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Reducing false discovery rates for on-line model checking
based detection of respiratory motion artifacts
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Abstract: Compensating respiratory motion in radiosurgery is an important problem and can lead to
a more focused dose delivered to the patient. We previously showed the negative effect of respiratory
artifacts on the error of the correlation model, connecting external and internal motion, for meaning-
ful episodes from treatments with the Accuray CyberKnifer. We applied on-line model checking,
an iterative fail safety method, to respiratory motion. In this paper we vary its prediction parameter
and decrease the previously rather high false discovery rate by 30.3%. In addition, we were able to
increase the number of detected meaningful episodes through adaptive parameter choice by 452%.
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1 Problem statement

In radiosurgery typically high radiation doses are used to treat cancer. To reduce side ef-
fects, the treatment is planned in advance to tightly follow the tumor’s contour. Some
tumors can move substantially due to respiratory motion and hence approaches for mo-
tion compensation have been proposed. Currently, the tumor’s motion can not be tracked
directly but instead the external respiratory motion is measured. Several methods to pre-
dict external and correlate internal motion exist [SGB+00, SSA04, SBN+07, DHV+10,
EDSS13].

The data used in this work was recorded during treatments with the CyberKnifer system
(CK, Accuray Inc.). The CK is an image guided radiosurgery system. Using the additional
SynchronyTM add on the CK is able to track and compensate for respiratory motion in
real time. Therefore, gold fiducials are placed within or near the tumor in advance of the
treatment. Throughout a treatment session the fiducials are tracked at discrete times us-
ing diagnostic X-ray. In addition, external markers are tracked using an optical system.
A correlation model (CM) is used to estimate the internal from the external motion. The
CM is initialized at the beginning of a treatment session. Over time, changes in the corre-
lation between internal fiducials and external markers, e.g., due to baseline drift may ap-
pear [HNLH08]. Therefore, the CM needs to be updated regularly. Still, sudden respiratory
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artifacts may lead to distinct deviations between tumor and beams that lead to recreation
of the CM or may not be detected by the system [SGB+00, SSA04, SBN+07, ARSS15b].

To overcome latencies in the system, prediction of external motion is used. New methods
are able to predict even irregular data with little error [EDSS13]. While this reduces the
prediction error our research indicates that the CM may become invalid [ARSS15b].

On-line model checking (OMC) is a new iterative fail safety method. At discrete time in-
tervals OMC validates the input data against a previously defined model which parameters
are derived from the data history. Recently, OMC was introduced as a validation method
for respiratory motion. While in principle OMC for artifact detection is feasible, a rather
high false discovery rate (FDR) was observed [RSG14a, RSG14b, ARSS15a, ARSS15b].

For this work we advance the detection of meaningful episodes showing high correlation
errors in the data. In addition, we focus on reducing the FDR of OMC, which we achieve
without sacrificing the overall accuracy. Due to the improved episode detection, we are
able to work on a significantly smaller dataset than previous works.

2 Materials and methods

2.1 CyberKnife treatment data

Our data contains time series of the surrogate and fiducial marker positions si and fi, as
well as the expected fiducial marker positions gi. The error ei = ‖ fi−gi‖ and the mean
error e with respect to the fiducial position are used to select interesting episodes. Particu-
larly, we consider episodes with three subsequent small errors followed by one large error.
Let di = |ei− e| and σd be the absolute and standard deviation from the average error,
respectively. Using the 90% quantile q = Q0.9(d) we define thresholds tl = di|di < q and
tu = tl +σd , where errors below tl are considered small and errors above tu are considered
large.

We use the two thresholds to derive physiologically meaningful episodes [i− 3, i] that
exhibit an amplitude of at least 2mm and 6mm in the first principal component (PC) of
external and internal motion, respectively, and fulfill {i : ei−3,ei−2,ei−1 ≤ tl ∧ ei > tu} .

2.2 On-line Model Checking

During OMC the breathing motion is predicted and the respiratory model is periodically
evaluated.

The prediction model of the chest movement is generated based on a limited history of
data which we assume to indicate the movement in the future. The prediction combines
discrete Fourier series and linear regression

x(t) = d · t +
4

∑
i=0

ci cos(i · f · t)+ si sin(i · f · t)±β . (1)
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Here, β is a deviation factor that allows adopting the prediction to different breathing
patterns. To increase the possibility of correctly predicting the respiration, multiple pos-
sible movement trajectories are generated. For smaller values of an accuracy parameter
α ∈ [0,100] more trajectories are simulated. The influence of the deviation parameter
β is varied in two ways: by varying the actual value of β and by varying the interval
τlb = {[lb,1000] : lb ∈ Z} at which a deviation is applied. Previous implementations of
OMC did not allow changing lb, which was always set to 1 (Fig. 1a). For this work we
focus on varying the parameter lb. For small lb, deviations are added earlier during predic-
tion. For episodes of regular breathing, however, the frequency of irregularities in motion
is small. Hence, a larger value of lb is appropriate as it increases the probability to cor-
rectly predict regular motion. On the other hand, the value of lb should not be too large.
Otherwise, too few trajectories are generated, making it harder to account for natural small
irregularities in respiratory motion.

For validation we estimate how likely we can predict the actual value x0 at time t0 with the
probability

Pr[t0− tI ≤ tp ≤ t0 + tI ∧ x(tp)− xI ≤ x(tp)≤ x(tp)+ xI ], (2)

where x(tp) is the predicted value at time tp and xI and tI define a rectangular region around
the actual value and the measured time. The probability is estimated for the three PCs of
the marker coordinates placed on the patient’s chest. In a second step, we capture how
often in a row the probability is lower than a threshold θ . The validation result is positive
if the probability falls below the safety threshold for three times in a row, indicating there
is an artifact of the patient. Otherwise, the result is negative, indicating normal breathing.

3 Results

For the modified selection of episodes we used data of 194 sessions that showed 23
episodes before [ARSS15b]. With the improved episode selection we are now able to iden-
tify 104 episodes; an increment of about 452%.

For the OMC parameter variation we investigated treatment sessions of 6 patients of a total
mean duration of 35 minutes. Values of tl ranged from 0.83mm to 3.86mm, tu from 1.41

(a) (b) (c)

Fig. 1: Examples of predictions with different τlb, lb = 1,500,750 (left to right). A higher lb gen-
erates fewer trajectories indicated by a smaller corridor width, resulting in a higher probability to
predict the actual value.
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to 7.75. OMC parameters were set to α = 70, θ = 30%, tI = 0.5ms and xI = 0.5mm. We
varied the time interval in four steps τlb, lb = 1,250,500,1000.

We identified 6 episodes fulfilling all criteria. Every episode showed a clear artifact prior to
the high CM error that is detected by the OMC for every τlb, see Fig. 2a-b at approximately
21930s and 2c-d at approximately 33540s and 33600s for examples. The mean FDR of
OMC validation of those 6 episodes ranged from 50.91% with τ1 to 35.29% with τ750. The
false positives were reduced by 51.14% in mean.

4 Conclusion

Compared to the setting τ1 used in previous work, we reduced the number of false positives
significantly by about 31% using τ750 without sacrificing overall accuracy.

(a) (c)

(b) (d)

Fig. 2: Two examples of episodes evaluated with τ1 and τ750 (top to bottom). The PC of external
motion is displayed dark red at the bottom, the PC of the CM blue, at the top. The dashed green,
upper line denotes tu, the lower, gray tl. The red dots give the CM error at the time of measurement.
The background shows the result of the OMC validation: green (negative), red (true positive), and
orange (false positive). The displayed intervals are limited to 3 minutes.
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Even with our modifications, the patient of Fig 2a-b) showed a very high number of false
positive OMC validations although we were able to reduce them from 17 with τ1 to 11
with τ750. Previous results of the same session did not show this behavior. We assume this
is due to timing issues and it will need to be addressed in the future. Leaving this patient
out, the mean FDR of the remaining 5 episodes ranged from 35.49% with τ1 to 6.25% with
τ750 with a mean 89% reduction in false positives.

Overall, we were able to reduce the number of false positives distinctly, making OMC now
better suited for artifact detection in respiratory motion.

For future improvements we suggest to include the correlation model directly into the
OMC. This would allow to immediately check for errors in the correlation model.
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