
A Model Driven Framework for Integrated Computational
Materials Engineering

Prasenjit Das
Tata Consultancy Services Limited

Kolkata, India
+91-33-66884653

prasenjit.d@tcs.com

Raghavendra Reddy Yeddula
Tata Consultancy Services Limited

TRDDC, Pune, India
+91-20-66086334

raghavendrareddy.y@tcs.com

Sreedhar Reddy
Tata Consultancy Services Limited

TRDDC, Pune, India
+91-20-66086302

sreedhar.reddy@tcs.com

ABSTRACT
Integrated computational materials engineering (ICME) is a new

approach to the design and development of materials,

manufacturing processes and products. The approach proposes

using a combination of modeling and simulation, data driven

reasoning and knowledge guided decision making to a) speed up

the development of new materials and manufacturing processes,

and b) enhance the quality and time-to-market of products by

integrating material design with product design. However

industrialization of this approach requires strong automation

support. Modeling and simulation is a highly knowledge intensive

activity and integrated design requires knowledge cutting across

several design domains. For the industrialization vision to succeed,

it is essential to capture this knowledge and make it available in a

usable form for people not so skilled in these areas. With this

motivation, we are building a comprehensive computational

platform to support this emerging design paradigm. The platform is

built on model driven engineering principles. We present some of

the key ideas of the platform, discuss the modeling challenge

involved and present the modeling framework we have developed

to address this challenge. We also briefly discuss how model driven

techniques have been employed to automate some of the key

aspects.

Categories and Subject Descriptors
Computing methodologies → Modeling

General Terms
 Design, Languages, Theory.

Keywords
ICME, Model-driven Architecture, Meta Modeling, Modeling

Framework, Ontology.

1. INTRODUCTION
A material’s properties such as its tensile strength, hardness, fatigue

life, etc., are a result of its internal structure called microstructure.

A material’s microstructure depends not only on the chemical

composition of the material but also on the processes it is subjected

to. Materials engineers play with variations in chemical

compositions, processes and process parameters in order to achieve

required microstructure that gives rise to the desired properties.

However these relationships are not well understood. As a result, a

lot of trial and error and experimentation goes into designing a

material. It takes anywhere between 10 to 20 years for a new

material to find its way from research stage to industrial usage.

Lack of integration between material design and product design is

another problem. A product designer has limited visibility into the

internal structure of the material and how that structure changes

during a manufacturing process. Hence there is considerable

uncertainty as to what final properties the material ends up with. To

overcome this, product designers typically fall back on tried and

tested materials and build in extra margin of safety into their

designs.

There is a new design paradigm called integrated computational

materials engineering (or ICME for short) [1, 2] that tries to address

these issues through a computational design platform. ICME

supports integrated design of materials, products and

manufacturing processes. It uses modeling and simulation,

knowledge guided decision making and data-driven reasoning for

a systematic exploration of the design space. ICME is widely

recognized as a paradigm changer that is expected to significantly

reduce the dependence on trial and error based experimentation

cycles. This is expected to result in a) faster development of new

materials, and b) significant improvement in quality and time-to-

market of products by integrating material design with product

design. However, industrialization of this approach has many

roadblocks to overcome [3]. Modeling and simulation is a highly

knowledge intensive activity. Models exist at multiple length

scales. In an integrated design, one has to worry about a multitude

of phenomena. Choosing right models for these phenomena, at

right scales, with right parameters, and ensuring integration across

these models is a non-trivial task. Without strong automation

support, scaling up ICME is going to be a difficult problem.

With this motivation, we are developing an IT platform called

PREMΛP [4, 5] at Tata Consultancy Services. Our goal is to use

this platform to industrialize the benefits of the ICME approach,

with a special focus on integrated design of products and materials.

In view of the vast diversity of material systems and

component/product application categories, the platform consists of

a set of domain dependent and domain-independent components as

shown in Figure 1.

On the right side of the figure are the components that are domain

dependent and those on the left are domain independent. A domain

may refer to a material category with associated manufacturing

processes and/or a product category. Domain specific components

include models of various kinds, design templates, design rules,

design cases, etc. Domain independent infrastructure includes,

among other things, (a) knowledge engineering framework for

Copyright © 2016 for the individual papers by the papers' authors.
Copying permitted for private and academic purposes. This volume is

published and copyrighted by its editors.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
27

knowledge management, (b) simulation services framework for

simulation execution and simulation tool integration, (c) tools for

robust design and multidisciplinary optimization techniques

(MDO), (c) decision support tools (e.g., the compromise decision

support problem construct), and (d) design of experiments and

combinatorial experimentation tools to drive both simulation and

experimental studies.

Building all these capabilities into the platform in an integrated

manner requires a unifying semantic foundation. Domain ontology

provides such a foundation. It serves as the common substrate for

integrating different models. It serves as a means for capturing and

organizing knowledge. However, ontology varies from subject to

subject, and, being a generic platform, PREMΛP has to cater to a

wide range of subjects. For instance, ontology of steel is different

from ontology of a composite material. This calls for a flexible

ontology engineering framework that enables us to create and

evolve subject specific ontologies without hard coding them into

the platform. We use model driven techniques to engineer such a

framework. In this paper we present the modeling framework

underlying the PREMΛP architecture and give a brief overview of

some of the aspects automated using model driven techniques.

2. PREMΛP Modeling Framework
PREMΛP uses a reflexive modeling framework to bootstrap its

modeling infrastructure.

2.1 Reflexive Modeling Framework
An information system can be seen as a collection of parts and their

relationships. A model of an information system is a description of

these parts and relationships in a language such as UML [9]. The

modeling language itself can be described as a model in another

language. The latter language is the meta-model for the former as

shown in Figure 2.

We use a reflexive modeling language [7] that is compatible with

OMG MOF [8] to define models at all levels. A model at each level

is an instance of the model at the previous level. The model at level

1, the meta meta-model, is an instance of itself. The meta meta-

model shown in Figure 2 is the base model. It is the schema for

describing meta-models. The meta meta-model is capable of

describing itself, i.e., it can model itself.

Figure 2. Modeling Layers

Every thing in a model is an object. An object is described by its

class. A class is specified in terms of a set of attributes and

associations. An object is an instance of a class that has attribute

values and links to other objects as specified by its class. Since

everything is an object, a class is also an object. A class is specified

by another class called metaclass. In Figure 3, the class ‘class’ is a

metaclass which is an instance of itself. Any class that inherits from

the class ‘class’ is also a metaclass. A meta model specification

consists of a model schema, which is an instance of the meta meta-

model, and a set of constraints and rules to specify consistency and

completeness checks on its instance models. Due to the reflexive

nature of the meta-meta-model, there is no inherent limit on the

number of modeling layers that can be supported. We use OCL [10]

to specify well-formed-ness constraints over models. Cardinality

and optionality constraints are supported by the reflexive model

itself. We use an industrial-strength relational database as a storage

mechanism for managing large scale models. Storage schema

reflects the structure of models.

2.2 Ontology Modeling Framework
In PREMΛP, ontologies can be classified into a set of subject areas,

such as materials, products, manufacturing processes, etc. Each

subject area contains ontologies of subjects that belong to that area.

meta meta model

meta model

Information System or User model Level 3

Level 2

Level 1

instanceOf

instanceOf

instanceOf

PREMɅP

Knowledge Engineering

Informatics and Soft Computing

IT Enabled Integration

System Engineering Approaches

Guided Experimentation

Product Performance

Manufacturing Process

Cost Modeling

Materials Modeling

Product Design

Data & Knowledge Bases

Decision Support

Robust Design & MDO

Figure 1. Domain independent (left) and domain dependent (right) components of the platform

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
28

For instance, materials subject area contains ontologies of steel,

composite materials, etc. In the context of PREMΛP, while we

know the subject areas we want to support, upfront we do not know

all the specific subjects that we want to support. That depends on

the problems we want to solve on the platform, which is open

ended. So we cannot hard-code subject specific ontologies into the

platform. Instead they should be treated as first-class entities – i.e.

it should be possible to create, modify and delete them on a need

basis. To address this, we have conceptualized domain models at

two ontological levels - a meta level and a subject level, as shown

in Figure 4.

As mentioned above, models in ICME can be broadly categorized

into three subject areas - materials, products and processes.

Corresponding to these subject areas we have three related meta

models -- materials meta model, products meta model and process

meta model. Essentially, a meta model can be viewed as defining a

language for a subject area, using which subjects in that area can be

described. For instance, materials meta model provides the

language to describe materials. Subject specific ontologies are

created as instances of these meta models. For instance, steel

ontology is created as an instance of the materials meta model, gear

ontology is created as an instance of the products meta model, and

so on.

We illustrate this with an example. Figure 5 shows a part of the

component meta model, which is a part of the products meta model.

A component has a geometry and a set of functional and geometric

features. These features may be described in terms of a set of

parameters. A component may be made from one or more

materials; similarly different geometric features of the component

may be made from different materials.

Figure 4. Domain Ontology Levels

Process

Product

Material

Forging

Gear

Steel

Meta level

Subject level

GeometricFeature

ParameterFunctionalFeatureComponent

Geometry

Material

component
component

component
component

geometricFeature

geometricFeature

geometricFeature

functionalFeature

parameter

parameter

geometry
geometry

material material

of

of
0..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*

0..1

0..1

0..1

0..1 0..1

1

0..1

0..*

Association

srcRoleName : String

tgtRoleName : String

srcCard : String

tgtCard : String

isSrcOwner : Boolean

isTgtOwner : Boolean

Class

name : String

isAbstract : Boolean

Attribute

name : String

dataType : String

instanceOf

Object

instanceOf

instanceOf

attribute
source

target

0..*

0..*
0..*

1

type

0..*

1

instanceOf

1

1

inheritsFrom

1

0..*

Figure 3. Reflexive Meta Meta-Model

Figure 5. Component Meta Model

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
29

Figure 6 shows Gear ontology as an instance of this meta model. A

gear is a component whose geometry has features such as hub, web,

rim and teeth. Its function is to transmit motion in the same or a

different direction and a change in rotational speed. The geometric

feature ‘hub’ has diameter and width as parameters (parameters of

other features are omitted from the diagram). The figure also shows

a specific gear (NanoCarGear) with its dimensions, as an instance

of the gear ontology.

This layered modeling architecture provides two benefits:

1) It provides a means to organize domain knowledge

systematically. Knowledge that is applicable across all subjects of

a subject area is captured at the meta model level; knowledge that

is specific to a design subject is captured at the subject model level;

and knowledge that is very specific to a design instance is captured

at the instance model level. To give a trivial example, with

reference to the meta model in Figure 4, we have a constraint that

says that the materials used for a geometric feature of a component

must be a subset of the materials allowed for the component. This

applies to all types of components. Similarly, taking an example at

the subject model level, we may have a rule that specifies what type

of forging process to use for a gear. This applies to all gear design

instances. Thus we could capture knowledge at different levels

across different subject areas. This knowledge can be used not only

to guide a designer in making right decisions, but also to ensure

integration across design domains.

2) It lends extensibility to the platform, by enabling new subjects

to be created as instances of meta models. For instance, to extend

the platform to support the design of composite materials, we create

composites ontology as an instance of the materials meta model.

Similarly to support the design of an engine block, we create engine

block ontology as an instance of the products meta model. Subject

specific ontologies thus become first class entities in the platform.

3. Model Driven Engineering in PREMΛP –

A Few Examples
Model driven engineering is used extensively to automate various

aspects within the platform. We give a brief overview of a few of

these.

3.1 Simulation Tool Integration
A design workflow consists of design of several process steps such

as forging, machining, carburization, quenching, tempering, etc.

Each of these processes has its own simulation model. In integrated

design simulation, these models have to be simulated in an

integrated manner, with right information flowing from one model

to the other [3, 6]. This is done by mapping the inputs and outputs

of each simulation tool to the domain ontology, as shown in Figure

7.

Figure 7. Simulation Tool Integration

Domain Ontology (Meta)

Mapping

Tool specific data view

Simulation Tool 1

Mapping

Tool specific data view

Simulation Tool 1

input input output output

instanceOf

O

1..*
1..*

parameter

1..*

instanceOf

O

geomericFeature
Component GeometricFeature

Gear:Component Hub: GeometricFeature

NanoCarGear:Gear :Hub

Parameter

Width:Parameter

Radius:Parameter

3:Width

10:Radius

FunctionalFeature

Web: GeometricFeature

Rim: GeometricFeature

Teeth: GeometricFeature

Motion-transmission:

FunctionalFeature

Speed-change:

FunctionalFeature

Direction-change:

FunctionalFeature

Component Meta Model

Gear ontology

Nano Gear

Figure 6. Component Modeling Layers

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
30

It is then possible to validate a process chain for information

integrity by checking that right information is flowing to the right

process step. From these mappings it is also possible to generate

input/output adapters for plug-and-play integration of simulation

tools. These mappings are specified at the meta model level. As a

result, once a tool is integrated into the platform, there is no need

to write separate adapters for each subject separately. For instance,

once a finite element simulation tool is integrated at the meta level,

we don't have to write separate adaptors for gear simulation, clutch

simulation, etc.

3.2 Data Layer Automation and

Virtualization
Data of different subject areas might be stored in different physical

stores. Depending on volumes, data characteristics and

performance requirements, different storage mechanisms, such as

relational database, object databases, graph databases etc., might be

better suited for different subject areas. The architecture should be

flexible enough to support different storage mechanisms and to

change them on a need basis. We use model driven generation to

achieve this flexibility. The architecture should also provide a

uniform data access interface. As shown in Figure 8, we map our

domain ontology to data models of physical storage structures.

These mappings are specified at the meta model level. From these

mappings we generate a data access layer. Interfaces remain

uniform as they are defined in terms of the domain ontology; only

the implementations change according to the storage technologies.

Figure 8. Data Virtualization

3.3 User Interface Generation
A design workflow may contain multiple screens for user

interaction. We generate these screens using model driven

techniques. These screens are defined for specific subject models

and get their data from corresponding instance models. The data

view of the screens are encoded using screen specific view models.

There is a two-way synchronization between the screen elements

and the view model. Whenever view model changes, the screen is

updated and whenever user specifies some values in screen

controls, the view model is updated. The interaction between the

screens and the database is performed through PREMΛP platform

services. The view model elements are mapped to the service

messages, which are defined using subject ontology elements. The

input messages for the services are constructed from the mapped

view models. The view models are updated in response to the

output messages from the services. The relations between

PREMΛP services, subject model, view model and the screen

elements are shown in Figure 9. GUI screen implementations are

generated from these models.

Figure 9. User Interface Generation

3.4 Data Integration
Data integration techniques are used in PREMΛP to utilize

available information about the materials or processes. The data

sources may include laboratory databases, factory floor databases,

or third party proprietary data. These data sources are individually

mapped to subject model ontology using Global-as-view (GAV)

[15, 16] or Local-as-view (LAV) [17] schemes. The subject model

is treated as the unified conceptual model describing all the data

sources. A query on the subject model gets converted to a DFG

(data flow graph). The DFG is responsible for extracting data from

individual sources and suitably combining them to produce the

query result.

Figure 10. Data Integration

4. Related Work
Model driven engineering is growing in popularity. Several large

enterprise scale applications have been developed using MDE

techniques [7]. Object management group (OMG) has developed a

number of standards in this space under its model-driven

architecture (MDA) [14] initiative. While OMG promotes UML [9]

as the de-facto modeling standard, experience shows that a multi-

modeling approach, where different purpose specific models are

used for different aspects, scales up much better in practice [7].

Data Access

Domain Ontology

(Meta)

Data

Access

Layer

Model Mapping

Physical Data

Model

Database

Model

Compiler

definedUsing

Specific Screen

has
Platform

Service

Message

Subject

Ontology

Elements

Mapping

View Model

Mapping

Screen Elements

Domain Ontology (Subject Model)

Lab Database Factory Database

Mapping Mapping

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
31

Especially when engineering a platform such as PREMΛP, where

a large number of diverse sets of concepts and mechanisms have to

be integrated, one needs a multi-layered modeling approach such

as the one discussed in this paper.

Ontology modeling approaches such as OWL [11] are also growing

in popularity. OWL has three sublanguages: OWL Lite, OWL DL

and OWL-FULL. Of these, OWL Lite and OWL-DL only support

models at two levels. This is insufficient for an extensible platform

such as PREMΛP where subject specific ontologies are first class

entities. OWL-FULL allows a class to be an instance of another

class. However, there are no OWL Full reasoners available [12, 13].

Besides, in a platform engineering scenario, models should not only

capture domain semantics, but also various engineering aspects of

the platform. What we need is a combination of the flexibility of

model driven engineering principles and the deductive reasoning

capabilities of ontologies.

5. Summary
We have given an overview of a computational platform that we

are developing in the engineering design space and briefly

discussed the model-driven engineering design principles

underlying its architecture. We have identified the domain

modeling challenge and presented a modeling framework that has

been developed to address this challenge. We have also given a

brief overview of how model driven techniques have been used to

automate some of the key features. There are many other features

such as the knowledge engineering framework which have not been

discussed due to space limitation.

6. REFERENCES
[1] NRC Report (2008) Integrated Computational Materials

Engineering: A Transformational Discipline for Improved

Competitiveness and National Security. The National

Academies Press, National Research Council, Washington,

D.C.

[2] TMS Study Report on Integrated Computational Materials

Engineering (ICME) – Implementing ICME in the Aerospace,

Automotive and Maritime Engineering, (2015) TMS,

http://www.tms.org/ICMEStudy.

[3] KONTER, A.W.A., FARIVAR, H., POST, J. and PRAHL, U.

Industrial Needs for ICME. JOM: the journal of the Minerals,

Metals & Materials Society, 2015.

[4] Bhat, M., Shah, S., Das, P., Kumar, P., Kulkarni, N., Ghaisas,

S. S. and Reddy, S. S. (2013), PREMΛP: Knowledge Driven

Design of Materials and Engineering Process, A. Chakrabarti

and R. V. Prakash (eds.), ICoRD’13, Lecture Notes in

Mechanical Engineering, Springer India, pp. 1315-1329.

[5] Gautham, B.P., Singh, A.K., Ghaisas, S.S., Reddy, S. S. and

Mistree, F. (2013a) PREMΛP: A Platform for the Realization

of Engineered Materials and Products, A. Chakrabarti and R.

V. Prakash (eds.), ICoRD’13, Lecture Notes in Mechanical

Engineering, Springer India, pp. 1301-1313.

[6] Tennyson, G., Shukla, R., Mangal, S., Sachi, S. and Singh,

A.K. (2015), ICME for process scale-up: Importance of

vertical and horizontal integration of models, Proceedings of

the 3rd World Congress on Integrated Computational

Materials Engineering ICME’15, 11-21.

[7] Vinay Kulkarni, Sreedhar Reddy, Asha Rajbhoj: Scaling Up

Model Driven Engineering - Experience and Lessons Learnt.

MoDELS (2) 2010: 331-345

[8] Model Object Facility, http://www.omg.org/spec/MOF/2.0

[9] Unified Modeling Language,

http://www.omg.org/spec/UML/2.2/

[10] Object Constraint Language,

http://www.omg.org/spec/OCL/2.2

[11] OWL, Web Ontology Language, http://www.w3.org/TR/owl-

guide/

[12] http://www.w3.org/2001/sw/wiki/OWL/Implementations

[13] http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

[14] Model Driven Architecture, http://www.omg.org/mda/

[15] Ullman, J. D. Information integration using logical

views. Database Theory—ICDT'97. Springer Berlin

Heidelberg, 1997. 19-40.

[16] Lenzerini, Maurizio. Data integration: A theoretical

perspective. Proceedings of the twenty-first ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database

systems. ACM, 2002.

[17] Halevy, Alon Y. Answering queries using views: A

survey. The VLDB Journal10.4 (2001): 270-294.

2nd Modelling Symposium (ModSym 2016) - colocated with ISEC 2016, Goa, India, Feb 18, 2016
32

