use of the new-statement is allowed
without assigning all generics. This is done by the syntax C<TVar = CT>. The not assigned generics are derived
by the type inference algorithm.

3 The algorithm
The algorithm TI consists of three parts. First the function TYPE inserts types (usually type variables) to all
sub-terms and collects constraints. Second, the function construct generates the interfaces and completes the
constraints. Finally, the function solve unifies the type constraints and applies the unifier to the class.

In the following definition we give the different forms of constraints, that are collected in TYPE. This definition
is oriented at [ADDZ05]:

Definition 1 (Type constraints)

• cl c′ means c is a subtype of c′.

• φ(c, f, c′) means c provides a field f with type c′.

• µ(c,m, c, (c′, c′)) means c provides a method m applicable to arguments of type c, with return type c′ and
parameters of type c′.

Note that µ(c,m, c, (c′, c′)) implicitly includes the constraints c ≤ c′.

Let < be the extends relation defined by the Java declarations und ≤∗ the corresponding subtyping relation.

The type–inference algorithm

Let TypeAssumptions be a set of assumptions, that can consists of assumptions for fields, methods and whole
classes with fields and methods. The functions fields and mtype extracts the typed fields respectively the typed
methods from a given class, as in [IPW01].

In the type inference algorithm we use the following name conventions for type variables:

δfA: Type variable for the field f in the class A.

αm,i
A , βm,iA : Type variable for the i-th argument of the method m in the class A.

αm
A, β

m
A : is an abbreviation for the tuple αm,1

A , . . . , αm,n
A respectively βm,1A , . . . , βm,nA .

γmA: Type variable for the return type of the method m in the class A.

110

The main function TI

The main function TI calls the three functions TYPE, construct, and solve. The input is a set of type
assumptions TypeAssumptions and an untyped Java class L. The result Lt is the typed Java class extended by
a set of interfaces.

TI: TypeAssumptions× L→ Lt

TI (Ass, class A extends B { f; M }) =
let

(clt, C) = Type(Ass, cl)
(I1 . . . Im clt) = construct(clt, C)

in
(I1 . . . Im solve(clt))

The function TYPE

The function TYPE inserts types (usually type variables) to all sub-terms and collects the constraints.

TYPE: TypeAssumptions× L → Lt × ConstraintsSet

TYPE(Ass, class A extends B { f; M }) = let
fass := { this.f : δfA | f ∈ f } ∪ { this.f : T | T f ∈ fields(B) }
mass := { this.m : αm

A → γmA | m(x){ return e; } ∈ M } ∪ { this.m : aty → rty | mtype(m, B) = aty → rty }
AssAll = Ass ∪ fass ∪mass ∪ { this : A }
For m(x){ return e; } ∈ M {
Ass = AssAll ∪ { xj : αm,j

A | x = x1 . . . xni
}

(et : rty, C
′) = TYPEExpr(Ass, e)

C = C ∪ C ′[γmA 7→ rty]}
Mt = { rty m(αm

A x){ return et; } | m(x){ return e; } ∈ M }
in(class A extends B { δA f; Mt }, C)

The function TYPEExpr inserts types into the expressions and collects the corresponding constraints. The
function TYPEExpr is given for all cases of expressions e. In the following we present TYPEExpr for the
both most important cases, the method-call and the new-statement.

TYPEExpr for Method-call: First, the types of the receiver and the arguments are determined, recursively.
Then it is differed between methods with and without known receiver types. In the known case a subtype relation
is introduced. Otherwise a constraint is generated that demands a corresponding method in the type.

TYPEExpr(Ass, e0.m(e)) = let
(e0t : ty0, C0) = TYPEExpr(Ass, e0)
(eit : tyi, Ci) = TYPEExpr(Ass, ei),∀16 i6n

in
if (ty0 is no type variable)&& (ty0 ∈ Ass)&& (mtype(m, ty0) = aty → rty) then
((e0t : ty0).m(e1t : ty1, . . . , ent : tyn) :rty, (C0 ∪

⋃
i Ci) ∪ { ty l aty })

else

((e0t : ty0).m(e1t : ty1, . . . , ent : tyn) :γ
m
ty0
, (C0 ∪

⋃
i Ci) ∪ {µ(ty0, m, ty, (γmty0 , β

m
ty0

)) })

TYPEExpr for the new-statement: The use of the new-statement is allowed without assigning all generics.
This is done by the syntax C<TVar = CT>. First, fresh type variables are introduced in the assumptions of
the corresponding class. Then the types of the arguments are determined. Finally, the assigned generics are
introduced and the subtype relations between the argument types and the fields of the class and its super classes
are added.

TYPEExpr(Ass ∪ { class A<T>[CA] extends B {TA f; Mt} },new A<S>(e)) =
where S = [Tπ(1) = τ1, . . . , Tπ(k) = τk] with k ≤ n for |T| = n
let

ν fresh type variables, that substitute T in class A
S′ = S[T 7→ ν]

111

(eit : tyi, Ci) = TYPEExpr(Ass, ei),∀16 i6m
in

(new A<S′>(e1t :ty1, . . . , emt :tym) :A<ν[ν 7→ τ | ν = τ ∈ S′]>, (
⋃
i Ci) ∪ CA[ν 7→ τ] ∪ { ty l TB TA[ν 7→ τ] }

where fields(B) = TB g

The function construct

The function construct takes the result from TYPE, a typed class and a set of constraints. It generates for
any type ty1, ty2 occuring in constraints φ(ty1, f, δ) or µ(ty2, m, α, (γ, β)) corresponding interfaces with the
demanded fields respectively methods:

interface ty1< ...,δ, ...> {
δ f;

}

interface ty2 <...,γ, β, ...> {
γ m(β x1);

},

introduces fresh type variables X1, X2 and constraints, that have to implement these interfaces: X1 l ty1<...>,
X2l ty2<...>. Finally, the occuring type variables are introduced as generics of the class.

The function solve

The function solve takes the result of construct and solves the constraints of the class by the type unification
algorithm from [Plü09], such that the constraints contains only pairs with at least one type variable.

Now we give an example, that shows first a structural typing of a class independent from any environment. Then
a concrete implementation of this class is given.

Example 2 In this example we print the input syntax (user written) in black and the output syntax (automat-
ically generated) in gray. Let the following class be given

class A {
mt(x, y, z) { return x.sub(y).add(z); }

}

The result of TYPE is: class A { γadd
γsub
αmt,1
A

mt(αmt,1
A x, αmt,2

A y, αmt,3
A z) { return et; } }, with

et = [[[x : αmt,1
A].sub([y : αmt,2

A]) : γsub
αmt,1
A

].add(z : αmt,3
A) : γadd

γsub
αmt,1
A

] and

C = {µ(αmt,1
A , sub, αmt,2

A , (γsub
αmt,1
A

, βsub,1
αmt,1
A

)), µ(γsub
αmt,1
A

, add, αmt,3
A , (γadd

γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

)) }

The result of construct(clt, C) is (with fresh type variables):

interface αmt,1
A <Gamma_m, Beta_m> { Gamma_m sub(Beta_m x); }

interface γsub
αmt,1
A

<Gamma_n, Beta_n> { Gamma_n add(Beta_n x); }

class A <ν1,ν2,ν3,ν4,ν5,ν6,ν7>[ν3 extends ν5, ν4 extends ν7, ν1 extendsαmt,1
A <ν2,ν5>, ν2 extends γsub

αmt,1
A

<ν6,ν7>]{

ν6 mt(ν1 x, ν3 y, ν4 z) { return x.sub(y).add(z); }
}

As the application of solve changes nothing, this is the result of TI’s application.

In the following we show, as an instance of the type inferred class can be used.
For this implementations of αmt,1

A and γsub
αmt,1
A

must be given:

112

class myInteger extends αmt,1
A <myInteger, myInteger>, γsub

αmt,1
A

<myInteger, myInteger> {

Integer i;
myInteger sub(myInteger x) { return new myInteger(i - x.i); }
myInteger add(myInteger x) { return new myInteger(i + x.i); } }

In the class Main an instance of A is used and the method mt is called.

class Main {
main() { return new A<ν1=myInteger, ν2=myInteger>()

.mt(new myInteger(2), new myInteger(1), new myInteger(3)); } }

The mappings ν1=myInteger, ν2=myInteger means that ν1 and ν2 are instantiated and all other parameters
of A should be inferred by the type inference algorithm TI. We call TI for Main with the set of assumptions
consisting of the class A and the class myInteger.

The constraint set of the result of TYPE is given as

Cmain = { ν3 l ν5, ν4 l ν7, myIntegerl αmt,1
A <myInteger, ν5>, myIntegerl γsub

αmt,1
A

<ν6, ν7>,

myIntegerl ν3, myIntegerl ν4, }

The functions construct adds no interfaces, as there is no call of abstract fields or methods.
In solve Cmain is unified. The result of the unification is:

σ = { ν5 7→ myInteger, ν6 7→ myInteger, ν7 7→ myInteger, ν3 7→ myInteger, ν4 7→ myInteger }

The resulting Java class is given as:

class Main {
myInteger main() {

return new A<myInteger, myInteger, myInteger, myInteger, myInteger, myInteger, myInteger>()
.mt(new myInteger(2), new myInteger(1), new myInteger(3)); }

}

4 Summary
We have presented a type inference algorithm for a Java-like language. The algorithm allows to declare type-less
Java classes independently from any environment. This allows separate compilation of Java classes without
relying on type informations of other classes. The algorithm infers structural types, that are given as generated
interfaces. The instances have to implement these interfaces.

References
[ADDZ05] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca. Polymorphic Bytecode:

Compositional Compilation for Java-like Languages. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’05, pages 26–37, New York,
NY, USA, 2005. ACM.

[IPW01] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems (TOPLAS), 23(3):396–
450, 2001.

[Plü09] Martin Plümicke. Java type unification with wildcards. In Dietmar Seipel, Michael Hanus, and Armin
Wolf, editors, 17th International Conference, INAP 2007, and 21st Workshop on Logic Programming,
WLP 2007, Würzburg, Germany, October 4-6, 2007, Revised Selected Papers, volume 5437 of Lecture
Notes in Artificial Intelligence, pages 223–240. Springer-Verlag Heidelberg, 2009.

[Plü15] Martin Plümicke. More Type Inference in Java 8. In Andrei Voronkov and Irina Virbitskaite, editors,
Perspectives of System Informatics - 9th International Ershov Informatics Conference, PSI 2014,
St. Petersburg, Russia, June 24-27, 2014. Revised Selected Papers, volume 8974 of Lecture Notes in
Computer Science, pages 248–256. Springer, 2015.

113

