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ABSTRACT
Integrated computational materials engineering (ICME) is a new 

approach to the design and development of materials, 

manufacturing processes and products. The approach proposes 

using a combination of modeling and simulation, data driven 

reasoning and knowledge guided decision making to a) speed up 

the development of new materials and manufacturing processes, 

and b) enhance the quality and time-to-market of products by 

integrating material design with product design. However 

industrialization of this approach requires strong automation 

support. Modeling and simulation is a highly knowledge intensive 

activity and integrated design requires knowledge cutting across 

several design domains. For the industrialization vision to succeed, 

it is essential to capture this knowledge and make it available in a 

usable form for people not so skilled in these areas. With this 

motivation, we are building a comprehensive computational 

platform to support this emerging design paradigm. The platform is 

built on model driven engineering principles. We present some of 

the key ideas of the platform, discuss the modeling challenge 

involved and present the modeling framework we have developed 

to address this challenge. We also briefly discuss how model driven 

techniques have been employed to automate some of the key 

aspects.   

Categories and Subject Descriptors
Computing methodologies → Modeling  

General Terms
 Design, Languages, Theory. 

Keywords
ICME, Model-driven Architecture, Meta Modeling, Modeling 

Framework, Ontology. 

1. INTRODUCTION
A material’s properties such as its tensile strength, hardness, fatigue

life, etc., are a result of its internal structure called microstructure.

A material’s microstructure depends not only on the chemical

composition of the material but also on the processes it is subjected

to. Materials engineers play with variations in chemical

compositions, processes and process parameters in order to achieve

required microstructure that gives rise to the desired properties.

However these relationships are not well understood. As a result, a

lot of trial and error and experimentation goes into designing a 

material. It takes anywhere between 10 to 20 years for a new 

material to find its way from research stage to industrial usage. 

Lack of integration between material design and product design is 

another problem. A product designer has limited visibility into the 

internal structure of the material and how that structure changes 

during a manufacturing process. Hence there is considerable 

uncertainty as to what final properties the material ends up with. To 

overcome this, product designers typically fall back on tried and 

tested materials and build in extra margin of safety into their 

designs.  

There is a new design paradigm called integrated computational 

materials engineering (or ICME for short) [1, 2] that tries to address 

these issues through a computational design platform. ICME 

supports integrated design of materials, products and 

manufacturing processes. It uses modeling and simulation, 

knowledge guided decision making and data-driven reasoning for 

a systematic exploration of the design space. ICME is widely 

recognized as a paradigm changer that is expected to significantly 

reduce the dependence on trial and error based experimentation 

cycles. This is expected to  result in a) faster development of new 

materials, and b) significant improvement in quality and time-to-

market of products by integrating material design with product 

design. However, industrialization of this approach has many 

roadblocks to overcome [3]. Modeling and simulation is a highly 

knowledge intensive activity. Models exist at multiple length 

scales. In an integrated design, one has to worry about a multitude 

of phenomena. Choosing right models for these phenomena, at 

right scales, with right parameters, and ensuring integration across 

these models is a non-trivial task. Without strong automation 

support, scaling up ICME is going to be a difficult problem. 

With this motivation, we are developing an IT platform called 

PREMΛP [4, 5] at Tata Consultancy Services. Our goal is to use 

this platform to industrialize the benefits of the ICME approach, 

with a special focus on integrated design of products and materials. 

In view of the vast diversity of material systems and 

component/product application categories, the platform consists of 

a set of domain dependent and domain-independent components as 

shown in Figure 1. 

On the right side of the figure are the components that are domain 

dependent and those on the left are domain independent. A domain 

may refer to a material category with associated manufacturing 

processes and/or a product category. Domain specific components 

include models of various kinds, design templates, design rules, 

design cases, etc. Domain independent infrastructure includes, 

among other things, (a) knowledge engineering framework for 
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knowledge management, (b) simulation services framework for 

simulation execution and simulation tool integration, (c) tools for 

robust design and multidisciplinary optimization techniques 

(MDO), (c) decision support tools (e.g., the compromise decision 

support problem construct), and (d) design of experiments and 

combinatorial experimentation tools to drive both simulation and 

experimental studies.  

Building all these capabilities into the platform in an integrated 

manner requires a unifying semantic foundation. Domain ontology 

provides such a foundation. It serves as the common substrate for 

integrating different models. It serves as a means for capturing and 

organizing knowledge. However, ontology varies from subject to 

subject, and, being a generic platform, PREMΛP has to cater to a 

wide range of subjects. For instance, ontology of steel is different 

from ontology of a composite material. This calls for a flexible 

ontology engineering framework that enables us to create and 

evolve subject specific ontologies without hard coding them into 

the platform. We use model driven techniques to engineer such a 

framework. In this paper we present the modeling framework 

underlying the PREMΛP architecture and give a brief overview of 

some of the aspects automated using model driven techniques. 

2. PREMΛP Modeling Framework 
PREMΛP uses a reflexive modeling framework to bootstrap its 

modeling infrastructure. 

2.1 Reflexive Modeling Framework 
An information system can be seen as a collection of parts and their 

relationships. A model of an information system is a description of 

these parts and relationships in a language such as UML [9]. The 

modeling language itself can be described as a model in another 

language. The latter language is the meta-model for the former as 

shown in Figure 2. 

We use a reflexive modeling language [7] that is compatible with 

OMG MOF [8] to define models at all levels. A model at each level 

is an instance of the model at the previous level. The model at level 

1, the meta meta-model, is an instance of itself. The meta meta-

model shown in Figure 2 is the base model. It is the schema for 

describing meta-models. The meta meta-model is capable of 

describing itself, i.e., it can model itself. 

 

 

Figure 2. Modeling Layers 

Every thing in a model is an object. An object is described by its 

class. A class is specified in terms of a set of attributes and 

associations. An object is an instance of a class that has attribute 

values and links to other objects as specified by its class. Since 

everything is an object, a class is also an object. A class is specified 

by another class called metaclass. In Figure 3, the class ‘class’ is a 

metaclass which is an instance of itself. Any class that inherits from 

the class ‘class’ is also a metaclass. A meta model specification 

consists of a model schema, which is an instance of the meta meta-

model, and a set of constraints and rules to specify consistency and 

completeness checks on its instance models. Due to the reflexive 

nature of the meta-meta-model, there is no inherent limit on the 

number of modeling layers that can be supported. We use OCL [10] 

to specify well-formed-ness constraints over models. Cardinality 

and optionality constraints are supported by the reflexive model 

itself. We use an industrial-strength relational database as a storage 

mechanism for managing large scale models. Storage schema 

reflects the structure of models. 

2.2 Ontology Modeling Framework 
In PREMΛP, ontologies can be classified into a set of subject areas, 

such as materials, products, manufacturing processes, etc. Each 

subject area contains ontologies of subjects that belong to that area. 
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Figure 1. Domain independent (left) and domain dependent (right) components of the platform 
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For instance, materials subject area contains ontologies of steel, 

composite materials, etc. In the context of PREMΛP, while we 

know the subject areas we want to support, upfront we do not know 

all the specific subjects that we want to support. That depends on 

the problems we want to solve on the platform, which is open 

ended. So we cannot hard-code subject specific ontologies into the 

platform. Instead they should be treated as first-class entities – i.e. 

it should be possible to create, modify and delete them on a need 

basis. To address this, we have conceptualized domain models at 

two ontological levels - a meta level and a subject level, as shown 

in Figure 4. 

As mentioned above, models in ICME can be broadly categorized 

into three subject areas - materials, products and processes. 

Corresponding to these subject areas we have three related meta 

models -- materials meta model, products meta model and process 

meta model. Essentially, a meta model can be viewed as defining a 

language for a subject area, using which subjects in that area can be 

described. For instance, materials meta model provides the 

language to describe materials. Subject specific ontologies are 

created as instances of these meta models. For instance, steel 

ontology is created as an instance of the materials meta model, gear 

ontology is created as an instance of the products meta model, and 

so on.  

We illustrate this with an example. Figure 5 shows a part of the 

component meta model, which is a part of the products meta model. 

A component has a geometry and a set of functional and geometric 

features. These features may be described in terms of a set of 

parameters. A component may be made from one or more 

materials; similarly different geometric features of the component 

may be made from different materials. 

Figure 4. Domain Ontology Levels 
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Figure 6 shows Gear ontology as an instance of this meta model. A 

gear is a component whose geometry has features such as hub, web, 

rim and teeth. Its function is to transmit motion in the same or a 

different direction and a change in rotational speed. The geometric 

feature ‘hub’ has diameter and width as parameters (parameters of 

other features are omitted from the diagram). The figure also shows 

a specific gear (NanoCarGear) with its dimensions, as an instance 

of the gear ontology. 

This layered modeling architecture provides two benefits: 

1) It provides a means to organize domain knowledge 

systematically. Knowledge that is applicable across all subjects of 

a subject area is captured at the meta model level; knowledge that 

is specific to a design subject is captured at the subject model level; 

and knowledge that is very specific to a design instance is captured 

at the instance model level. To give a trivial example, with 

reference to the meta model in Figure 4, we have a constraint that 

says that the materials used for a geometric feature of a component 

must be a subset of the materials allowed for the component. This 

applies to all types of components. Similarly, taking an example at 

the subject model level, we may have a rule that specifies what type 

of forging process to use for a gear. This applies to all gear design 

instances. Thus we could capture knowledge at different levels 

across different subject areas. This knowledge can be used not only 

to guide a designer in making right decisions, but also to ensure 

integration across design domains.    

2) It lends extensibility to the platform, by enabling new subjects 

to be created as instances of meta models. For instance, to extend 

the platform to support the design of composite materials, we create 

composites ontology as an instance of the materials meta model. 

Similarly to support the design of an engine block, we create engine 

block ontology as an instance of the products meta model. Subject 

specific ontologies thus become first class entities in the platform. 

3. Model Driven Engineering in PREMΛP – 

A Few Examples 
Model driven engineering is used extensively to automate various 

aspects within the platform. We give a brief overview of a few of 

these. 

3.1 Simulation Tool Integration 
A design workflow consists of design of several process steps such 

as forging, machining, carburization, quenching, tempering, etc. 

Each of these processes has its own simulation model. In integrated 

design simulation, these models have to be simulated in an 

integrated manner, with right information flowing from one model 

to the other [3, 6]. This is done by mapping the inputs and outputs 

of each simulation tool to the domain ontology, as shown in Figure 

7. 

 

Figure 7. Simulation Tool Integration 
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It is then possible to validate a process chain for information 

integrity by checking that right information is flowing to the right 

process step. From these mappings it is also possible to generate 

input/output adapters for plug-and-play integration of simulation 

tools. These mappings are specified at the meta model level. As a 

result, once a tool is integrated into the platform, there is no need 

to write separate adapters for each subject separately. For instance, 

once a finite element simulation tool is integrated at the meta level, 

we don't have to write separate adaptors for gear simulation, clutch 

simulation, etc. 

3.2 Data Layer Automation and 

Virtualization 
Data of different subject areas might be stored in different physical 

stores. Depending on volumes, data characteristics and 

performance requirements, different storage mechanisms, such as 

relational database, object databases, graph databases etc., might be 

better suited for different subject areas. The architecture should be 

flexible enough to support different storage mechanisms and to 

change them on a need basis. We use model driven generation to 

achieve this flexibility. The architecture should also provide a 

uniform data access interface. As shown in Figure 8, we map our 

domain ontology to data models of physical storage structures. 

These mappings are specified at the meta model level. From these 

mappings we generate a data access layer. Interfaces remain 

uniform as they are defined in terms of the domain ontology; only 

the implementations change according to the storage technologies.  

 

Figure 8. Data Virtualization 

3.3 User Interface Generation 
A design workflow may contain multiple screens for user 

interaction. We generate these screens using model driven 

techniques. These screens are defined for specific subject models 

and get their data from corresponding instance models. The data 

view of the screens are encoded using screen specific view models. 

There is a two-way synchronization between the screen elements 

and the view model. Whenever view model changes, the screen is 

updated and whenever user specifies some values in screen 

controls, the view model is updated. The interaction between the 

screens and the database is performed through PREMΛP platform 

services. The view model elements are mapped to the service 

messages, which are defined using subject ontology elements. The 

input messages for the services are constructed from the mapped 

view models. The view models are updated in response to the 

output messages from the services. The relations between 

PREMΛP services, subject model, view model and the screen 

elements are shown in Figure 9. GUI screen implementations are 

generated from these models. 

 

Figure 9. User Interface Generation 

3.4 Data Integration 
Data integration techniques are used in PREMΛP to utilize 

available information about the materials or processes. The data 

sources may include laboratory databases, factory floor databases, 

or third party proprietary data. These data sources are individually 

mapped to subject model ontology using Global-as-view (GAV) 

[15, 16] or Local-as-view (LAV) [17] schemes. The subject model 

is treated as the unified conceptual model describing all the data 

sources. A query on the subject model gets converted to a DFG 

(data flow graph). The DFG is responsible for extracting data from 

individual sources and suitably combining them to produce the 

query result. 

 
Figure 10. Data Integration 
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Model driven engineering is growing in popularity. Several large 

enterprise scale applications have been developed using MDE 

techniques [7]. Object management group (OMG) has developed a 

number of standards in this space under its model-driven 

architecture (MDA) [14] initiative. While OMG promotes UML [9] 

as the de-facto modeling standard, experience shows that a multi-

modeling approach, where different purpose specific models are 

used for different aspects, scales up much better in practice [7]. 
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Especially when engineering a platform such as PREMΛP, where 

a large number of diverse sets of concepts and mechanisms have to 

be integrated, one needs a multi-layered modeling approach such 

as the one discussed in this paper. 

Ontology modeling approaches such as OWL [11] are also growing 

in popularity.  OWL has three sublanguages: OWL Lite, OWL DL 

and OWL-FULL. Of these, OWL Lite and OWL-DL only support 

models at two levels. This is insufficient for an extensible platform 

such as PREMΛP where subject specific ontologies are first class 

entities. OWL-FULL allows a class to be an instance of another 

class. However, there are no OWL Full reasoners available [12, 13]. 

Besides, in a platform engineering scenario, models should not only 

capture domain semantics, but also various engineering aspects of 

the platform. What we need is a combination of the flexibility of 

model driven engineering principles and the deductive reasoning 

capabilities of ontologies. 

5. Summary 
We have given an overview of a computational platform that we 

are developing in the engineering design space and briefly 

discussed the model-driven engineering design principles 

underlying its architecture. We have identified the domain 

modeling challenge and presented a modeling framework that has 

been developed to address this challenge. We have also given a 

brief overview of how model driven techniques have been used to 

automate some of the key features. There are many other features 

such as the knowledge engineering framework which have not been 

discussed due to space limitation. 
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