A Framework for Prototyping and Evaluating
Self-adaptive Systems - A Research Preview

Fabian Kneer and Erik Kamsties

Dortmund University of Applied Sciences and Arts,
Emil-Figge-Str. 42, 44227 Dortmund, Germany
{fabian.kneer,
erik.kamsties}@fh-dortmund.de
http://www.fh-dortmund.de/

Abstract. [Context and motivation] In the last years, a consider-
able number of solutions were developed for self-adaptive systems (SAS).
These solutions are based on a feedback loop (MAPE loop), but employ
different approaches to realize the different facets of the feedback loop.
For example, the models used for the analysis step differ (e.g., goal-
models, feature-models). [Question/problem] In order to build a self-
adaptive system for a particular application, a researcher or practitioner
has not only to implement the application itself, but also the feedback
loop. That is, one has first to select an appropriate solution from the
literature and second to implement and evaluate the solution in the en-
vironment at hand. [Principal ideas/results] The goal of our work is
to reduce the effort for developing a SAS by providing a framework for
prototyping and evaluation. This framework comprises (1) a set of open
source implementations of selected approaches from which an engineer
can choose, (2) a case study to execute the implementations, and (3)
a set of metrics for data collection during execution. [Contribution]
The engineer can use the framework as a sandbox to compare several
approaches in order to make a more informed decision which approach
to choose. Possibly, the prototypical implementation can also be used in
the final SAS implementation. This is a research preview that reports
first results about the implementation of selected approaches (1), setting
up a case study (2), and it outlines concepts regarding evaluation (3).

Keywords: Self-adaptive systems, case studies, experimentation

1 Introduction

Following the ITU [10], the Internet of Things (IoT) is a global infrastructure for
the information society, enabling advanced services by interconnecting (physical
and virtual) things based on existing and evolving interoperable information
and communication technologies. A thing is an object of the physical world
(physical things) or the information world (virtual things), which is capable
of being identified and integrated into communication networks. A device is a
piece of equipment with the mandatory capabilities of communication and the

Copyright (© 2016 for this paper by its authors. Copying permitted for private
and academic purposes.

optional capabilities of sensing, actuation, data capture, data storage, and data
processing. One key concern of systems operating in the IoT is to dynamically
adapt to changing environments, due uncertainties during requirements-, design-,
and run-time (see [12]).

A self-adaptive system (SAS) contains a feedback loop to react on uncertain-
ties in the environment. This loop is called MAPE loop by IBM [7]: Monitor
- Analyze - Plan - Execute. As a first step, a system has to monitor its envi-
ronment and context with software and hardware agents like sensors. Then this
information is filtered until an investigation-relevant phenomenon is detected.
The system has to analyze these measured properties to check the effect on the
system requirements to verify if a change is required. Next, a plan is generated
which describes a reaction strategy on how to solve any potential issues. The
last step is to execute the configuration strategy via actuators of the system.

A considerable number of concepts for self-adaptive systems has been de-
veloped. From a practitioner’s perspective, open implementations of the MAPE
feedback loop for prototyping purposes are missing. This is a show-stopper in
practice, as a practitioner would need to work through research papers in order
to build such a prototype. A researcher who is interested in the comparison, ex-
tension and/or application of existing solutions to a new domain is in a similar
situation.

In this research preview we suggest a prototyping and evaluation framework
for self-adaptive systems. The first goal of the framework is to ease the proto-
typing (and possibly development) of self-configuring systems. For this purpose,
the framework offers implementations of selected approaches to SAS based on
the MAPE loop (e.g., based on feature models as suggest by Pascual et al. [11]).

The second goal of the framework is to ease the evaluation of self-configuring
systems, to allow for instance benchmarks between different approaches. For this
purpose, the framework provides a case study drawn from the smart city domain,
and a set of metrics for evaluation. The framework is able to collect data on a
subset of the metrics at runtime about overall quality, effort, and cost.

The framework can be used in a number of ways on the given case study:

— to understand a particular SAS approach,
— to optimize the application of an approach, or
— to compare approaches in a particular target environment.

The following section reports on the related work regarding frameworks for
construction and approaches to evaluation of self-adaptive systems. Section 3
describes the design of our framework for prototyping and evaluation, the current
extent of implementation and first experiences. Section 4 outlines the next steps
that we scheduled to complete the framework, and Section 5 concludes the paper
by describing one envisioned application scenario in more detail.

2 Related Work

This section presents previous approaches to prototyping and evaluation of self-
adaptive systems. Several implementations of the MAPE loop have been pub-

lished [5]. IBM’s Autonomic Computing Toolkit® was introduced in 2004. The
toolkit provides a practical framework and reference implementation for incor-
porating autonomic capabilities into software systems [5]. A so-called autonomic
manager can be build with the toolkit, which is a prototype of the MAPE loop
and can be used for analyzing logs of a managed application.

With respect to evaluation, metrics have been published. Some authors pro-
posed metrics to compare SAS, for example McCann et al. [9]: (1a) Quality
of Service, (b) Cost, (¢) Granularity/Flexibility, (d) Failure avoidance (Robust-
ness), (e) Degree of Autonomy, (f) Adaptivity, (g) Time to adapt and (h) Reac-
tion Time, (i) Sensitivity and (j) Stabilization.

Gjorven et al. [4] view adaption as a service which results in the metric
Quality of Adaption (QoA). The authors defined the following properties that
describe the QoA, (2a) safe adaption, (b) secure adaption, (c¢) optimal adaption,
(d) cost of adaption, (e) performance of adaption and (f) human in the loop.

We surveyed the literature on metrics that are actually used to evaluate self-
adaptive and self-configuring systems and identified the following metrics: (3)
the number of needed reconfigurations vs optimal number of reconfigurations,
(4) resource usage (a) power consumption, (b) memory size, (c) execution time
of the optimization process or parts like initializations, (5) average satisfaction
of elements over a time interval, (6) impact on the target system (a) average
lines of code per module that must be change (b) average response time of the
target system.

We observed that an approach is validated with an average of two metrics
out of the list above. Furthermore, the different approaches vary in the chosen
metrics. These facts make it difficult or even impossible to compare current
approaches given the information provided in the publications.

Our framework follows previous work in that it supports to build a SAS. The
difference lies in our goal also to evaluate and compare competing solutions.

3 Design and Implementation of the Framework

The framework bases on experiences we made with the implementation of a goal-
oriented (i*-based) approach to self-adaptive systems [6]. We developed a gen-
eralized architecture for prototyping SAS in the spirit of a software product-line
(SPL), by an analysis of commonalities and differences of approaches suggested
for SAS. We implemented a feature-orientated approach (Pascual et al. [11]) to
validate the initial architecture of the prototyping framework. The details of the
design, implementation, and first experiences are described in the remainder of
this section.

Design. Three important paradigms for self-configuring and adaptive systems
can be distinguished:

— Goal Oriented Approaches e.g. Zanshin from Mylopoulos et al. [13]

1 Autonomic Computing Toolkit Home page: http://www.ibm.com/developerworks/
autonomic/r3/overview.html

— Dynamic Decision Networks by Bencomo et al. [2]
— Feature Models e.g. by Garcia-Galan et al. [3] or Pascual et al. [11]

The focus of these approaches mostly lies on a better reconfiguration of the
system and also on a better decision about the need of a new configuration. This
means to identify the best configuration for the current system situation.

The largest commonality is the architecture of the approaches to self-adaptive
systems that we currently analyzed. All of them are based on a feedback loop
(MAPE) that consists of the parts monitor (monitoring configuration), analyze
(on a Requirements model), plan (decision algorithm & decision model or ele-
ments) and execute. The differences are in the way in which the different activ-
ities of the MAPE feedback cycle are carried out:

1. An indicator for an adaption can be Quality of Service for service-oriented
systems or a variable (input, output, parameter) for embedded systems.

2. A monitor configuration can be a simple event-condition-action (ECA), an
assertion, or a domain assumption. A monitor configuration describes a fact
of the running systems that should be monitored because it can lead to a
reconfiguration or adaption.

3. Different models are used for the analyze activity such as goal models or fea-
ture models. These models allow to represent requirements with alternative
realization strategies.

4. The decision making is based on quality values for different realization strate-
gies. For example in goal models, softgoals and contribution links are used
to compute quality values, which in turn are used generate a reconfiguration
plan.

5. The reconfiguration plan can be to increase or decrease values of variables
or activate or deactivate components, modules, or functions.

The implementation of the framework presented in the following section is
based on this analysis of commonalities and differences.

Implementation. The prototyping framework is implemented in the Python
programming language as this language allows for a wide range of deployments
and is frequently used for prototyping (yet not limited to that purpose). The
framework contains components to implement the different activities of the
MAPE loop as well as further functions that are needed to build and run an
adaptive system.

Fig. 1 shows the concept of the prototyping framework. Fundamentally, we
separate development time and runtime artifacts. The development time artifacts
represent additional aspects to be captured in the requirements phase. Runtime
artifacts are components required to build the SAS. To easy prototyping, some
runtime artifacts are generated from the development time artifacts. This process
is described in more detail in the subsection ” Generator” on Page 6.

We start the detailed discussion of the framework with the development time
artifacts. Self-configuring Requirements are requirements with changing indica-
tor values and also a status label that shows if the requirements is active or

disabled for a system situation. Indicators are measurable elements that are
gathered by hardware agents or software agents depending on the system. A
Monitor Configuration describe how an indicator is measured and how an as-
sured element change if the indicator change. A simple example is if the WLAN
connection (indicator) of a system fails a realization strategy that needs this
connection must be disabled. A Requirements Model contains the different re-
alization strategies of a system. The model must be validated to verify that a
configuration for a given situation is valid or an adaption has to be performed.
The implementation of a Validation Algorithm differs because of the previous
mentioned different requirements models. The last component of the framework
is a Decision Model, which is used to find the best configuration for the current
system situation. It contains all information to compute the value for a realiza-
tion strategy. The computing is done by the Decision Algorithm. The result of
the decision algorithm is a reconfiguration plan for the application.

Self-Configuring Monitor Requirements
o Requirements Configuration Assured by Model
g e «-——- (—————— N
= Defined on |
|
1 | |
|
g | | :
5] | v |
g | Decision Model
L Partially formalize
a == = = Indicators -
Generation Generation Gerneration Generation
()
£ System v
€ Application monitoring—> Self-Configuration Framework Evaluation
= i Modul
I~ <«——execution odule

Fig. 1. Prototyping and Evaluation Framework

The prototyping framework provides a set of components from which can be
chosen to develop a self-adaptive system. At the time of writing it contains a
feature-oriented approach with utility functions to compute a configuration with
a genetic algorithm (see Pascual et al. [11]).

The framework can be populated with further approaches. In order to give
an impression of the required effort, we provide programming effort data of the
feature-oriented approach mentioned above. The extension has taken about 3
man-week’s and 1500 LoC:

— ECA’s are used for monitoring the system (400 LoC 3-4 Days)

— Feature model is used as requirements model and representation of alterna-
tive realization strategies (600 LoC 3-5 days)

— Utility Table and - function are used to compute a configuration (200 LoC
3 Days)

— A genetic algorithm is used to choose the “best” configuration (100 LoC 2
Days)
— Configuration example (150 LoC 1/2 day)

— Simple Specification (1 textual requirement and feature model with 19 fea-
tures) (200 LoC 1/2 day)

Generator. In order to ease the development of a prototype, a self-adaptive
system is partially generated. That is, during development time (see upper part
of Fig. 1), only the essential information for building the SAS is specified by the
user. When using the feature-oriented approach this is: indicators (variables of
the systems with a type), a feature model (different features of the systems and
variation points), FCA rules (indicator change event, boolean condition, change
action on a element, e.g. feature), utility function (table with utility values of
the different variations of the feature model).

Probes for an application and the whole self-configuring framework (with
integrated MAPE loop), see bottom part Fig. 1 can now be generated out of
a specification. The indicators are used to generate probes for an application.
These probes are used by the self-configuring framework to monitor the indica-
tors and check the related ECA rules. The ECA description is used to generate
the rules of the ECA rule engine. An application that include the generated
probes can use the self-configuring systems to adapt the behavior to the chang-
ing context.

If the specification changes because new elements like indicators, ECA rules,
features or utility elements are added or elements are refined for example an ECA
rule change, only the generation process is re-triggered and the new prototype
can be used for the system which contains the probes. Further details about the
generator concept are given in [8].

4 Roadmap

The next steps on our roadmap to complete the framework are described in the
following.

Extension of Framework. Our next step is to re-implement our goal-oriented
approach to self-adaptive systems based on i* described in [6]. This will allow
for comparisons which are not possible at the time of writing.

Case Study. Within the Internet of Things, we have identified smart cities
as an interesting domain for a case study. It is accessible to many readers, it
is complex, and comprises many different facets. A hardware demonstrator of a
smart public lighting systems is under development that includes dynamic street
lights which adapt there light color and light intensity to its environment and
also communicate with other systems for example to display free parking-lots in
navigation systems.

Evaluation. A component for logging and monitoring metrics is under devel-
opment. Given the overall structure of our framework shown in Fig. 1, the data
on the following metrics can be automatically collected:

— (Cost: Some possible indicators are memory size, CPU or power consumption.

— Fuailure Avoidance: how much time elapse until a failure is fixed.

— Human in the loop/ Degree of Autonomy : count of the interaction with a
user over a specified time interval.

— Optimal Adaption: collect the satisfaction of configurations and count of
adaptations during a specified time interval. Build the average of these values
and compare the values with a defined ideal state.

— Adaption/ Reaction Time: execution time of an adaption process.

— Safe Adaption: count of failures (e.g. real-time constrains of an embedded
system) that are produced because of an adaption.

— Stabilization: that is the time taken from a change in the systems environ-
ment to stabilize the operations of a system.

The evaluation is limited to the metrics that can be captured at runtime.

5 Envisioned Usage of Framework

Under the assumption that a researcher has developed a SAS prototype (using
feature models, ECAs, and a utility function as described before), we sketch in
this section a scenario for evaluation.

Measurement is an established discipline in software engineering and there is
a large consensus that measurement has to conducted in an goal-oriented fashion.
The Goal-Question-Metric paradigm [1] is one approach to systematically derive
metrics from measurement goals.

A goal for a researcher could be to analyze the decision process of the MAPE
loop for the purpose to understand with the focus on performance of the de-
cision process from the perspective of a researcher in the context of an SAS
implementation on a Raspberry Pi. Following the GQM approach, questions are
derived to capture quality factors and factors that are hypothesized to influence
the quality factors. Questions are further refined into metrics. Table 1 shows a
possible GQM measurement model for this evaluation.

6 Conclusion

In this research preview we outlined a prototyping and evaluation framework for
self-adaptive systems (SAS) and sketched its application. The architecture of the
framework is based on the MAPE loop and it will offer a number of components
implementing different approaches to SAS.

One major benefit of the framework is to ease the development of self-
adaptive systems by a code generator and components that can be used out

lGoal G1 [Understand the performance of decision process.

Question Q1 What is the current adaption and decision processing per-
formance
Metrics M1 Average execution time
M2 Average execution time of the decision process
Question Q2 What resources are currently used by the decision process
related to the adaption process
Metrics M3 Average memory size of Jegision process ()

adaptiondp'rocess

M4 Average power consumption of FE£SLONPTOCESS ()

adaption process

M5 Average CPU load of decision process , 1y

adaption process

Question Q3 What is the current quality of the adaption process
Metrics M6 Average utility
M7 Average number of adaptations

Table 1. Example GQM table for Evaluation of the Decision Process

of the box. That is, the user of the framework is able to focus on the applica-
tion itself and on the definition of the adaptation requirements in the selected
formalism (e.g., feature models or goal models). The framework may also serve
as a basis for 3rd party implementations.

The other major benefit is to provide a common basis for evaluation of ap-
proaches to SAS. For this purpose, a component is currently added the frame-
work that automates data collection at execution time. The metrics that could
be collected with the help of the framework were outlined.

As this paper is a research preview we have not paid much attention to
validation. Yet, one major question to answer is how much effort the framework
actually saves in prototyping a SAS.

Finally, we believe that commonly available, open-source implementations of
self-adaptive systems help to promote the field. Therefore, it is planed to make
the framework open source and publicly available using GitHub, when it has
passed a first validation.

References

[1] V.R. Basili, G. Caldiera, and H. D. Rombach. “The Goal Question Metric
Approach”. In: Encyclopedia of Software Engineering. Wiley, 1994.

[2] N. Bencomo and A. Belaggoun. “Supporting Decision-Making for Self-
Adaptive Systems: From Goal Models to Dynamic Decision Networks”.
In: Requirements Engineering: Foundation for Software Quality. Ed. by
J. Doerr and A. Opdahl. Vol. 7830. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 221-236.

J. Garcia-Galén, L. Pasquale, P. Trinidad, and A. R. Cortés. “User-centric
adaptation of multi-tenant services: preference-based analysis for service
reconfiguration”. In: 9th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS 2014, Proceedings,
Hyderabad, India, June 2-3, 2014. 2014, pp. 65-74.

E. Gjorven, F. Eliassen, and J. Aagedal. “Quality of Adaptation”. In:
Autonomic and Autonomous Systems, 2006. ICAS ’06. 2006 International
Conference on. 2006, pp. 9-9.

M. C. Huebscher and J. A. McCann. “A Survey of Autonomic Computing -
Degrees, Models, and Applications”. In: ACM Comput. Surv. 40.3 (2008),
7:1-T7:28.

E. Kamsties, F. Kneer, M. Voelter, B. Igel, and B. Kolb. “Feedback-Aware
Requirements Documents for Smart Devices”. In: Requirements Engineer-
ing: Foundation for Software Quality. Ed. by C. Salinesi and I. Weerd.
Vol. 8396. Lecture Notes in Computer Science. Springer International Pub-
lishing, 2014, pp. 119-134.

J. O. Kephart and D. M. Chess. “The Vision of Autonomic Computing”.
In: Computer 36.1 (2003), pp. 41-50.

F. Kneer and E. Kamsties. “Model-based Generation of a Requirements

Monitor”. In: Joint Proceedings of REFSQ-2015 Workshops, Research Method

Track, and Poster Track co-located with the 21st International Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ
2015), Essen, Germany, March 23, 2015. 2015, pp. 156-170.

J. McCann and M. Huebscher. “Evaluation Issues in Autonomic Com-
puting”. English. In: Grid and Cooperative Computing - GCC 2004 Work-
shops. Ed. by H. Jin, Y. Pan, N. Xiao, and J. Sun. Vol. 3252. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004, pp. 597-608.
“Overview of the Internet of things”. In: JUT-T Y.2060 (2012).

G. G. Pascual, M. Pinto, and L. Fuentes. “Run-time adaptation of mo-
bile applications using genetic algorithms”. In: Proceedings of the 8th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2013, San Francisco, CA, USA, May 20-21,
20135. 2013, pp. 73-82.

A. Ramirez, A. Jensen, and B. Cheng. “A taxonomy of uncertainty for
dynamically adaptive systems”. In: Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2012 ICSE Workshop on. 2012, pp. 99—
108.

V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos.
“Awareness Requirements for Adaptive Systems”. In: Proceedings of the
6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS ’11. Waikiki, Honolulu, HI, USA: ACM,
2011, pp. 60-69.

