
ACT (Abstract to Concrete Tests) - A tool for generating
Concrete test cases from Formal Specification of Web

Applications

Khusbu Bubna
International Institute of Information Technology,

Bangalore
khusbu.bubna@iiitb.org

Sujit Kumar Chakrabarti
International Institute of Information Technology,

Bangalore
sujitkc@iiitb.ac.in

ABSTRACT
As web applications are becoming more and more ubiqui-
tous, modeling and testing web applications correctly is be-
coming necessary. In this paper, we have used a formal
specification language, State chart to model the navigation
behaviour aspect of web applications. This paper presents
the ACT (Abstract to Concrete Tests) tool, an approach
of generating concrete executable Selenium RC JUnit test
cases from a formal State chart specification model. The
ACT tool can generate concrete Selenium RC JUnit test
cases from abstract test cases by utilizing data shared across
different interactions of the web application with the web
server. Throughout the paper, a case study of Learning
Management System is used to illustrate our approach.

1. INTRODUCTION
Nowdays, the use of web applications has grown to a huge
extent. Web applications are used in online shopping, online
banking, etc., so designing and testing web applications rig-
orously has become very crucial. Formal specification lan-
guages are used to clarify customer’s requirements by re-
moving ambiguity, inconsistency and incompleteness in the
software requirements and design process. Thus, they are
helpful in reducing the requirement errors in the early stages
of the software development life cycle. Formal specifications
are mostly used in critical systems where the cost of failure
is catastrophic. Formal specifications can be used in several
ways of design cycle, static verification and test generation
being the most notable.

In this paper, we present the ACT (Abstract to Concrete
Tests) tool, which uses a novel approach of generating con-
crete test cases from abstract test cases by using data shared
across different interactions of the web application with the
web server. A formal specification language ‘Statecharts’ [1]
was used to model the navigation behaviour aspect of web

Copyright c©2016 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

applications. Then abstract test cases were generated from
the State chart model in our ACT tool. Abstract test cases
cannot be directly executed on the implementation since
they are defined using elements and objects of the State
chart model, and must be first transformed to concrete test
cases. So finally, concrete executable Selenium RC JUnit
test cases are generated from these abstract test cases in our
ACT tool which can be directly executed on the implemen-
tation. The remainder of the paper is organized as follows.
Section 2 gives a brief review of related work, while Section
3 explains the proposed methodology used by our ACT tool.
Section 4 illustrates the State chart specification for model-
ing the navigation behaviour of web applications. Section 5
illustrates the generation of test path from the State chart
model. Section 6 illustrates how abstract test cases are gen-
erated using Symbolic execution and SMT solver. Section 7
illustrates the translation of abstract test cases to concrete
test cases. Section 8 concludes the paper and Section 9 gives
scope for future work.

2. RELATED WORK
A number of formal, informal and semi-formal models like
automata [2], Statechart [3], UML and OCL [5], UML
based web engineering, alloy, directed graph and control flow
graphs, SDL, term rewriting systems, XML have been pro-
posed in various studies [6] for modeling web applications.
The authors in [5] have proposed UML class diagram and
the authors in [3] have proposed statechart for modeling web
navigation. A methodology for generation of concrete exe-
cutable tests from abstract test cases using a test automa-
tion language, the Structured Test Automation Language
(STAL) was proposed in [7]. The authors in [7] have pro-
posed a mapping between identifiable elements in the model
to JUnit executable java code. The author in [8] have pre-
sented an approach using domain specific languages to model
the navigation aspect of the web application and have used
a UI mapping XML file to generate concrete test cases for
Selenium and Canoo web test tools. In [8], an approach that
utilizes recorded user interaction data to construct a state
machine model especially for testing AJAX functionality is
presented. Input data is provided from the collected requests
and test oracles have to be created manually. The generated
test sequences are translated into the test case format of the
Selenium test automation tool. The authors in [9] have used
model checking to generate test cases for control flow and
data flow coverage criteria. The authors in [10]

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
16

Figure 1: Proposed Test Generation Method used
by our ACT tool

3. PROPOSED METHODOLOGY
Figure 1 gives an overview of the approach that the ACT
(Abstract to Concrete test) tool uses for generating concrete
Selenium RC JUnit test cases from the formal State chart
web navigation model. The navigation behaviour of our case
study web application is modeled using the formal specifica-
tion language ’State chart’. The front end which generates
test paths from the State chart model can be a test path
generating algorithm like model checking or graph coverage
algorithm. Abstract test cases are generated from the test
paths with the help of the State chart specification. Then
the abstract test cases generated are converted to Selenium
RC JUnit concrete test cases using the Mappings XML file.
Each of these steps are explained in elaborate details in the
remaining sections.

4. A FORMAL MODEL FOR WEB NAVI-
GATION - STATE CHART

From among the various finite state based formal specifica-
tion languages, we have used Statecharts [1] for modeling the
navigation behaviour of web applications. Figure 2 shows
the State chart specification of our case study, the Learn-
ing Management System (LMS) used within our institute.
In the Statechart specification shown in Figure 2, Inactive
state denotes that the web application has not yet started
operating. The composite state Active denotes that the web
application is in an operating state. Inside Active state, each
web page was modelled as a separate state. When the user
navigates from one webpage to another, there is a transition
between the corresponding states. LMS Login Page denotes
the Login page of Learning Management System. Here we
have used the mathematical notations of sets and first order
predicate logic constructs in guards and actions of the tran-
sitions in State chart model. In a web application, the value
which is entered by the user in one interaction of the web
application with the web server is often used back in another
interaction of the web application with the web server. For
example, as shown in the State chart model of Figure 2, ad-
min can register a student in the LMS System by entering
values in the username and password input fields in the Add
Student User Page. A necessary requirement for a student
to login in the LMS Login Page is that the student must be
registered beforehand and so must have a valid student user-

name and password. Thus there is a data flow between Add
Student User Page page and LMS Login Page. The vari-
ables valid student usernames and valid student passwords
are defined in the transition from state Add Student User
Page to Successfully Student Added Page and are used in
the transition from state LMS Login Page to My Courses
web page. The variables valid student usernames,
valid student passwords, valid teacher usernames and
valid teacher passwords are shared between different inter-
actions of the web application with the web server and across
different users using the web application. When the web ap-
plication has started operating, these variables are initialized
to the null set. For example as shown in the State chart di-
agram of Figure 2, variables valid student usernames,
valid student passwords, valid teacher usernames and
valid teacher passwords are initialized to null set in the tran-
sition from state Inactive to state Active. On a successful
registration of either a teacher or a student, the values of
these variables are updated and when either a student or
a teacher logs in the LMS Login page, the value of these
variables are accessed to check if a student or teacher is al-
ready registered or not. Our ACT tool, as illustrated in the
remaining sections can store and share data across different
interactions of the web application with the web server and
can generate Selenium RC JUnit concrete test cases utilizing
this data.

5. TEST PATH GENERATION FROM STATE
CHART MODEL

The front end step in the ACT tool which generates test
paths can be any test path generating algorithm like graph
coverage algorithms. But model checking which is a formal
verification technique can also be used to generate test paths
by formulating a temporal logic specification as a trap prop-
erty to be verified. The straight forward way to represent
a State chart as a transition system is to flatten its hierar-
chy. In our approach, the hierarchical State chart naviga-
tion model was first flattened and then transformed into an
SMV program. The trap properties for navigation were writ-
ten in CTL formulas and then the Symbolic Model Verifier
(NuSMV) tool is executed which generates the counter ex-
amples. For example, the CTL Trap Specification Property
for specifying that state SE-230 Software Testing is reach-
able from the initial state is:

CTL Trap Specification Property:

! EF(state=SE-230 Software Testing)

This trap property will generate a counter example which is
our test path. For this counter example there will be two
paths. One from LMS Login Page to My Courses Page to
SE-230 Software Testing Page. And the second test path will
be the loop from LMS Login Page to Successfully Student
Added Page then to My Course Page to SE-230 Software
Testing page. Here we will restrict the length of the loop in
the counter example by using bounded model checking and
set the length of the counter example to a fixed size. The
CTL Trap properties for generating test paths are written
for various requirements of the web application, like the top
page of a web application should be reachable from all the
pages of the web application. In addition, we also wrote
CTL trap properties for node coverage criterion.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
17

!!!
!
!
!

!
Inactive!

Initialize!/!
valid_student_usernames=null/^/
valid_student_passwords=null/^/
valid_teacher_usernames=null/^/
valid_teacher_passwords=null/^/
valid_admin_username=``admin’’/^/
valid_admin_password=``admin’’/

shutdown!

LMS!Login!Page!

My!Courses!!

My!Courses!

Admin!Home!!
Page!

Add!Users!

Add/
Users.clicked/

Add/
Student.clicked/

Add!Student!
!User!Page!

Add!Teachers!!
User!Page!

Add/Teacher.clicked/

Successfully!
Student!Added!

Page!

Add.clicked/
[!username1!∉!valid_student_usernames!∧!
password1!∉!valid_student_passwords!]!/!
!
valid_student_usernames/:=/
valid_student_usernames/∪/username///∧/
valid_student_passwords/:=/
valid_student_passwords/∪/password//

Successfully!
Teacher!Added!!

Page! Error!Page!

Add.clicked/
/
[!username1!∈!
valid_student_usernames!!∧!
password1!∈!
valid_student_passwords!]!

Add.clicked/
/

[!username1!∈!!
valid_teacher_usernames/∧!
password1!∈!
valid_teacher_passwords!]!

Add.clicked/
[!username1!∉ !"#$%_!"#$ℎ!"_!"#$%&'#"!∧!
password1!∉ !"#$%_!"#$ℎ!"_!"##$%&'#!]!/!

!
valid_teacher_usernames/:=/valid_teacher_usernames///

∪ !"#$%&'#!! ∧/
valid_teacher_passwords/:=/valid_teacher_passwords/

∪/password!

Login.clicked/
[!username2!∈!valid_student_usernames!!∧!
password2!∈!valid_student_passwords!!]!
!

!
Login.clicked/

[!username!=!valid_admin_username!/∧!/
!!!!password!=!valid_admin_password!]!

Login.clicked/
[!username3!∈!!valid_teacher_usernames!/∧/
!!!password3!!∈!!valid_teacher_passwords!]!
!

CSISEI270!Design_and_Analysis!!
_Of_SafetyICritical_Systems!

SEI230_Software!
_Testing!

Design/and/Analysis/
of/
Safety/Critical/
Systems.clicked/

News!Forum! General!Discussion!
Forum!

Grades!Page!

Slides!Folder!
page!!

Grades.clicked/

News/
Forum.clicked/

Software/
Testing.clicked/

General/
Discussion/
Forum.clicked/

Slides/
Folder.clicked/

Test!Driven!!
Developemnt!
Assignment!Page!

TDD/
Assignment.clicked/

Logout.clicked/

Active!
Login.clicked/

[!username2!∉!valid_student_usernames/⋁!!!
!!password2!!∉!valid_student_passwords!!!]!

!

Logout.clicked/

Login.clicked/
[!username!∉!valid_teacher_usernames/⋁!!!
!!password!!∉!valid_teacher_passwords!!!]!
!

Figure 2: Formal Model showing Web Navigation of Learning Management System using UML State chart
model.

Test Criterion CTL Trap Property Description

Node coverage ! EF (state=SE-230 Software Testing)

A CTL Trap property for node

coverage for state SE-230

Software Testing Page.

The top page is reachable from all the pages
! AG((state=SE-230 Software Testing) →

EF(state=LMS Login Page))

LMS Login Page is reachable

from SE-230 Software Testing

Page.

Every page is reachable from the top page
! AG ((state=LMS Login Page) → EF

(state=SE-230 Software Testing))

SE-230 Software Testing Page is

reachable from LMS Login Page

page.

Table 1: Some CTL Trap Temporal Logic Properties that were used for generating test paths from flattened
State chart model of Learning Management System in NuSMV tool.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
18

6. ABSTRACT TEST CASES GENERATION
USING SYMBOLIC EXECUTION AND SMT
SOLVER

After the test paths are generated from the State chart
model, symbolic execution is carried out to generate input
values to guide the execution along the test paths. The path
predicate corresponding to the test path is computed. This,
in turn, is given to an SMT solver to generate concrete input
values. These values are used to generate the abstract test
cases. The algorithm used to generate the abstract test cases
using symbolic execution is shown in the block diagram in
Figure 3.

6.1 Path Predicate Formation & Computation
of Concrete Values

This section illustrates the method of formation of path
predicates and the generation of concrete values using the
example of the counter example generated from the CTL
Trap Property !EF(state=SE-230 Software Testing). The
variables valid student usernames and valid student passwords
in the State chart model in Figure 2 are internal program
variables and are internally maintained as sets. These vari-
ables are initialized to null in the transition from state In-
active to composite state Active as shown in Figure 2. The
path predicate formed for the transition from Add Student
User Page to Successfully Student Added Page is
(username1 6= ””) ∧ (password1 6= ””) ∧ (username1 /∈
φ) ∧ (password1 /∈ φ).

Sets valid student usernames and valid student passwords are
consequently updated to username1 and password1. So the
path predicate for the transition from state LMS Login Page
to My Courses is ((username1
6= ””∧(password1 6= ””)∧(username1 /∈ φ)∧(password1 /∈
φ)∧(username2 ∈ username1)∧(password2 ∈ password1))
So the final path predicate for the counter example
! EF(state=SE-230 Software Testing) is: ((username1 6=
”” ∧ (password1 6= ””) ∧ (username1 /∈ φ) ∧ (password1 /∈
φ) ∧ (username2 ∈ username1)∧
(password2 ∈ password1))
Here username1 and password1 are the symbolic variables
corresponding to the Add Student User page, and username2
and password2 are the symbolic variables corresponding to
the LMS Login page. An SMT solver like CVC3 [11] would
determine if the path predicate is satisfiable, and if yes, then
it will generate satisfying values for the symbolic variables
occurring in the formula and hence the concrete input values
would be generated. Suppose, if a counter example is gen-
erated for the path from state Inactive to state Error Page
through states LMS Login, Admin Home Page, Add Users
and Add Student User Page, then the path predicate formed
will be: (username1 ∈ φ) ∧ (password1 ∈ φ) which will be
a contradiction i.e. unsatisfiable predicate. Hence, this path
will be rejected as infeasible.

6.2 Abstract Test Cases Generation
Finally the abstract test cases are generated by plugging
in concrete input values which are computed in the sym-
bolic execution stage at appropriate points in the counter
examples. The phases in the counter examples which have

Abstract Test
Case Generation

Path

Spec

Symbolic
Execution

Path
Predicate
Extraction

SMT
Solver

Form Test
Case

Abstract
Test
Case

Symbolic
Execution

Trace
Path

Predicate

Concrete
Values

Figure 3: Abstract test case generation using Sym-
bolic execution

t1

s1

t4

s3

t5

valid student usernames← φ
valid student passwords← φ

username← “admin′′

password← “admin′′

Login.clicked
AddUsers.clicked
AddStudent.clicked
username1← input()
password1← input()
Add.clicked()

username1 /∈ valid student usernames
password1 /∈ valid student passwords

valid student usernames← valid student usernames
∪{username1}

valid student passwords← valid student passwords
∪{password1}

Logout.clicked

username2← input()
password2← input()
Login.clicked()

username2 ∈ valid student usernames
password2 ∈ valid student passwords

(a)

valid student usernames = φ
valid student passwords = φ

username1
password1

username1 /∈ φ
password1 /∈ φ

valid student usernames = {username1}
valid student passwords = {password1}

username2
password2

username2 ∈ {username1}
password2 ∈ {password1}

(b)

Figure 4: Symbolic Execution: (a) Control flow
path; (b) Symbolic Execution Trace

corresponding GUI elements in system implementation are
extracted in sequence and their user input fields are replaced
by concrete values computed in symbolic execution stage.

7. TRANSLATION OF ABSTRACT TEST
CASES TO CONCRETE TEST CASES

The last step is deriving concrete executable test cases from
these abstract test cases so these concrete test cases can
communicate directly with the system under test. The ab-
stract test cases generated from the State chart model are
on the same level of abstraction as the model since the State
chart model they are generated from contains only partial
information of the implementation under test. In Figure 5,
even through the input values are concrete, the test case is

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
19

username=“admin”
password=“admin”
Login.clicked
Add Users.clicked
Add Student.clicked
username1=“MS2013009”
password1=“abc”
Add.clicked
Logout.clicked
username2=“MS2013009”
password2=“abc”
Login.clicked
Software Testing.clicked

Figure 5: An example of an abstract test case gen-
erated for the counter example generated from the
CTL Trap Temporal Logic Property !EF(state=SE-
230 Software Testing)

still abstract because firstly variables like username1, pass-
word1, etc. needs to be mapped to the implementation enti-
ties . And, secondly many of the inputs that may be needed
may not be there in the original specification and are only
available after the exact implementation is finished. For
generating concrete test cases from the abstract test cases
generated in the previous step, the ACT tool uses a map-
ping between phrases used in the State chart specification
model to Selenium Remote Control JUnit test code which
helps to translate an abstract test to concrete Selenium RC
JUnit test. Figure 8 shows a part of XML file that was cre-
ated to give a mapping between the phrases in the State
chart model of Figure 2 to Selenium RC JUnit java code
for our case study of Learning Management System. The
mappings XML file is created manually. Since, the State
chart model contained only partial information of the final
implementation. So, now the additional information that
were abstracted out from the State chart model has to be
added in the Mappings XML file in order to generate the
concrete Selenium RC Junit test cases. From the source
code implementation of the case study of HMS, we found
that in the Add Student User page there were additional in-
put fields like Name and Department which were abstracted
out in the State chart specification of Figure 2. So these
fields were also included in the Mappings XML file. Using
the generated abstract test cases from the previous step and
the mappings XML file created manually and fed as input
to the ACT tool, a set of concrete Selenium RC Junit test
cases is generated in this step. Figure 5 shows one of the
concrete Selenium JUnit test case generated from our ACT
tool for the case study of Learning Management System.

8. RESULTS
For two other web based enterprise applications developed
within our institute, a Hospital Management System (HMS)
and a Student Information System (SIS), we modeled our
web applications using the proposed method.

Table 2 shows the lines of code (LOC) of the two systems,
the number of nodes in the flattened State chart (Nflat), the
number of mappings and the number of abstract test cases(
or counter examples) used for the various test coverage cri-
terion. A total of 14 abstract test cases were used for HMS

<mappings>
<mapping>

<phrase>state</phrase>
<value>Add Student User</value>
<code>

selenium=new DefaultSelenium(“localhost”,4444,”firefox/”
+“Applications/Fire-

fox.app/Contents/MacOS/” +“firefox-
bin”,“https://lms.iiitb.ac.in/moodle”);”

selenium.start();
selenium.open(“/course/view.php?id=19”);

</code>
</mapping>
<mapping>

<phrase>username1</phrase>
<value>u1</value>
<range>non blank</range>
<code>selenium.type (“css=input[id=’username’,]”,u1);</code>

</mapping>
<mapping>

<phrase>Name</phrase>
<value>n</value>
<code> selenium.type(“css=input[id=’name’]”,n); </code>

</mapping>
<mapping>

<phrase>Department</phrase>
<value>dp</value>
<code> selenium.type(“css=input[id=’department’]”,dp);</code>

</mapping>
</mappings>

Figure 6: A part of Mappings XML file showing
mappings between phrases used in State chart spec-
ification model of Figure 2 to their corresponding
Selenium RC JUnit code

system and a total of 53 abstract test cases were used for
SIS System for various test criterion. Currently, we have
modelled the two case studies of HMS System and SIS Sys-
tem but we are currently running our ACT tool and trying
to calculate the number of concrete test cases that would be
generated.

9. CONCLUSION
Test cases generated from formal specifications are often at
an abstract level. They cannot be executed directly using a
test automation tool, e.g. Selenium. The existing methods
have tried to deal with this problem using a mapping ap-
proach. However, this approach is fundamentally limited in
its capability to translate abstract test cases into concrete
test case due to the presence of data flow relationship be-
tween atomic interactions between the (test-)client and the
server. In this paper, we have presented a precise charac-
terisation of this problem. Further, we have provided a test
generation methodology which uses symbolic execution to
resolve the data-flow between atomic interaction. The re-
sulting abstract test cases are concrete enough so that the
mapping method is effective in completely translating them
to concrete test cases that can be directly executed on Sele-
nium test runner. Through some of the steps like creation
of Mappings XML file, construction of State chart, etc are
manual but there is fairly a reasonable automation in the
other steps in the ACT tool. Therefore, our approach is
able to achieve a reasonable amount of end to end automa-
tion of the test generation process from formal specification.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
20

Web Applications Nflat LOC No. of Mappings
No. of abstract tests
(counter examples)

Hospital Management Sys-
tem (HMS) 6 133

20

Node coverage 6

Top page is reachable from all the pages 4
Every page is reachable from the top page 4

Total 14
Student Information System
(SIS) 19 15,770 56 Node coverage 19

Top page is reachable from all the pages 17
Every page is reachable from the top page 17

Total 53

Table 2: Results of test generation on two other case studies Hospital Management System and Student
Information System

10. FUTURE WORK
In our future work, we will try to address the following is-
sues:

• Currently we are running our ACT tool on our LMS
system and we are currently trying to find out the
number of concrete test cases that would be generated
for various test criteria. So in our future work, we
will try to find out the relation between the number
of concrete test cases and the number of abstract test
cases and we will also try to see how the number of
concrete test case and the number of abstract test cases
varies with the size of the State chart model.

• In our future work, we will generalise this approach to
apply other forms of formal specification and coverage
criteria. In addition, we intend to apply other forms
of front-end techniques like graph coverage criteria in
generating test paths instead of the model checking
approach for generation of test paths .

11. REFERENCES
[1] D. Harel,“Statecharts: A Visual formalism for complex

systems”, Science of Computer Programming, Volume
8, Issue 3, June 1, 1987, Pages-231-274.

[2] K. Homma, S. Izumi, K. Takahashi and A.
Togashi,“Modeling and Verification of Web
Applications Using Formal Approach”. IEICE Tech.
Report, 2009.

[3] M. Han,C. Hofmeister,“Modeling and Verification of
Adaptive Navigation in Web Applications”, Proc. of
6th Intl. Conf. on Web Engg., pp. 329-336.

[4] F. Ricca, and P. Tonella, “Analysis and Testing of
Web Applications”, Proc. of the 23rd Intl. Conf. on
Software Engineering, pp. 25-34, 2001.

[5] M. H. Alalfi, J. R.Cordy, T. R.Dean,“Modeling
methods for Web Application Verification and Testing:
State of the art”, Software Testing, Verification and
Relaibility, Vol. 19, Issue 4, pp. 265-296.

[6] N. Li, J. Offutt, “A Test Automation Language for
Behavioral Models”, Technical Report,
GMU-CS-TR-2013-7.

[7] A.-M. Torsel, “A Testing Tool for Web Applications
Using a Domain-Specific Modelling Language and the
NuSMV Model Checker”, 6th Intl. Conf. on Software
Testing, Verification and Validation, pp. 383-390.

[8] A. Marcetto, P. Tonella, and F. Ricca, “State-based
Testing of AJAX Web Applications”, in Proc. of 2008

Intl. Conf. on Software Testing, Verification, and
Validation, pp. 121-130.

[9] H. S. Hong, I. Lee, O. Sokolsky, “Automatic Test
Generation from Statecharts Using Model Checking”,
in Proc. of FATES’01, Workshop on Formal
Approaches to Testing of Software, Vol. NS-01-4 of
BRICS Notes Series.

[10] S. Gnesi, D. Latella, and M. Massink, “Formal
Test-Case Generation for UML Statecharts,” Proc.
Ninth IEEE International Conf. Eng. of Complex
Computer Systems, P. Bellini, S. Bohner, and B.
Steffen, eds., Apr. 2004.

[11] CVC3 SMT solver: “http://www.cs.nyu.edu/acsys/
cvc3/”

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
21

public void test1()

{

selenium.start ();

selenium.open("ROOT/login/index.php");

selenium.type("css=input[id=’username ’]",

"admin");

selenium.type("css=input[id=’password ’]",

"admin");

selenium.click("xpath =//a[contains(@href ,

’ROOT/myadmin /’)]");

selenium.click("xpath =//a[contains(@href ,

’ROOT/user/index.php?id=27’)]");

selenium.click("xpath =//a[contains(@href ,

’ROOT’

selenium.type("css=input[id=’username1 ’]",

"Joe");

selenium.type("css=input[id=’password1 ’]",

"abc");

selenium.click("//input[@id=’loginbtn ’]");

selenium.click("xpath =//a[contains(@href ,

’ROOT/login/index.php ’)]");

selenium.type("css=input[id=’username2 ’]",

"Joe");

selenium.type("css=input[id=’password2 ’]",

"abc");

selenium.click("xpath =//a[contains(@href ,

’ROOT/my/’)]");

selenium.click("xpath =//a[contains(@href ,

’ROOT/course/view.php?id=19’)]");

}

Figure 7: A Selenium RC JUnit concrete test case
generated from our ACT tool for the case study of
Learning Management System for the test path gen-
erated from the CTL trap property !EF(state= SE-
230 Software Testing)

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
22

