
Using Component Interaction Model and Network Traces
for Root-cause Analysis*

Atul Kumar
IBM Research

Manyata Embassy Business Park, Nagwara,
Outer Ring Road, Bangalore, India

kumar.atul@in.ibm.com

Anil Nair
Toshiba Software India Pvt Ltd

Fortune Summit, 6th Sector, HSR Layout,
Hosur Main Road, Bangalore, India

anil.nair@toshiba-tsip.com

ABSTRACT
Root-cause analysis after a system failure/error is an impor-
tant activity to determine exact reasons for failure/error.
Most of the time, these error conditions cannot be repro-
duced or it is not feasible to run the system again using
the exact same scenario. Therefore, execution trace log of
various functions/components recorded during the event is
essential for root cause analysis and debugging in a complex
system. Source code level instrumentation for dynamic anal-
ysis provides accurate execution trace log. But it is difficult
to use an instrumented system in production environments
because of performance and system stability issues. In a dis-
tributed system, intercepted network messages can be ana-
lyzed to identify interactions between various components of
the system. However, messages captured on network alone
do not provide complete information because messages be-
tween components on same host would not appear on net-
work. We present a new idea to construct interaction infor-
mation among components of a distributed application using
messages captured on network and an interaction model that
is a set of rules and heuristics about component interaction.
An interaction model is pre-built offline using profile infor-
mation and static control flow graph of the system. Profiling
is done with test data in a non production environment such
as a test environment using ‘close-to-real’ test scenario. Mes-
sages corresponding to components interaction are captured
on network to create a partial execution trace log. Then the
trace log is completed using the pre-built interaction model.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.2.c [Software Engineering]: Distributed/Internet based
software engineering tools and techniques

General Terms
Component Interactions, model based analysis

Copyright c©2016 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. This volume is published and copyrighted by its
editors.

Keywords
Component Interactions Model, Dynamic Analysis, Root-
cause analysis, Network Packet Filtering and Analysis

1. INTRODUCTION
Execution trace log data1 is useful for debugging and root

cause analysis by identifying sequence of operations that led
to a system failure or error. Component interaction and
information flow is also used to identify performance bot-
tlenecks in a complex system. These logs are also useful in
finding better deployment plan for distributed components
on different hosts by looking at inter-host component inter-
action patterns. Additionally, it can also help in optimizing
and prioritizing test cases.

Such logs can be obtained using dynamic analysis [7].
Original source code is instrumented by inserting instrumen-
tation code to log some information at desired points (nor-
mally at the beginning and the end of a function). Then
application is executed and log generated by the instru-
mented code is logged. However, it may not be possible
to use instrumented applications in a production environ-
ment. Instrumentation code causes overhead that may not
be acceptable in a production environment because of per-
formance reasons. Controller hosts in automation systems
have limited logging and tracing capabilities because em-
bedded devices are normally resource constrained (memory
and/or CPU time) and may not bear this overhead. Us-
ing instrumented code as created by coverage tools or debug
tools slows execution of programs to a degree that these
tools are not usable in production environments or even in
complex system test environments. Moreover, it may not be
reasonably safe to execute instrumented code in live produc-
tion environments because logging of system activities may
cause exceptions that may destabilize an otherwise stable
system.

In a large system, components of application are often dis-
tributed on several hosts in a system. Interactions between
components of such applications take place via network com-
munication. We propose an idea for a system where mes-
sages on network are eavesdropped. Since all interactions
among components of an application do not appear on net-
work (e.g., communication between components on the same

1Temporal information about the start of execution and
the end of execution for functions/components in a pro-
gram/system and also what function/component execution
followed/precedes what other function/component execu-
tion.

*This work was done when authors were with ABB Corporate Research

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
23

System with
Instrumented

Code

time

+
Test Scenario

Data

Test Environment

Int main (int argc, char
*argv[]) {
 if (argc == 0) {
 return 0;
 }
 …...
}

Run test
scenarios

Static
analysis

Source code Control flow graph

Dynamic
Analysis

Production
Environment

Release System

Real Data

+

Component2

Component3

Component4

Component5

Component6

Component7

Component1

Network trace
analysis

Component2

Component3

Component4

Component5

Component6

Component7

Component1

time

Interaction
ModelAnalysis

Component2

Component3

Component4

Component5

Component6

Component7

Component1

time

Engine

Profile data

Partial component interaction log Constructed complete component interaction log

Figure 1: Process of Constructing Execution Trace Log

host), component interaction information captured on net-
work therefore will be incomplete. To construct a full ex-
ecution trace log from partial component interaction infor-
mation built using network messages, an interaction model
is used. The interaction model is built beforehand using
control flow graph of the application obtained from static
analysis and profile information collected in a test environ-
ment using instrumented application and test scenario.

2. CONSTRUCTING EXECUTION LOG FROM
NETWORK MESSAGES

2.1 Capturing Network Messages
Several tools exist to capture and analyze messages on

data networks. Normally, these tools require a host running
them to be present on the same network on which messages
need to be listened to. Intercepting network messages be-
tween different hosts in a distributed system using a sepa-
rate computer has no impact on system performance. Tools
such as Netmon [1], Microsoft Message Analyzer [2], Tcp-
dump/libpcap [4], WinDump/Winpcap [5], Wireshark [6],
etc. make it easy to analyze network packets at various
network layers including application layers. Packets can be
filtered for specific patterns. Applications developed using
popular frameworks such as Dot Net, J2EE, CORBA etc.,
have well defined message formats for sending messages be-
tween components and are easy to identify automatically
using packet filters.

2.2 Creating Execution log
Following are major steps in the process of constructing

execution log from network messages.

1. Instrument source code using traditional methods, use
comprehensive and near real test scenario to gather
profile data. Use dynamic analysis to construct trace
logs for all test scenarios.

2. Perform static analysis on source code to generate con-
trol flow graphs of the system.

3. Use the above two to create an interaction model. This
model is used to identify patterns and create heuristics
about various work-flows in the system. If some infor-
mation is missing in a execution trace log, then the
model should be able to tell most likely candidates for
missing places. When used with temporal information,
this model should be enough to construct a complete
trace-log form the partial log.

4. In a production environment, capture network mes-
sages to identify component interactions. Create a
partial execution trace log using this information.

5. Use the interaction model created in step 3 to generate
complete execution trace log.

Figure 1 shows the process to construct execution log
using network traces and a previously built patterns and
heuristics.

The top left part of diagram shows step 1 of the process
mentioned above. Output of dynamic analysis for each test

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
24

scenario is used later to build an interaction mode. The mid-
dle left part of diagram shows static analysis process that
generates control flow diagram from source code. The top
right part of diagram shows the process of creating inter-
action model. This model essentially holds a set of rules
and heuristics for various possible interactions among com-
ponents of the system. The bottom left part of diagram
shows the process of creating partial component execution
trace log from network messages. This log is used by an en-
gine shown in the bottom right part of diagram to construct
complete execution trace log using rules and heuristics from
the interaction model.

2.3 Interaction Model
Building a good interaction model is key to success of this

idea. Control flow graphs for various modules/components
of an application provide all possible interactions in appli-
cations. Interaction between modules/components can be
obtained from call graph, input data, and system integra-
tion model. This is still not sufficient to capture dynamic
behavior of application. For example, if there are n possi-
ble paths an execution sequence can take from a particular
point, then temporal information can reduce that possibility
to k (where k << n). System may follow a different exe-
cution sequence at start-up, at user input time and at time
of I/O. With a good set of test data, a dynamic interaction
model can be built which can cover most common usage
scenario. Combining static and dynamic interaction models
can reduce total number of possible execution paths. Some
heuristics built around execution behavior and input values
are used to select the most likely path.

2.4 Assumptions
This approach makes the following assumptions.

• Network messages are not encrypted.

• Systems under considerations are distributed systems
where significant interaction among components passes
over network.

• Sufficient test scenario data is available that is close to
real usage scenario.

• Interaction model is rebuilt after there is any change
in the system.

3. RELATED WORK
Performing root-cause analysis in distributed system is a

well studied subject. A recent work on run-time root cause
analysis in distributed systems is presented in [10]. This
work addresses problem of deriving relationships for fault
correlation in adaptive distributed systems where compo-
nents are dynamically installs/updates/removes and presents
a state chart-based solution which tried to identify the se-
quence of method execution.

An approach to combine model-driven techniques with
runtime models to perform root cause analysis of execut-
ing systems is presented in [11]. The approach is to com-
bine advantages of model-driven development with reusable
software artifacts. Interactive visualizations enable efficient
tracing of log file entries and corresponding model artifacts
during runtime.

Some tips and tricks to help troubleshooters extract root
cause information from network traces is provided in [3].
Objective is to reduce what might be hundreds of gigabytes
of data to essential events that show root cause of a problem.
Focus is to use network traces and then narrow the fault
down to a box.

An execution environment for Java programs is presented
in [8] that improves execution performance by using both
online and off-line profile information to guide dynamic opti-
mization. A dynamic compilation system based on JikesRVM
was developed that makes use of both.

A model-based diagnosis approach is discussed in [9] that
discovers faults based on generic fault models and abstract
event traces. These events may be associated to multiple
system components. Availability of fault for each component
is not assumed and generic fault models of classes of faults
are used instead.

Our proposed idea is different from above works because,
in our approach, we construct a trace log very close to the
one obtained from dynamic analysis of instrumented appli-
cation without actually instrumented it. We rely on ma-
turity of a pre-built model but it needs to be validated by
actually building a prototype tool based on our idea and
then comparing the trace-log generated by our tool with
complete data captured from instrumented application.

4. CONCLUSIONS AND FUTURE WORK
We presented an idea to construct components interac-

tion trace log for components of a distributed application in
live production environments. An interaction model is first
built offline by generating profile data in a test environment.
Then, in a live production system, a partial components in-
teraction trace log is created from network messages eaves-
dropped from a separate host on the same network. Finally,
a complete execution trace log is constructed by an engine
using partial logs and interaction model.

We plan to start a short project on this idea. Purpose is
to validate our hypothesis presented in this paper that the
execution trace log can be constructed by only capturing
network messages in a live production system (other infor-
mation required is collected offline). In particular, we would
focus to find answers of the following questions.

• Does enough component interactions take place over
network (between hosts) in a real distributed applica-
tion? If yes, then how much is ‘enough’? Can we use
less messages than what can be captured on network
to reduce size of network log?

• Can we develop heuristics that help in recreating com-
plete profile from network messages and models that
were built offline?

• Does log data provide enough information to isolate
heisenbugs in software that are otherwise non-repeatable?

5. REFERENCES
[1] How to use network monitor to capture network

traffic. http://support.microsoft.com/kb/812953.

[2] Microsoft message analyzer operating guide.
http://technet.microsoft.com/en-
us/library/jj649776.aspx.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
25

[3] Network trace analysis strategies.
http://www.advance7.com/wp-
content/uploads/2012/11/Network-Trace-Analysis-
Strategies-Whitepaper.pdf.

[4] Tcpdump/libpcap. http://www.tcpdump.org/.

[5] Winpcap. http://www.winpcap.org/.

[6] Wireshark. http://www.wireshark.org/.

[7] T. Bell. The concept of dynamic analysis. In ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 216–234. ACM SIGSOFT
Software Engineering Notes, November 1999.

[8] C. Krintz. Coupling on-line and off-line profile
information to improve program performance. In
international symposium on Code generation and
optimization, pages 69–78. IEEE Computer Society,
March 2003.

[9] W. Mayer, X. Pucel, and M. Stumptner. Diagnosing
component interaction errors from abstract event
traces. In 23rd Australasian Joint Conference on
Advances in Artificial Intelligence, pages 496–505.
Lecture Notes in Computer Science Volume 6464,
December 2010.

[10] A. Raj, S. Barrett, and S. Clarke. Run-time root cause
analysis in adaptive distributed systems. In On the
Move to Meaningful Internet Systems: OTM 2013
Workshops, pages 292–301. Lecture Notes in
Computer Science Volume 8186, September 2013.

[11] M. Szvetits and U. Zdun. Enhancing root cause
analysis with runtime models and interactive
visualizations. In 8th International Workshop on
Models at run.time, September 2013.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
26

