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ABSTRACT 
In this document, we describe a light-weighted ontology 
mediation method that allows users to send semantic 
queries to distant data repositories to browse for learning 
object metadata. In a collaborative E-learning community, 
member data repositories might use different ontologies to 
control a set of vocabularies describing topics in learning 
resources. This could hinder the search of learning 
resources based on local ontological concepts. With the use 
of WordNet, we develop a toolkit that indexes ontological 
concepts with WordNet senses for semantic browsing in 
order to integrate information in a distributed learning 
community. The effectiveness of the toolkit was validated 
with real-world data in a specific domain, namely E-
learning metadata. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval – information integration, retrieval 
models, search process 

General Terms 
Algorithms, Management, Experimentation, Verification  

Keywords 
Semantic Retrieval, Data Integration, Ontology Mediation 

INTRODUCTION 
As the advance of the Internet and rapid development in E-
learning, more and more institutions are joining to form a 
distributed learning network to allow users to access 
resources from different learning repositories. This creates 
pressure for institutions to provide an efficient way to 
organize a huge volume of materials located in different 
repositories, according to a consistent concept 
classification, in order to answer distributed retrieval 

requests. Currently, the use of metadata and ontologies to 
formalize semantics of concepts in the E-learning domain 
does not completely resolve the problem of interoperability 
in a federated environment. This is because metadata in 
different repositories are very often annotated with 
concepts defined by different ontologies specific to their 
organizations or communities. That makes finding 
information based on a local conceptual framework 
difficult. Different organizations with different 
backgrounds and target audience may use different terms 
with similar semantics to define and describe two similar 
learning resources. In addition to ontological differences, 
linguistic variations in metadata values and lack of use of 
metadata standard across learning network makes direct 
querying with keywords sometimes ineffective to discover 
a conceptually similar metadata. 

PROBLEM DESCRIPTION 
The primary objective of this research is to explore the use 
of semantic signatures expressed in WordNet senses to 
provide mediation between different ontologies in order to 
enhance concept retrieval. Consider the scenario when the 
learner L1 associated with the repository R1 looking for 
learning resources related to the topic of how to find a 
good bass musical instrument, L1 sends out a request 
“search for bass” to remote repositories R2 and R3 
respectively in an E-learning network. However, the 
returned results from them are mixed with many irrelevant 
resources related to catching a bass (e.g. fish). Such a 
problem occurs frequently when the concepts are defined 
by different domain ontologies with different sets of 
vocabularies carrying different intended meanings. Imagine 
another case when the same learner L1 sends out a 
distributed request for learning resources on the topic 
“advance databases”. Since the topic is annotated by the 
concept “database systems II” in remote repositories, that 
is to say it is labelled differently. Therefore, in a concept-
based label matching search, learning resources defined by 
the concept “database systems II” will not be returned for 
the request of “advance databases” even though the two 
concepts are actually semantically equivalent. 
From these simple scenarios, one can easily see that 
without a proper semantic mapping between ontologies in 
heterogeneous data sources, even with the ontology to 
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define vocabulary used to describe metadata on learning 
resources, it is still challenging to find learning resources 
based on the local conceptual definition. 

OVERVIEW OF ONTOLOGY MAPPING 
Semantic or ontology mapping can be described as a 
mapping task that identifies common concepts and 
establishes semantic relationships between heterogeneous 
data models in the same domain of discourse [1]. Since 
semantics is mostly defined by ontological constructs in 
modern knowledge systems, we will use the term semantic 
mapping interchangeably with ontology mapping in this 
discussion. According to [10], ontology mapping between 
two ontologies O1 and O2, can be expressed as a 
mathematical structure: O1 = (C1, A1) to O2 = (C2, A2) by a 
function f: C1→C2 to semantically related concept C1 to 
concept C2 such that A2 |= f(A1) whose all interpretations 
that satisfy axioms in O2 also satisfy axioms in O1. For 
example, if the concept agent (C1) is defined in O1 by a set 
of properties such as <broker, travel agent and officer> 
with axioms such as <part-of agency, is-a individual, is-a 
organization and type-of communicator> (ignoring other 
attributes and cardinality for the sake of simplicity), it is 
possible to map it to a concept representative (C2) defined 
in O2 with a set of properties such as <government agent, 
client, spokesperson and advisor> and having axioms such 
as <part-of government, is-a person, and is-a expert>. This 
assumes that all the semantic interpretations of C1 will be 
respected by C2 in the domain of discourse when executing 
logical inference operation on C2. 

REVIEW OF OTHER APPROACHES 
This section presents a brief overview of two approaches 
on semantic mapping. The two selected approaches are 
GLUE and MAFRA. The former is a system that employs 
machine-learning techniques to find ontology mappings 
with the use of probabilistic multiple learners while the 
latter uses a declarative representation of mappings as 
instances in a mapping ontology defining bridging axioms 
to encode transformation rules. With two domain 
ontologies, for each concept in an ontology GLUE claims 
to find the most similar concept in another ontology [7]. A 
number of features distinct GLUE from other similar 
mapping systems. First, unlike many mapping systems that 
only incorporate single similarity function to determine if 
two concepts are semantically related, GLUE utilizes 
multiple similarity functions to measure the closeness of 
two concepts based on the purpose of the mapping. The 
intuition behind the multiple similarity functions is to take 
advantage of the mapping requirement to relax or limit the 
choice of corresponding concepts. For instance, based on 
the requirement of the application the task of mapping the 
concept “associate professor” can be satisfied by similarity 
criteria “exact”, “most-specific-parent” or “most-general-
child” similarity criteria to find “senior lecturer”, 
“academic staff” or “John Cunningham” respectively. This 

gives GLUE flexibility to find semantic mappings between 
ontologies. Second, GLUE applies a multi-strategy learning 
approach to use certain information discovered by different 
classifiers during the training process. This approach 
divides the classification process into two phases. First, a 
set of base classifiers is developed to classify instances of 
concepts on different attributes with different algorithms. 
Then, the prediction of these base classifiers, assigned with 
different weights representing their importance on overall 
accuracy, is combined to form a meta-learner. Finally, the 
classification is determined by the result from the meta-
learner. As an instance, one base learner can exploits the 
frequency of words in the name property using a Naïve 
Bayes learning technique while another base learner can 
use pattern matching on another property using a Decision 
Tree Induction technique. At the end, the meta-learner will 
gather all the results to form the final prediction. Using 
multiple classifiers, GLUE intends to increase the accuracy 
of the overall prediction. Third, GLUE incorporates label 
relaxation techniques into the matching process to boost the 
matching opportunity based on features of the 
neighbouring nodes. Generally, the relaxation labelling 
iteratively makes use of neighbouring features, domain 
constraints and heuristic knowledge to assign the label of 
the target node. 
MAFRA (Mapping FRAmework) is another ontology 
mapping methodology that prescribes “all phases of the 
ontology mapping process, including analysis, 
specification, representation, execution and evolution” 
[14]. It uses the declarative representation approach in 
ontology mapping by creating a Semantic Bridging 
Ontology (SBO) that contains all concept mappings and 
associated transformation rule information. In this model, 
given two ontologies (source and target), it requires domain 
experts to examine and analyze the class definitions, 
properties, relations and attributes to determine the 
corresponding mapping and transformation method. Then, 
all accumulated information will be encoded into concepts 
in SBO. Therefore, SBO serves as an upper ontology to 
govern the mapping and transformation between two 
ontologies. Each concept in SBO consists of five 
dimensions: they are Entity, Cardinality, Structural, 
Constraint and Transformation. During the process of 
ontology mapping, software agent will inspect the values 
from two given ontologies under these dimensions and 
execute the transformation process when constraints are 
satisfied. 
Some recent approaches like INRIA1 make use of OWL 
API to build a set of alignment APIs with built-in WordNet 
function for the purpose of ontology alignment or axioms 
generation and transformations. However, the details on the 
use of WordNet to generate the alignments are not well 
documented in the published literatures. 

                                                                 
1 http://co4.inrialpes.fr/align/index.html 
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WORDNET  
WordNet is a widely recognized online lexical reference 
system, developed at Princeton University, whose design is 
inspired by “current psycholinguistic theories of human 
lexical memory. English nouns, verbs, adjectives and 
adverbs are organized into synsets (synonym sets), each 
representing one underlying lexical concept that is 
semantically identical to each other” [2]. Synsets are 
interlinked via relationships such as synonymy and 
antonymy, hypernymy and hyponymy (Subclass-Of and 
Superclass-Of), meronymy and holonymy (Part-Of and 
Has-a) [3]. Each synset has a unique identifier (ID) and a 
specific definition. A synset may consist of only a single 
element, or it may have many elements all describing the 
same concept. Each element in a particular synset's list is 
synonymous with all other elements in that synset. For 
example, the synset {World Wide Web, WWW, Web} 
represents the concept of computer network consisting of a 
collection of internet sites. In this context, 'World Wide 
Web', ‘WWW’ and 'Web' are all semantically equivalent. 
For cases where a single word has multiple meanings 
(polysemy), multiple separate and potentially unrelated 
synsets will contain the same word. For instance, the word 
‘Web’ can have 7 multiple meanings defined in WordNet 
as computer network, entanglement, simply spider web and 
etc. 

OUR APPROACH 
To help distributed learning repositories to organize and 
manage their metadata in compliance with a global 
semantic view, we create a semantic mapping strategy 
using WordNet as a mediator to provide word sense 
disambiguation and to generate semantic signature each 
representing learning resource category. 
Semantic signature in the categorical browsing context can 
be defined as a logical grouping of representational word 
senses for a class of metadata. In essence, it is a semantic 
representation of a class label with important WordNet 
senses regarding context. To formalize the concept of 
semantic signature, it can be written as follows: 
 
 

 where ( )Sig c  = semantic signature for class c 
 DSj = set of document senses for class c 
 BSdi = set of best sense in document dj 
 T = all keywords in document dj 

 Fav = selection function to find best sense 
 WS(t) = set of WordNet sense for term ti 
To briefly explain, semantic signature of a class of 
metadata is built from a set of important document senses 
from all documents (metadata records) belonging to a 
particular class. In turn, document senses are generated 

from a collection of the best WordNet senses for all 
representational keywords for a particular document. 
The generation of a semantic signature for a class of 
metadata is divided into three distinct phases. In the rest of 
this section, the general architecture of the methodology is 
described while each phase is discussed in detail and as 
well as illustrated with examples. 

System Design and Architecture 
The methodology for creating semantic signature relies 
heavily on the assumptions that the aggregates of all 
semantic information from metadata records of a particular 
class are a good representation of the concept for that class. 
In fact, the metadata record is an instance of a concept in 
the ontological framework. Moreover, the methodology 
assumes that semantic information of a class can be 
approximated by a set of important word senses from all 
metadata records. Besides, semantic word senses specific to 
the context can be found based on important terms 
extracted from metadata through WordNet. Finally yet 
importantly, it assumes that the local semantic signature for 
a class of metadata is similar to signatures for metadata of 
semantically equivalent concepts in distant repositories. 
The methodology uses k-Nearest Neighbour (kNN) search 
algorithm to classify semantically relevant concepts in 
distant repositories based on local semantic signatures [11]. 
The instances (metadata) of concepts in local repository 
serve as the training dataset. Based on semantic features of 
the local metadata, semantic signatures for each class of 
concepts are formed. To find semantically relevant 
concepts in distant repositories, a distance function is 
defined and used to measure closeness between the query 
signature and semantic signatures for concepts in distant 
repositories. Eventually, k most similar concepts to the 
query signature will be retrieved from remote repositories. 

Figure 1 shows the four phases of the semantic 
signature generation framework. In the Word Extraction 
phase representative features are extracted from each 
metadata document. The Document Preprocessing phase 
eliminates all irrelevant information as well as all non-noun 
words. In the Document Vector Sensitization phase all the 

 
Figure 1. Semantic Signature Generation Framework 
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representative keywords are used as seeds to find the 
corresponding word senses from WordNet. Finally, in the 
Sense Selection phase several strategies are applied to 
select the best word sense is selected among all senses to 
represent each word term. 

 
Signature Generation in Action 
Phase I: Word Extraction 
First, the input metadata are transformed to comply with 
the IEEE LOM standard2 using XML transformer. Then, 
adapted from Edmundsonian paradigm [4], content from 
<Title> and <Description> elements is extracted to 
represent the whole metadata document. That presumes 
that the content from these two elements carry important 
weight as cue phrase to be able to represent the whole 
document [4]. This view seems reasonable in the case of 
learning object metadata because other elements like 
publication date, ISBN or format do not bear good 
semantic information to signify the category of the 
metadata. 
Phase II: Document Preprocessing 
The condensed metadata with only the <Title> and 
<Description> elements are subjected to cleaning to 
remove all stopwords, punctuation information, numerical 
values and irregular symbols. Next, all non-noun words are 
removed using part-of-speech tagger except some 
commonly used phrasal words which carry specific 
meaning. For example, the word “artificial” in the phrase 
“artificial intelligence” will be preserved to retain the 
special meaning of the binary phrase in the branch of 
computer science. The reason why this approach only uses 
nouns as the base keyword is explanined in [5] where it is 
said that long phrases are not easily disambiguated 
comparing to a single word term or a binary word term. 
The accuracy to use a phrase as a distinguishing feature for 
a document classification in effect will be lower through 
previous experiments demonstrated in [6]. On the other 
hand, it has been shown that the use of noun word terms 
carry the most salient expression to serve as distinguishing 
feature for doing text classification [7]. 
Phase III: Document Vector Sensitization 
Supposing that all irrelevant information has been 
eliminated, the physical metadata documents are projected 
onto the vector space model. The document vector 
becomes a logical representation of the physical metadata 
record. Then, using TFIDF weighting scheme we select 
most significant terms across all document vectors to 
represent a category of metadata [12]. After that, each word 
term with the TFIDF score higher than the threshold is sent 
to WordNet to retrieve the corresponding word senses and 
its definition. The threshold is determined by trial and error 
approach with a test run. A single word term can have 

                                                                 
2 http://ieeeltsc.org/wg12LOM/lomDescription 

multiple word senses retrieved. For example, the word 
“search” can be mapped to WordNet senses as <hunting, 
hunt>, <lookup> and <investigation>. Because of this, the 
mapping information of a single noun word term can be 
denoted by a triple construct in the form <T, S, D> where T 
is the original word term, S is the synset of T and D is the 
definition of T. When a noun term can be mapped to 
multiple senses, there will be multiple triples. Take the 
word term “search” as an example. After the sensitization, 
it becomes <search – {hunting. hunt} = “the activity of 
looking thoroughly in order to find something or someone” 
(TFIDF 0.623101)> in triple construct. The triple construct 
format is used to substitute the original word term in the 
master document vector. Then again, recall that since a 
single word term could be mapped to possible different 
word senses through WordNet. Each word sense is 
represented in synset which may have multiple 
synonymous terms. Because of this, the length of the 
document vector in word sense will grow considerably. 
This problem is addressed in the next phase. 
Phase IV: Sense Selection Strategy (S3) 
This is the last, and the most crucial phase in the method. It 
chooses the best word sense among all retrieved word 
senses from WordNet to represent the word term. As 
stated, a word term can be mapped to multiple WordNet 
senses. In such a case, the dimensionality of the vector 
grows significantly after the sensitization procedure. 
Imagine that a word term “light” can be mapped to 15 
WordNet noun senses “visible light”, “light source”, 
“luminosity”, “lighting”, etc. The growth ratio is 15 times 
in this case. Such a high dimension not only negatively 
affects the efficiency of the similarity computation, but 
more seriously, the many senses are noise which does not 
carry actual meaning of the word in the context of the 
document. Included irrelevant senses will distort the 
semantic representation of the signature and lower the 
accuracy in similarity calculation when finding similar 
classes of metadata using signature matching. On the other 
hand, from the semantic knowledge standpoint, WordNet 
senses only provide the lexical information of the word 
term, but not the contextual information to determine how 
the meaning is clarified in a specified context [8]. Without 
that, the semantic signature is just a bigger collection of 
keywords and would have small use in identifying the 
classes of metadata based on the semantic relevance of the 
signature. Therefore, it is necessary to find a way to reduce 
the dimension and only select the sense that conveys the 
main idea of the word in the current context. To select the 
best sense representing a word term, a contextual-based 
Senses Selection Strategy (S3) is applied to retrieved word 
senses. The strategy is based on the assumption that the 
local contextual information of a document serves as a 
good hint to tell which sense represents the actual meaning 
of the word term best. The S3 approach can be summarized 
in the following algorithm: 

13



Steps of algorithm (Calculate the best senses for class C1): 

For each metadata document D ∈ C
1 

  Get the list of synsets for each word term T
1 ∈ D 

  For each synset Syn
1
 of the word term T

1 
    For each sense term Si ∈ Syn1 
       1.  Compute associative frequency af for Si to other senses Sk  
            ∈ Synk, Synk ⊆ Tk and T1 ≠ Tk 
            1.1 Find the sense Sl with highest score Max(af) 
            1.2 If (Max(af) < 1) then go to 2 otherwise stop and  
                 return Sl 
     2.  Compute associative frequency af for Si to k-order parent  
            senses PSk ∈ P(Synk), P(Synk) ⊆ Tk and T1 ≠ Tk 
            2.1 Find the sense Sp with highest score Max(af) 
            2.2 If (Max(af) < 1) then go to 3 otherwise stop and  
                  return Sp 
     3.  Return the most popular sense Sw offered by WordNet 
   Return the Best Sense to represent word term T1 
Aggregate all sense from all important word terms to represent 
signature of the document D 
 
The algorithm works in the following way. For each word 
sense of a word term, it first computes the associative 
frequency (af) of each sense term in a synset to other sense 
terms in other synset of other word terms in the same 
document. From this, the most occurred word sense will be 
used to substitute the semantic representation of the word 
term.  
Next, if the word sense of a word term cannot be 
discriminated by Strategy 1, the algorithm generalizes the 
word term to the k-order parent senses. In this approach, 
the value of k is 1. Hence, it generalizes to its immediate 
parent word sense. Referring to Figure 2, Strategy 2 will use 
the immediate parent sense to compute the associative frequency 
against other senses from other word terms in the document 
vector. As such, in this example the word term t1 will be 
rolled up to its immediate parent through hypernym (is-a) 
relation in the WordNet hierarchy. Then, the parent’s 
synset is used to calculate the associative frequency to 
other word senses for other word terms. Unlike other 
generalization approaches [7, 13], we generalize the sense 
to its most-specific parent only. The reason why it uses 
immediate parent senses (k=1) to compute the associative 
frequency is given in [9] where the most specific parent in 
a hierarchical terminology has a higher distinctive power to 
classify the topic. Essentially following the intuition that if 
a word sense is generalized to higher order parent sense 
than k=1, the generalized sense may be too general and 
becomes incoherent to local context, and would become 
noise when used to classify metadata.  
Finally, as arranged by WordNet, the word senses retrieved 
from WordNet for a particular word are a partial order set 
ranked by popularity in English usage. If the previous two 
strategies can not find the best sense to represent the word 
term, then the most popular sense offered by WordNet will 
be adopted in Strategy 3. 

The rationale behind sequencing three strategies is based 
on observations and hypothesis that the local context is the 
most specific and relevant candidate to provide contextual 
meaning for the word term sense. Therefore, a word sense 
for a particular term can most likely be disambiguated by 
other local senses (Strategy 1). If it could not be resolved 
by step 1, then it compares the immediate parent sense to 
the other word senses to check if the parent sense is a 
frequently occurring sense for the underlying word term. 
At last, the most popular sense is adopted to represent the 
semantic meaning for a word term when the two strategies 
above could not resolve the ambiguity of the word term. 
Following the above procedures, a set of senses becomes a 
semantic signature of a document. In order to generate the 
final semantic signature for a class of documents referring 
to particular concept, TFIDF scheme is applied again to 
each word sense in all document signatures for a particular 
class. Based on the score, the most relevant senses for 
characterizing the class of metadata are aggregated to form 
the final signature for the class. 

Concept browsing in heterogeneous ontologies 
In our application, the generated semantic signatures are 
used to index the actual classes of metadata for fast 
distributed browsing. We developed a tool called Signature 
Generation Indexer (SGI) that supports the methodology 
described in the previous section. Focusing on the 
efficiency, the design of SGI is to allow repository 
operators to produce semantic signatures for classes of 
learning object metadata easily without tedious human 
interaction, or complicated implementation. 

The ultimate goal is to achieve semantic search based on E-
learning topics defined by heterogeneous ontologies in a 
federated network. In a collaborative learning environment, 
users expect to be able to access all the learning resources 
within the learning network. To fulfill this anticipation, it is 
important to assume that all participant repositories in the 
collaborative network employ the same strategy to index 
learning resources metadata with WordNet semantic 
signature.  
In this way, when users launches a query by selecting a 
specific topic (concept) from the local ontology (e.g. via 
user interface), the corresponding semantic signature 
representing the topic is retrieved from local database. The 
signature is then sent across the network to participating 

Figure 2. Compute associative frequency between immediate 
parent with other word sense 
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learning repositories. The query in the form of semantic 
signature is the input of the Similarity Calculator in distant 
repositories. The Similarity Calculator is used to compute 
the similarity of signatures in each of the learning 
repositories. The similarity calculator uses the cosine 
similarity function, thereby the more matched elements in 
the signature, the higher the score is. In calculating the 
similarity score, different weights are assigned to senses 
from <Title> and <Description> in which the match in the 
title sense gets higher contribution to overall score than the 
one from the description tag. 
In order to ensure the global accuracy of the result, results 
from participating remote repositories are merged and 
sorted in the descending order based on the cosine 
similarity score. Then, the top k (k=5) topics of the 
metadata are offered as the answer to the local query. The 
overall operation of the semantic-based browsing of 
learning resources metadata is shown in Figure 3. 

IMPLEMENTATION 
The SGI is implemented in the C# programming language. 
The current version is a desktop application, but it can be 
easily extended to a web service. The goal of SGI is to 
integrate signature generation, document indexing and 
browsing capability. The signature indexes are stored in an 
inverted index database (e.g. MS Access). The similarity 
calculator is a separated module implemented in C# as well 
and connected to the index database. Figure 4 shows the 
browsing interface of SGI to illustrate how to search distant 
concept semantically. 

EVALUATION  
In order to test the hypothesis of using semantic signatures 
to enable distributed semantic browsing and to improve 
relevance we have simulated the distributed concept 
retrieval and compared the results with the traditional 
keyword-based and label-matching method. To replicate 
the distributed repositories in a collaborative E-learning 
network, the three independent databases are set up. As 
shown in Figure 5, they are called “local”, “remote1” and 
“remote2” where the local, of course, denotes a local data 
source and both remote1 and remote2 simulate distant data 
sources. A single master set of metadata in 8 different 
categories is distributed evenly in number and randomly 
into the three simulated repositories. 
The metadata have been transformed to conform to the 
IEEE LOM format. After the distribution, the local 
database contains the metadata that represents the set of the 
training data for the classifier. During the training phase, 
the kNN classifier uses the instance of the local metadata to 
learn the features to identify the class of the metadata. It 
starts by extracting keyword terms from each category of 
metadata and projecting them into the vector space model. 
Next, after running through the signature generation 
module, each category of metadata is represented and 
indexed by a semantic signature in the database. 
The dataset in both remote1 and remote2 is controlled to 
model the situation of potentially different ontological 
classification in a distributed environment. To simulate the 
effect of varied concept labelling, the original 8 categories 
of metadata are expanded to 14 categories in remote1. The 
6 derived categories are labelled with different class names 
from their respective sources and described with the 
metadata taken out from source categories. Each newly 
derived category contains metadata belonging to the same 
class. To illustrate, a part of the metadata from the category 
“computing science” is distributed to the derived categories 
“technology” and “engineering” in remote1.  Thereby, the 
metadata for concept “computing science” is now grouped 

Figure 3. Integrated process of semantic-based 
browsing of metadata 

 

Figure 4. Browsing interface of SGI 
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into “computing science”, “technology” and “engineering”. 
Essentially, this simulates the situation when a concept 
“computing science” could be categorized differently into 
concepts like “technology” and “engineering” in different 
ontology. The same distribution principle is applied to 
remote2 database which includes 13 categories of which 7 
are derived categories. 

Similar to the local database, each category of the metadata 
in remote1 and remote2 is mapped to a semantic signature 
in WordNet senses and stored in the local database as an 
index. To test semantic-based search, semantic signature 
representing a local concept is sent to query the remote 
repositories. The semantic similarity is compared between 
the query signature and the distant signature based on the 
similarity function. Finally, the result of the k most similar 
concept signatures from the remote databases are studied 
based on the relevance metric. 

Dataset 
Since there is no publicly available dataset of learning 
resources metadata, the experiment metadata were acquired 
through a number of different sources. Table 1 shows the 
category of metadata acquired and their respective sources. 
In total, 2235 metadata subdivided into the 8 different 
categories are acquired. The dataset is partitioned into 
training and testing groups. As mentioned, the local 
database stores the training dataset while remote1 and 
remote2 store the testing dataset. All metadata are known 
with their class label. Metadata are distributed randomly, 
using Microsoft Excel random generator, to train and test 
the group. After distribution, the local database contains 
667 training records while remote1 and remote2 contain 
1568 testing records. 

Results 
In order to gauge the effectiveness of the proposed 
mediation method between different E-learning ontologies, 
three standard metrics for information retrieval are used in 
the evaluation of the system performance: they are Recall, 
Precision and F-measure. Table 2 shows that the use of 
semantic signature can consistently improve retrieval 
relevance in terms of recall and precision. In all categories, 
the semantic based retrieval out perform both keywords-

based retrieval and label-matching retrieval. 

As oppose to the classic or traditional keywords-based 
representation, semantic-based indexing with WordNet 
senses can include more lexicon information than simple 
syntactic approach. This implies that more features will be 
added to the class signature representation. Since more 
features are added, that may also mean that more noise is 
included as well. 

Intuitively, the increased relevance of retrieval can be 
attributed to the expansion of features in class 
representation. However, different from what we expected, 
the precision does not decreased. It is suspected that due to 
the relatively small size of the dataset and 1-k hypernym 
generalization, the senses included in the signature are 
‘good’ in terms of classification. Therefore, combined with 
a good contextual-based sense selection strategy, WordNet 
as a mediatory can provide source for ambiguity resolution 
and semantic information for the process of semantic 
browsing. Coupled with that, the selection of kNN 
algorithm as the classifier also contributes to the 
performance of the system. 
kNN is an instance-based classifier. The performance of 
instance-based classifiers is more dependent on the 
sufficiency of the training set rather than other machine 
learning classification algorithms. Thus, it is a 
disadvantage for kNN to have a small dataset for training 
and testing. A smaller training set implies more terms or 
term combinations important for content identification may 
be missing from the training sample documents. This 
negatively affects the performance of a classifier. 
Nevertheless, the ontology (e.g. WordNet) guided 
approach seems to somewhat reduce the negative influence 
of this problem. The replacement of child concepts with 
parent concept through hypernym relationship appears to 
be able to discover an optimum concept set without 
adversely affecting performance. Therefore, an important 
term, which resides low in the concept hierarchy may be 
mapped to a parent concept and included in the signature 
for class comparison, even if this term is not included in the 
training set. 

Table 1. Source and Category of Metadata 

Category Source No. of 
records 

Accounting Business Source Premier 
Publications 

382 

Biology Biological and Agricultural Index,  
BioMed Central Online Journals 315 

Computing 
Science 

Citeseer 320 

Economics American Economic Association’s 
electronic database 353 

Education Educational Resource Information 
Center 307 

Geography Geobase 237 
Mathematics arXiv.org, MathSciNet 157 
Psychology PsycINFO, ERIC 164 

Table 2. Comparison on precision, recall and F-measure on 
concept retrieval 

Precision Recall F-Measure Cate
gory S K L S K L S K L 
Acc 1 0.6 0.5 1 0.75 0.5 1 0.6 0.5 
Bio 0.6 0.6 0.5 0.75 0.6 0.5 0.6 0.6 0.5 
CS 1 0.5 0.3 1 0.5 0.3 1 0.5 0.3 
Econ 1 1 0.6 1 0.75 0.6 1 0.6 0.6 
Educ 0.6 0.5 0.5 0.75 0.75 0.5 0.6 0.45 0.5 
Geo 0.6 0.5 0.5 0.75 0.5 0.5 0.6 0.5 0.5 
Math 1 0.3 0.6 0.6 0.5 0.6 0.7 0.36 0.6 
Psy 1 0.3 0.3 0.6 0.6 0.3 0.7 0.4 0.3 
S = Signature-based retrieval, K = Keywords-based, L = Label-matching 
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DISCUSSION 
The improvement on concept retrieval by using semantic 
signature is not uniform across different categories. For 
example, the improvement on retrieval of “Psychology” 
and “Accounting” metadata is more than improvement on 
“Biology” and “Geology”. We believe that for some classes 
of metadata like “Biology”, which are characterised by a set 
of specific keywords, the use of semantic signatures does 
not add extra useful information into the representation 
model to help in classifying metadata. On the other hand, 
using 1-k hypernym generalization on such a highly 
specialized domain may in fact introduce more noise to 
reduce the matching possibility in similarity calculations. 
In addition, with a small size of dataset, over-fitting on 
classification model may also result. Therefore, further 
experimentation and analysis are needed to fully 
understand the impact of WordNet signature with sense 
generalization in classification of metadata. 

CONCLUSION 
This project offers two important contributions. First, it 
gives a new light-weighted semantic (ontology) mapping 
approach to enable cross platform concept browsing in a 
federated network. Unlike many current practices in 
semantic mapping that either require intensive user 
involvement to provide mapping information, or resort to 
complicated heuristic or rule-based machine learning 
approach, this work shows an effective automatic mapping 
protocol that can allow federated concept browsing with 
semantic signature. It is evident for the experimental results 
that establish the merit of using WordNet to provide 
semantic knowledge for metadata classification in the 
domain of E-learning. The merits include the provision of 
semantic representation of categorical data and increased 
semantic relevance in categorical browsing. 
By using immediate parent sense generalization during 
sense selection process, it does not only successfully 
reduce the dimension in semantic signature, but more 
importantlly introduces flexibility in the sense selection and 
increases the opportunity to find a better sense without 
compromising the relevance in the search result. This 
creates incentive to explore the use of other sense selection 
strategy. 
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