
Model-Integrating Microservices: A Vision Paper

Mahdi Derakhshanmanesh
University of Koblenz-Landau

Institute for Software Engineering
manesh@uni-koblenz.de

Marvin Grieger
University of Paderborn

Department of Computer Science
marvin.grieger@uni-paderborn.de

Abstract: Model-integrating development is a novel approach that aims to provide a
comprehensive conceptual framework for the engineering of flexible software systems.
The atomic building blocks for architecting model-integrating software are model-
integrating components which support the modular cooperation of flexible models and
efficient code at runtime. Model-integrating components achieve flexibility by using
models at runtime and operations on them like querying, transforming and interpreting.
Microservices achieve flexibility by upgrading whole components at runtime. In this
short paper, we sketch the vision of Model-Integrating Microservices (MIMs) that
combine the strengths of model-integrating components with microservices to support
continuous software engineering. With this early work, we intent to initiate a fruitful
discussion about architectural design considerations in the community.

1 Background and Motivation

Model-Integrating Development (MID) [Der15] is a novel approach that aims to pro-
vide a comprehensive conceptual framework for the design and development of flexible
software that can be adapted easily and – in parts – even autonomously [ST09]. More-
over, being able to make changes quickly and to evolve software easily also supports
longevity [GRG+15]. We observe that these capabilities are similarly useful in the emerg-
ing trend of Continuous Software Engineering (CSE).

The building blocks for MID are Model-Integrating Components (MoCos) which we have
presented and implemented in previous research [DEIE14]. MoCos result from the sym-
biosis of Component-Based Development (CBD) [SGM02] and Model-Driven Develop-
ment (MDD) [BCW12] concepts. A MoCo is a non-redundant, reusable and executable
combination of logically related models and code in an integrated form where both parts
are stored together in one component.

In traditional MDD, models (e.g., UML activity models, feature models, component mod-
els) are used at design time. In contrast, in MID models are used directly at runtime, too.
As a result, the internals of MoCos can be easily monitored and analyzed using model
queries, as well as systematically modified using repeatable model transformations. The
same techniques can be used for evolving components using an editor during develop-
ment and maintenance, and adapting them at runtime using an administration panel or an
autonomic adaptation manager component.

By combining the strengths of modeling languages (e.g., abstraction, separation of con-

Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and 
academic purposes. This volume is published and copyrighted by its editors.

M. Derakhshanmanesh, M. Grieger: Model-Integrating Microservices

142



cerns) and programming languages (e.g., performance) within components, the MoCo
concept yields flexible and well-performing software.

Being able to evolve software easily and quickly is also a main goal of the current trend
of microservices [New15]. Microservices support a fine-grained approach to the modular
implementation of distributed, flexible, fault-tolerant and highly responsive software sys-
tems. In contrast to the MoCo approach, which concentrates on the technical means for
adaptability of component internals at runtime, the microservice approach concentrates on
upgradeability of individual, reasonable-sized software components as a whole.

To summarize, we observe that our ongoing work on MoCos has the potential to fulfill
goals similar or complementary to microservices. In order to understand the opportunities
and challenges, we sketch an initial vision of a novel software architecture concept that
aims to combine the strengths of MoCos with the capabilities of microservices. This
concept is introduced subsequently and shall serve as an initial baseline for discussion.

2 Architecture Concept

The architecture concept of Model-Integrating Microservices (MIMs) builds on top of
the established MoCo concept. An MIM is a MoCo that is realized with microservice
technology. Therefore, an MIM adds a couple of additional benefits to the MoCo concept.

The benefits of MoCos over other component concepts are: (i) enhanced flexibility be-
cause the software system and its individual components can be observed using model
queries, can be modified by adapting models using an editor or model transformations
and can be executed using model interpreters, (ii) support of separation of concerns be-
cause each model targets a concern, (iii) understandability and maintainability because
models are assumed to be easier to understand and easier to handle than code, (iv) self-
documentation because a well designed modeling language is assumed to be a documen-
tation and (v) no synchronization problem because there is no redundancy between model
and code within a MoCo unless it is introduced willfully, e.g., to realize reflection.

The expected added value of MIMs over the MoCo concept are: (i) self-containment
because a MIM is deployed together with its full infrastructure and dependencies, (ii) dis-
tribution because MIMs communicate over a network and (iii) decentralization w.r.t. data
because each MIM manages its own data; especially including its models.

An example of two MIMs is depicted schematically in Figure 1. A description from an
external point of view and an internal point of view is given subsequently.

M. Derakhshanmanesh, M. Grieger: Model-Integrating Microservices

143



Container A

MIM A

Container B

«use»
MIM B

Container-Specific Infrastructure
(Execution Environment, Modeling Infrastructure)

Container-Specific Infrastructure
(Execution Environment, Modeling Infrastructure)

PFunction

PManage

Figure 1: High-Level Sketch of two Connected Model-Integrating Microservices

2.1 External View

Externally, each MIM runs in its own process and is deployed in a standardized container1

that can be executed on any (virtual) server node. In the given example, there is one in
Container A (MIM A) and one in Container B (MIM B).

Encapsulation supports full compatibility with other microservices as MIMs can be used in
a black-box manner. Conceptually, and in line with the original MoCo concept, each MIM
offers its application functionality via a group of interfaces at the PFunction port. When
using these interfaces, consumers do not notice any difference to other microservices. Op-
tionally, an MIM can offer invasive management functionality – such as transformations on
its encapsulated models – via secured interfaces at the PManage port. A similar splitting
between a functional interface and a control interface is discussed in related work [Kra09].

To realize MIMs, the Container-Specific Infrastructure comprises an Execution Environ-
ment and also a Modeling Infrastructure. In the tradition of microservices, each MIM
comes with all required dependencies and with the infrastructure for handling models at
runtime (e.g., model query and transformation engines, model interpreters).

2.2 Internal View

Internally, MIMs stress the microservice idea of technology diversification where each
team can choose the tools and languages that suit their skills and goals best.

On the one hand, to leverage existing code and the ability of skilled people to develop
software in a well-known programming language such as Java, each MIM can have a code
portion. This is sketched by the right side of each MIM in Figure 1.

On the other hand, to leverage the powerful capabilities of existing modeling languages
and technologies, each MIM can have a model portion. This is sketched by the left side of
each MIM in Figure 1. Any kind of modeling language can be (re)used for this purpose.
For instance, textual, visual and hybrid Domain-Specific Modeling Languages (DSMLs)
can express application logic and data structures.

1Docker containers are a contemporary example (https://www.docker.com/what-docker).

M. Derakhshanmanesh, M. Grieger: Model-Integrating Microservices

144

https://www.docker.com/what-docker


Importantly, in contrast to MDD, no code is generated for these designed models. Models
such as process descriptions and can be executed by model interpreters that traverse the
model’s abstract syntax graph representation at runtime. In this regard, DSMLs serve a
similar purpose like interpreted scripting languages.

Models are integrated systematically with code inside of an MIM. This approach assumes
that, from a technical point of view, code objects and model objects can both be handled
equally, i.e., they can be referenced and their behavior can be invoked by calling methods
of a facade. Objects from the code portion and the model portion can be connected in
a hard-coded manner but there are flexible alternatives, too. For example, the mediator
pattern [GHJV95] can be followed as illustrated in Figure 1.

3 Impact and Synergy Effects

Based on experience from our established and ongoing research on MoCos, we are con-
vinced that using microservices to realize the MoCo concept in the form of MIMs will
enable the engineering of even more flexible software systems. This is due to the fact
that the MoCo concept and the microservice concept address complementary concerns to
achieve dynamism and to support continuous software engineering.

MoCos focus primarily on the internals of components, i.e., on the use of domain-specific
and general-purpose modeling languages and modeling capabilities such as querying,
transforming and interpreting for the systematic analysis and adaptation of parts of com-
ponents during design and at runtime. Microservices focus primarily on the outside of
components and their containers, i.e., on component size and boundaries, aspects of distri-
bution, updatability and rapid (re)deployment.

Next, we describe an excerpt of opportunities and challenges related to the MIM concept.

3.1 Opportunities

In terms of opportunities, the MIM concept brings a couple of advantages over traditional
microservices and vice-versa.

Most notably, the MIM approach brings the whole world of modeling and especially mod-
els at runtime to the microservice world. This enables the use of various kinds of general-
purpose and domain-specific modeling languages, thus supporting all advantages of mod-
eling like abstraction and separation of concerns via different views. Central to MIMs is
the added flexibility of using models at runtime, so changes to component internals can be
made systematically without swapping the whole component.

To illustrate this benefit in the context of CSE, take for example the timeline depicted
in Figure 2. In this example, the evolution of an MIM over time is shown. The merits of the
MoCo concept allow to perform manual or automatic micro-adaptations by transforming
the integrated models. Such changes are lightweight but limited in scope. In contrast, the

M. Derakhshanmanesh, M. Grieger: Model-Integrating Microservices

145



Transform Transform

MIM A’MIM AMIM A MIM A’

Time

Redeploy

Micro-Adaptation Macro-Adaptation Micro-Adaptation

Figure 2: Example Timeline of an Evolving Model-Integrating Microservice

microservice concept enables to perform heavyweight macro adaptations by upgrading
(i.e., modifying and redeploying) a component as a whole. In a nutshell, a MIM-based
software system can be evolved on various levels of granularity so software engineers can
choose the most appropriate modification technique per context.

Moreover, realizing the existing MoCo concept using microservices, related technology
and best practices, the more general MoCo concept can be optimized for one specific kind
of technological space and community. Thereby, the original MoCo concept also benefits
from the MIM vision, because microservices and available container technologies support
realizing dynamically evolving software from an infrastructure perspective. This point has
been a weak point in MoCos, so far.

3.2 Challenges

In terms of challenges, the MIM concept brings a couple of open issues to be tackled.

For instance, the MIM concept strongly requires the rapid and smooth development of
DSMLs. However, current meta-tools are not quite there, yet. Moreover, the fast (re)de-
ployment of the modeling infrastructure together with MIMs needs to be supported.

Obviously, the introduction of modeling comes with a technological overhead. Despite
offering this approach to handling complexity, microservices already come with their own
technological and organizational overhead. Therefore, adding the extra costs for the de-
sign and use of DSMLs needs to be considered with care. Regarding fundamental con-
ceptual issues, we discussed challenges for the required modeling infrastructure such as
(i) modularization and integration of metamodels, (ii) links between distributed models,
(iii) specification of model semantics as well as (iv) data and control flow between models
and code in earlier work on MoCos [DEG15].

Further challenges are inherited from the nature of traditional microservices. For example,
eventual consistency must be managed because data may exist redundantly (e.g., across
models in different MIMs that are distributed across a network) and fault tolerance must
be supported because MIMs can become unavailable (e.g., during model processing).

M. Derakhshanmanesh, M. Grieger: Model-Integrating Microservices

146



4 Concluding Remarks

We believe that the symbiosis of architectural concepts from the worlds of MoCos on the
one hand, and microservices on the other hand, opens doors for interesting opportunities
in continuous software engineering. With MIMs, software engineers can benefit from the
flexibility of modeling languages across the full software lifecycle including runtime. By
presenting this early work, we hope to initiate a discussion on architectural design consid-
erations. Moreover, we plan to realize an MIM variant of the MoCo infrastructure [Der15]
as a technical basis for carrying out additional feasibility studies.

Acknowledgements. This work is supported by the Deutsche Forschungsgemeinschaft
(DFG) under grants EB 119/11-1 and EN 184/6-1. We thank Gregor Engels for pointing
us at microservices and we thank Jürgen Ebert for his feedback on the text.

References

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineer-
ing in Practice. Morgan & Claypool, 2012.

[DEG15] Mahdi Derakhshanmanesh, Jürgen Ebert, and Marvin Grieger. Challenges for Model-
Integrating Components. In Proceedings of the 2nd International Workshop on Model-
Driven Engineering for Component-Based Software Systems co-located with 18th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoDELS
2015), Ottawa, Kanada, September 28, 201, 2015.

[DEIE14] Mahdi Derakhshanmanesh, Jürgen Ebert, Thomas Iguchi, and Gregor Engels. Model-
Integrating Software Components. In Juergen Dingel and Wolfram Schulte, editors,
Model Driven Engineering Languages and Systems, 17th International Conference,
MODELS 2014, Valencia, Spain, September 28 - October 3, 2014, Valencia, Spain,
2014. Springer.

[Der15] Mahdi Derakhshanmanesh. Model-Integrating Software Components - Engineering
Flexible Software Systems. Springer, 2015.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[GRG+15] Ursula Goltz, Ralf H. Reussner, Michael Goedicke, Wilhelm Hasselbring, Lukas
Märtin, and Birgit Vogel-Heuser. Design for future: managed software evolution. Com-
puter Science - Research and Development, 30(3-4):321–331, 2015.

[Kra09] Sacha Krakowiak. Component Control. In Middleware Architecture with Patterns and
Frameworks (Distributed under a Creative Commons license), chapter 7.4.5. 2009.

[New15] Sam Newmann. Building Microservices. O’Reilly and Associates, 2015.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software - Be-
yond Object-Oriented Programming. Addison-Wesley, second edition, 2002.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, 2009.

M. Derakhshanmanesh, M. Grieger: Model-Integrating Microservices

147




