
Specification of Non-Functional Requirements:
A Hybrid Approach

Unnati S. Shah
1
, Sankita J. Patel

2
, Devesh C. Jinwala

2

1 C. K. Pithwalla College of Engineering and Technology, Surat, India

unnati.shah25@gmail.com
2S. V. National Institute of Technology, Surat, India

{sankitapatel,dcjinwala}@gmail.com

Abstract. When specifying user requirements, not only it is critical to ensure

correct and unambiguous specification of functional requirements, but also that

of non-functional requirements (NFRs). In fact, resolving ambiguities from

user specified natural language NFRs and specifying the correct ones in a

formal language have attracted significant attention. Our current research

focuses on the issues pertaining the same. We observe that it is a usual practice

for a user to narrate the NFRs in natural language and the requirement engineers

manually try to express the same, using some semi-formal or formal language

notations. However, inaccurate and the laborious manual approach may fail to

detect all the NFRs and correctly remove the ambiguities in those detected.

Hence, current research attempts have focused on automating the conversion of

natural language NFRs to formal notations.

In literature, there exist numerous approaches that take requirements as input

and output the extended UML counterpart including NFRs. However, majority

of the approaches do not support ambiguity resolution and verification of the

extracted NFRs that are fairly essential. In this paper, we propose and discuss a

hybrid approach viz. NFRs-Specifier, that attempts to resolve ambiguities,

extract NFR’s, perform verification and generate NFRs specification by means

of the extended UML model.

Keywords: Requirements Engineering; Ambiguity; Natural Language

Processing; Non-functional Requirements; Requirements Classification;

Unified Modeling Language; Ontology

1 Introduction

Requirements Engineering (RE) is one of the most vital activities in the entire

software development life cycle [1]. The RE activity often starts with the vaguely

defined requirements [2, 3] that results eventually in a software requirements

specification document. To make the RE process effective there exists various RE

approaches viz. View-point Oriented RE (VORE) [4], Aspect Oriented RE (AORE)

[5], Goal Oriented RE (GORE) [6-9] and Ontology based RE (ORE) [10] among

others. The success of any software depends on correct and unambiguous

specification of Functional Requirements (FRs) and Non-Functional Requirements

(NFRs) [11]. The FRs are relatively easy to identify and specify. However, to capture

and specify the NFRs is difficult, as compared. This is so, because often the users'

narration of the NFRs is vague and is hidden in the FRs. Thus, a major problem in RE

is identification of unrevealed NFRs, conflict resolution and their unambiguous

specification.

The NFRs [12-15] are also known by a relatively colloquial term viz. Quality

Requirements (QR). To present the QR, there exist four basic quality models (viz.

Boem [16], McCall [17], FRUPS [18] and Dromey [19]) that provide quality

attributes in the hierarchy.

As per our literature survey, numerous approaches exist, that deal with NFRs

activities viz. elicitation, classification, verification and specification. Typically, users

and requirements engineers informally (manually) identify the NFRs from the

requirements documents using their experience and expertise [20-24] or use a formal

setup e.g. the NFR Framework [25]. The NFR Framework is a Goal Oriented

Approach (GOA), used to represent NFRs graphically by means of a soft-goal

interdependency graph without referring a quality model.

Many researchers [26-29] have based their work on the NFR Framework and have

treated NFRs as a soft-goal and FRs as a hard goal. However, it is important to the

following counter-view [30, 31]:

1. The NFRs/FRs could be treated as hard-goal as well as soft-goal

2. There exists no clear cut boundary between NFRs and FRs and

3. It is difficult to integrate NFRs (the graphical notations) with the FRs (UML

Models)

In support of the claims 1 and 2, authors [32] provide precise definitions of Soft

Goal, Quality Goal and Quality Constraints. To deal with the integration issue

(claim-3), in [24, 33-35] NFRs are integrated by means of extending UML models

(viz. use-case, class, activity, sequence, etc). However, this approach models certain

NFRs due to limited knowledge regarding quality focus expected.

We reiterate that it is error-prone to analyze a large set of software requirements

and identify relationships amongst them - especially when using inaccurate, time

consuming and laborious manual approach is employed. Obviously, expecting a user

to specify the requirements in a formal language that is cryptic and that requires

sophisticated skills is idealistic.
On the other hand, semi-formal approach (viz. natural language processing,

machine learning, etc) helps to reduce human efforts in identifying and classifying

NFRs from requirements documents accurately. The machine learning approaches

viz. supervised/ semi-supervised and unsupervised provide an ease by classifying

requirements without human expert. As compared to informal approaches, this

approach is cheap, flexible and less labor intensive.

However, it is usually impossible to achieve accuracy and high performance

without a lot of training labeled data set. Again, the manual annotation process is time

consuming and error prone. Moreover, changes are inevitable in real world and hence

when there are changes in the domain, words/terms used in the requirements or the

writing style, there is an imminent need to retrain the machine [36]. The Natural

Language Processing (NLP) helps to extract NFRs from requirements documents [37,

38]. However, NLP cannot help to provide additional information regarding

application domain. The NFRs are difficult to describe completely and precisely due

to vague, conceptual, and the subjective nature [37]. Furthermore, it is unreasonable

to ask users to provide their NFRs explicitly because they are related to specific

domains and affected by context. In addition, it is difficult to meet the changing needs

of the environment and to describe them in unified and standardized form. To identify

NFRs definitely there is a need to provide the domain knowledge support at the time

of interview. Building the ontology based on domain knowledge and quality models

gives a formal, explicit specification of a shared conceptualization [39]. It helps

domain users- to suggest their requirements effectively and requirements analysts- to

understand and model the requirements accurately. The ontology can promote

common understanding of NFRs among developers, and can be used as a basis for

specifying NFRs. In literature, there exists number of ontology based approaches [40-

49] to specify NFRs.

After analyzing existing approaches/tools, we classify them in three categories viz.

formal, informal and semi-formal. We observe that these approaches (viz. informal,

semi-formal and formal) are not competitive, instead complementary. Furthermore,

we observe that the informal approach mainly focuses on elicitation and specification

of the NFRs. The semi-formal approach, focus on the classification of the NFRs and

the formal methods (viz. Z notations [50], UML-B [51]) help for formal specification

of the NFRs.

Our proposed approach viz. NFR-Specifier, mainly focuses on extracting all

possible NFRs from requirements documents and provides specification after resolving

ambiguity. To achieve this, we use a hybrid approach – combination of NLP, machine

learning and ontology.

2 PROPOSED APPROACH

We propose a semi-automated approach called NFR-Specifier, aims to generate

accurate specification from informal requirements including NFRs as shown in figure

1. The approach consists of five modules viz. preprocessing, ambiguity resolving,

SRS ontology formation, UML diagram generation and NFRs classification. Initially,

requirements engineer gathers domain knowledge from users by means of various

communication approaches viz. questionnaires, interviews, checklist, prototyping,

meetings, among others. Once the communication phase is over, the requirements

engineer represents the collected information by means of a text files, documents,

graphs or UML models (viz. use-case, class, sequence diagram). These initial

requirements are ambiguous in nature.

The preprocessing module takes input as natural language requirements and

produces normalized natural language requirements. The module performs three tasks

viz. sentence splitting, Part-Of-Speech (POS) tagging and normalizing. It performs

syntactic reconstruction to split a complex sentence into simple sentences to extract

all possible information from the requirements document. We use the Stanford parser,

for lexical-syntactic analysis and WordNet [52] to determine context knowledge.

Each token is analyzed and classified into its respective POS (Part-Of-Speech)

classification viz. noun, verb, pronoun, adverb, helping-verb, adjective, prepositions,

etc. Furthermore, we use dependencies [53] (binary relations that give a grammatical

relation between a head and a dependent relative in a sentence) generated by the

Stanford parser to identify the semantic relationships between words. The normalizing

process also performs spelling and grammar checking. We perform a comparative

analysis of ambiguity (having more than one meaning to a word/sentence) resolving

approaches/tools [3]. The analysis shows that resolving ambiguity at an early stage

makes initial requirements clear, complete and precise. Furthermore, not all rather,

ambiguities viz. Anaphora, attachment, event anaphora, coordination, among others

affects the SRS.

Fig. 1. Architecture of Proposed Approach

The ambiguity resolving module takes the input as a normalized requirement and

produces the unambiguous natural language requirements. The module identifies

ambiguous requirements and suggests the most suitable solution to resolve the

ambiguity. We propose an architecture viz. ARUgen that is aimed to resolve

ambiguities from informal requirements [54]. Our tool ARUgen mainly deals with

ambiguities viz. pronoun anaphora, verb anaphora and coordination. After resolving

ambiguity, we generate Software Requirements Specification (SRS) Ontology semi-

automatically with the help of pre-build domain ontology and rule based approach.

The SRS ontology helps to identify in-depth and complete knowledge of the

application requirements. After developing SRS ontology, the next aim is to generate

UML models (semi-) automatically. We extract Object Oriented Terms (OOT) viz.

subject/class, object/class, attributes, methods using rule based approach and Stanford

dependencies as shown in table 1.

Table 1. Stanford Dependencies used to Extract OOT

Relationships between classes are extracted using the rules listed in table 2.

Table 2. Rules To Identify Relationship Between Classes

Relationship Rules

Association (Noun + Verb + Noun) or

Noun + Keyword + Noun

Keyword: has, next to,works for, contained in, talk to

Inheritance (Subject + Keyword + Object)

Keyword: maybe/ is type of

Composition (Subject + Keyword + Object)

Keyword: comprises, have, include, possess, contains

Aggregation Subject+Phrase + Object

Phrase: is a part of

Cardinality Stanford dependency: predet-(predeterminer)

Predet (the, a, proper noun) -> 1

Predet (all, many, more)-> *

The extracted entities are used to generate UML models automatically. The approach

provides flexibility to modify the auto-generated UML models. After that, we perform

OOT Stanford Dependencies

Subject/

Class

csubjpass (clausal passive subject); nsubj (nominal subject)

nsubjpass (passive nominal subject); xsubj (controlling subject);

Object/

Class

dobj (direct object); iobj (indirect object), pobj (object of a

preposition);

Attribute acomp; advmod (adverbial modifier); amod (adjectival modifier),

(String/number) (numeric modifier), npadvmod: noun phrase as

adverbial modifier;

Method aux: auxiliary; auxpass: passive auxiliary, complm:

complementizer, rcmod: relative clause modifier; xcomp:

openclausal complement).

requirements clustering based on noun. Here, we use hierarchical clustering [55]. In

literature, we have identified various promising machine learning algorithms used for

requirements classification [56-58]. We observe that the accuracy of machine learning

algorithm depends on various factors such as feature selection, distance/similarity

measures, dataset, among others [55, 57]. We provide flexibility to adjust

classification parameters and to add/update/delete irrelevant requirement classes.

Once we have functional grouping of the requirements based on nouns, we verify

these requirements with the system generated use-case model as shown in fig. 1. The

approach then extracts possible NFRs using pre-developed quality ontology based on

specific parts of standard quality models using protégé tool. We apply classification to

identify NFRs related requirements. The module takes normalized unambiguous

requirements as an input and produces the NFRs classification using ontology and

machine learning approach. The extracted NFRs are integrated with UML models viz.

use-case diagram. We provide a generalized algorithm in figure 2 and a brief

summary of each module in table 3.

A. Initial informal requirements
B. Apply POS Tagging //Natural language processing

C. Resolve coordination ambiguity (and, or, as well as, but not)
D. Resolve Anaphora Ambiguity //Rule based

a. Identify Anaphora ambiguity

b. Identify Antecedent

c. Avoid Non-anaphoric anaphora

d. Generate suitable antecedent for anaphora//user input

E. Create Software Requirements Specification Ontology

a. Extract nouns from the requirements

b. Group similar nouns based semantics and give generic name to them and

create a hierarchy

F. Apply requirements clustering//Machine learning

a. Apply stop word removing and stemming

b. Select feature (viz. noun, verb, adjective)//user input

c. Generate distance/similarity measure matrix

d. Group similar requirements in to a cluster

G. Create UML Diagram

a. Extract Class, Attributes and Methods

b. Extract relationship among Classes

c. Extract cardinalities

d. Extract class diagram

e. Extract actors and use-cases// //using Stanford Dependencies

f. Generate Use-case Diagram

H. NFRs Classification//using Ontology

a. Identify NFRs using Quality Ontology

b. Refine NFRs related requirements

I. Integrate NFRs to the UML diagram

Fig. 2. Procedure: NFRs-Specifier

Table 3. A Brief Summary Of Each Module Of The Proposed Approach

Module
Task

Technology/

Approach
Output

Preprocessing Sentence Splitting, POS

tagging, Normalizing

-Stanford Parse

-WordNet

-NLP

-Heuristic Rules

Normalized

Requirements

Ambiguity

Resolving

Anaphora ambiguity (viz.

event, verb, personal pronoun,

possessive pronouns, Wh-

pronoun, Wh-adverb),

Coordination ambiguity and

Attachment ambiguity

Unambiguous

Requirements

Create SRS

Ontology

Based on prebuild domain

ontology create a software

requirements specification

ontology

-Rule based

 Approach

-Protégé tool

SRS

Ontology

Create UML

Models

-Identify OOT

-Extract Relationship

-Extract subject, object and

dependency agent to identify

possible actors

-Extract verb phrases to

identify possible use-cases

-Rule based

 Approach

-Stanford

 Dependencies

-WordNet

Use-case

Model

Requirements

Classification

-Stemming words

-Extract nouns

-Apply distance/similarity

measures

-Apply clustering algorithm

-Machine learning

 Approach

-Hierarchical

 Clustering

-Hamming

 Distance

Requirements

Clusters

NFRs

Classification

-Extract NFRs

-Classify NFRs

-Ontology based

Approach

-Keyword search

-Rule based

Approach

Extracted

NFRs

Extended

UML Models

-Integrating NFRs in UML

models -Rule based approach

Extanded

Use-case

Model

3 A CASE STUDY

In this section, we provide the detailed analysis of the proposed approach (figure 2)

on Automated Teller Machine (ATM) as a case study.

A. Initial requirements

R1: The ATM interacts with the customer to gather transaction information.

R2: The bank computer gets the transaction information from the ATM to verify

an account and to process a transaction.

R3: Each bank may be processing transactions from several ATMs at the same

time.

R4: The customer interacts with the ATM network via the ATM.

R5: It must be very easy for them to use the ATM.

R6: The ATM network has to be available 24 hours a day.

R7:The ATM network should provide maximal security.

B. POS Tagging

R1: The|DT ATM|NNP interacts|VBZ with|IN the|DT customer|NN to|TO

gather|VB transaction|NN information|NN .|.

R2: The|DT bank|NN computer|NNgets|NNS the|DT transaction|NN

information|NN from|IN the|DT ATM|NNP to|TO verify|VB an|DT account|NN

and|CC to|TO process|NN a|DT transaction|NN .|.

R3: Each|DT bank|NN may|MD be|VB processing|VBG transactions|NNS from|IN

several|JJ ATMs|NNS at|IN the|DT same|JJ time|NN (|: performance|NN)|: .|.

R4: The|DT customer|NN interacts|VBZ with|IN the|DT ATM|NNP

network|NN via|IN the|DT ATM|NNP .|.

R5: It|PRP must|MD be|VB very|RB easy|JJ for|IN them|PRP to|TO use|VB

the|DT ATM|NNP (|NNP usability|NN)|: .|.

R6: The|DT ATM|NNP network|NN has|VBZ to|TO be|VB available|JJ 24|CD

hours|NNS a|DT day|NN (|: availability|NN)|: .|.

R7: The|DT ATM|NNP network|NN should|MD provide|VB maximal|JJ

security|NN (|: security|NN)

C. Resolve coordination Ambiguity

The approach identifies coordination ambiguity in requirement R2. It will split

the requirement and make two separate requirements as:

R2.1: The bank_computer gets the transaction_information from the ATM to

verify an account.

R2.2: The bank_computer gets the transaction_information from the ATM to

process a transaction.

D. Resolve Anaphora Ambiguity

The approach identifies anaphora ambiguity in requirement R5 as the

requirement R5 contains the keyword ―it‖ and ―them‖. The system resolve the

ambiguity ―them‖ automatically and rewrite the requirement R5 as

 R5: It must be very easy for customer to use the ATM.

E. Create SRS Ontology

To generate the SRS ontology automatically we have used the pre-developed

domain ontology as shown in figure 3. The partial output of the generated SRS

ontology is shown in figure 4.

Fig. 3. Domain Ontology

Fig. 4. SRS Ontology

F. Requirements Clustering

We perform requirements clustering based on noun and using hamming code

distance measure. We extract nouns (viz. ATM, customer,

transaction_Information, Bank_computer, account, transaction, bank, time,

ATM_network, hours, day, security) from R1 - R8 to calculate the distance of

two requirements. Table 4 shows the distance matrix calculation for the

requirements R1 to R8.

G. Extracted Nouns, Verbs and Adjectives to create UML Diagram

Noun: ATM, Customer, Transaction_Information, Bank_Computer,

Account,Transaction, Bank, Time, ATM_Network, Hours, Day, Security

Verb: Interacts, get, gather, verify, process, use, provide

Adverb/Vauge (adverb+...+noun): Several ATMs, same time, very easy for user,

available 24 hours, maximal security

Table 4. Distance matrix

We apply the hierarchical clustering and get the cluster as follows:

1. Cluster1 : R1, R2, R3

2. Cluster2 : R4, R6

3. Cluster3 : R5, R7, R8

Once the requirements are clustered, we verify these requirements with the

generated use-case model as shown in figure 5.

 ATM_network

Fig. 5. Use-Case Model

H. NFRs Classification

Using pre-developed quality ontology based on standard quality model, we extract the

NFRs from the requirements viz. security, availability, performance and the

relationship to the requirements as shown in table 5.

Table 5. Requirements and related NFRs

Requirement NFRs

R4 Performance

 R1 R2 R3 R4 R5 R6 R7 R8

R1 - 3 3 4 2 1 6 5

R2 3 - 2 5 5 4 7 6

R3 3 2 - 5 5 4 7 6

R4 4 5 5 - 4 3 6 5

R5 2 5 5 4 - 1 4 3

R6 1 4 4 3 1 - 5 4

R7 6 7 7 6 4 5 - 3

R8 5 6 6 5 3 4 3 -

Available 24 hours a day

Provide maximal security

Execution time

Response Time

R6 Usability

R7 Availability

R8 Security

Authenticity

Integrity

Availability

I. Integrate NFRs to the UML Diagram

Finally, the extended use-case model generated as shown in figure 6.

ATM_network

Fig. 6. Extended Use-Case Model

4 DISCUSSION

The presented approach seems easy if human intelligence applies, but to make the

process automated, requires a lot of training dataset and domain knowledge.

Furthermore, the machine learning algorithms may not perform well if NFRs occur

that are not relevant to the predefined category. In order to adapt the change in the

application domain, the algorithms need to be re-trained and re-evaluated that again

require manual efforts. On the other hand, to provide a complete and precise NFRs

specification, we need to identify all possible NFRs conflicts as it may happen that

one NFR affect (positively or negatively) other NFRs. To provide the

conceptualization, it is required to identify the dependencies exist between NFRs. The

NFRs provides constraints on FRs, thus the change in NFRs may cause the change in

FRs. Though, we investigate the positive impact of combining rule based and machine

learning approaches on classification of NFRs using quality ontology, we need to

investigate the impact of hybrid clustering algorithms for classification of NFRs.

Provide Confidentiality

Provide Integrity

Provide

Authentication

Available 24 hours a day

Provide maximal security

5 CONCLUSIONS

The correct and precise software requirements specification is required for the success

of the software. If the requirements are not extracted and analyzed using an

engineering approach, the errors that creep into the software are detected in the later

stages of the software development, leads to higher costs for changes. In this paper,

we present a hybrid approach that provides a specification of NFRs. It addresses the

problems viz. normalizing, ambiguity resolving, requirements clustering, NFRs

classification and verification using efficient natural language processing, a set of

rules, ontology and machine learning approaches. After analyzing feasibility of the

approach of case study, we conclude that the deployment of the approach in the RE

practice would have a positive impact.

References

1. Sommerville, Ian, and Pete Sawyer, Requirements engineering: a good practice guide,

John Wiley & Sons, Inc., 1997.

2. Nuseibeh, Bashar, and Steve Easterbrook, "Requirements engineering: a

roadmap," Proceedings of the Conference on the Future of Software Engineering, ACM,

2000.

3. Shah US, Jinwala DC, ―Resolving Ambiguities in Natural Language Software

Requirements: A Comprehensive Survey,‖ ACM SIGSOFT Software Engineering Notes,

vol. 40(5), pp. 1-7, 2015.

4. Pu, YuNing, and Qiang Liu, "A Viewpoint-Oriented Requirements Elicitation Integrated

with Aspects," Computer Science and Information Engineering, WRI World Congress On,

Vol. 7, IEEE, 2009.

5. Rashid, A., and Chitchyan, R, ―Aspect-oriented requirements engineering: a roadmap,‖

In Proceedings of the 13th international workshop on Early Aspects, ACM, pp. 35-41,

2006.

6. Anwer, S., and Ikram, N., ―Goal oriented requirement engineering: A critical study of

techniques,‖ In Software Engineering Conference, APSEC 2006. 13th Asia Pacific, IEEE,

pp. 121-130, 2006.

7. Van Lamsweerde, A. and Letier, E., ―Handling obstacles in goal-oriented requirements

engineering,‖ Software Engineering, IEEE Transactions on, vol. 26 (10), pp.978-1005,

2000.

8. Kavakli, E., ―Goal-oriented requirements engineering: A unifying

framework,‖ Requirements Engineering, vol. 6(4), pp.237-251, 2002.

9. Lapouchnian, A., ―Goal-oriented requirements engineering: An overview of the current

research,‖ University of Toronto, p.32, 2005.

10. Lee, Seok Won, and Robin Gandhi, "Ontology-based active requirements engineering

framework," In Software Engineering Conference, APSEC'05. 12th Asia-Pacific, IEEE,

pp. 8-pp, 2005.

11. IEEE Computer Society. Software Engineering Standards Committee, and IEEE-SA

Standards Board. "IEEE Recommended Practice for Software Requirements

Specifications." Institute of Electrical and Electronics Engineers, 1998.

12. Davis, Alan M. Software requirements: objects, functions, and states. Prentice-Hall, Inc.,

1993.

13. Anton, Ana I, "Goal identification and refinement in the specification of software-based

information systems," (1997).

14. Jacobson, Ivar, Grady Booch, James Rumbaugh, James Rumbaugh, and Grady

Booch, ―The unified software development process,‖ Vol. 1, Reading: Addison-wesley,

1999.

15. Chung, Lawrence, Brian A. Nixon, Eric Yu, and John Mylopoulos, ―Non-functional

requirements in software engineering,‖ Springer Science & Business Media, Vol. 5, 2012.

16. Boehm, Barry W., John R. Brown, and Mlity Lipow, "Quantitative evaluation of software

quality," In Proceedings of the 2nd international conference on Software engineering,

IEEE Computer Society Press, pp. 592-605, 1976.

17. McCall, J. A., P. K. Richards, and G. F. Walters. Factors in Software Quality, Volumes I,

II, and III, US Rome Air Development Center Reports NTIS AD/A-049 014. NTIS AD/A-

049 015 and NTIS AD/A-049 016, US Department of Commerce, 1977.

18. Grady, Robert B., and Deborah L. Caswell, "Software metrics: establishing a company-

wide program," (1987).

19. Dromey, G.R., ―A model for software product quality,‖ Software Engineering, IEEE

Transactions on, vol. 21(2), pp.146-162, 1995.

20. Alsaleh, S. and Haron, H., The Most Important Functional and Non-Functional

Requirements of Knowledge Sharing System at Public Academic Institutions: A Case

Study,‖ Lecture Notes on Software Engineering, vol. 4(2), p.157, 2016.

21. Rahman, Md, and Shamim Ripon, "Elicitation and Modeling Non-Functional

Requirements-A POS Case Study," arXiv preprint arXiv:1403.1936, 2014.

22. Herrmann, A. and Paech, B, ―MOQARE: misuse-oriented quality requirements

engineering,‖ Requirements Engineering, vol. 13(1), pp.73-86, 2008.

23. Mala, GS Anandha, and G. V. Uma, "Elicitation of non-functional requirement preference

for actors of usecase from domain model," InAdvances in Knowledge Acquisition and

Management, Springer Berlin Heidelberg pp. 238-243, 2006.

24. Sun, Jie, Liping Zhao, Pericles Loucopoulos, and Bo Zhou, "Qra: A quality requirements

analysis approach for service systems," In Services Computing (SCC), IEEE International

Conference on, pp. 25-32, 2013.

25. Chung L., Nixon, J. M. B. and Yu, A. Non-functional Requirements in Software

Engineering. Springer, Reading, Massachusetts, 2000.

26. Domah, D. and Mitropoulos, F.J., ―The NERV methodology: A lightweight process for

addressing non-functional requirements in agile software development,‖ In SoutheastCon,

IEEE, pp. 1-7, 2015

27. Mead, Nancy R., and Ted Stehney, ―Security quality requirements engineering (SQUARE)

methodology,‖ ACM, Vol. 30, No. 4, 2005.

28. Burgess, Christopher, Aneesh Krishna, and Li Jiang, "Towards optimising non-functional

requirements," In Quality Software, QSIC'09, 9th International Conference on, IEEE, pp.

269-277, 2009.

29. Andreopoulos, Bill, "Achieving Software Quality Using the NFR Framework:

Maintainability and Performance," In Proc. 3rd Int’l Conf. Computer Science, Software

Eng., Information Technology, e-Business, and Applications, 2004.

30. Li, Feng-Lin, Jennifer Horkoff, John Mylopoulos, Renata SS Guizzardi, Giancarlo

Guizzardi, Alexander Borgida, and Lin Liu, "Non-functional requirements as qualities,

with a spice of ontology," In Requirements Engineering Conference (RE), IEEE 22nd

International, pp. 293-302, 2014.

31. Guizzardi, R., Li, F.L., Borgida, A., Guizzardi, G., Horkoff, J. and Mylopoulos, J., ―An

ontological interpretation of non-functional requirements,‖ In Formal Ontology in

Information Systems: Proceedings of the Eighth International Conference, Vol. 267, p.

344, IOS Press, 2014.

32. Jingbai, T., Keqing, H., Chong, W. and Wei, L., ―A context awareness non-functional

requirements metamodel based on domain ontology,‖ In Semantic Computing and

Systems, WSCS'08, IEEE International Workshop on, pp. 1-7, 2008.

33. Moreira, A., Araújo, J. and Brito, I., ―Crosscutting quality attributes for requirements

engineering,‖ In Proceedings of the 14th international conference on Software engineering

and knowledge engineering, ACM, pp. 167-174, 2002.

34. Gnaho, C., Semmak, F. and Laleau, R., ―Modeling the Impact of Non-functional

Requirements on Functional Requirements,‖ In Advances in Conceptual Modeling,

Springer International Publishing, pp. 59-67, 2014.

35. Song, X., Duan, Z. and Tian, C., ―Non-Functional Requirements Elicitation and

Incorporation into Class Diagrams,‖ In Intelligent Information Processing, Springer Berlin

Heidelberg pp. 72-81, 2010.

36. Casamayor, A., Godoy, D. and Campo, M., ―Identification of non-functional requirements

in textual specifications: A semi-supervised learning approach,‖ Information and Software

Technology, vol. 52(4), pp.436-445, 2010.

37. Rago, A., Abait, E., Marcos, C. and Diaz-Pace, A., ―Early aspect identification from use

cases using NLP and WSD techniques,‖ InProceedings of the 15th workshop on Early

aspects, ACM, pp. 19-24, 2009.

38. Sampaio, A., Chitchyan, R., Rashid, A. and Rayson, P., ―EA-Miner: a tool for automating

aspect-oriented requirements identification,‖ In Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering, ACM, pp. 352-355, 2005.

39. Kassab, M., Ormandjieva, O. and Daneva, M., ―An Ontology based approach to non-

functional requirements conceptualization,‖ In Software Engineering Advances, 2009.

ICSEA'09. Fourth International Conference on, IEEE, pp. 299-308, 2009.

40. Dobson, G., Hall, S. and Kotonya, G., ―A domain-independent ontology for non-functional

requirements,‖ In e-Business Engineering, ICEBE, IEEE International Conference on, pp.

563-566, 2007.

41. Al Balushi, T.H., Sampaio, P.R.F., Dabhi, D. and Loucopoulos, P., ―ElicitO: a quality

ontology-guided NFR elicitation tool,‖ In Requirements Engineering: Foundation for

Software Quality, Springer Berlin Heidelberg, pp. 306-319, 2007.

42. de Almeida Falbo, R., de Menezes, C.S. and da Rocha, A.R.C., ―A systematic approach for

building ontologies,‖ In Progress in Artificial Intelligence—IBERAMIA, Springer Berlin

Heidelberg, pp. 349-360, 1998.

43. Dobson, Glen, Russell Lock, and Ian Sommerville, Quality of service requirements

specification using an ontology, 2005.

44. Al Balushi, T.H., Sampaio, P.R.F., Dabhi, D. and Loucopoulos, P., ―Performing

Requirements Elicitation Activities Supported by Quality Ontologies,‖ In SEKE, pp. 343-

348, 2006.

45. Hughes, C. and Hillman, J., ―Qos explorer: A tool for exploring qos in composed

services,‖ In Web Services, ICWS'06. International Conference on, pp. 797-806, 2006.

46. Lee, S.W., Muthurajan, D., Gandhi, R.A., Yavagal, D. and Ahn, G.J., ―Building decision

support problem domain ontology from natural language requirements for software

assurance,‖ International Journal of Software Engineering and Knowledge

Engineering, vol. 16(06), pp.851-884, 2006.

47. Li, F.L., Horkoff, J., Mylopoulos, J., Liu, L. and Borgida, A., ―Non-Functional

Requirements Revisited,‖ In iStar, pp. 109-114, 2013.

48. Rashwan, A., Ormandjieva, O. and Witte, R., ―Ontology-based classification of non-

functional requirements in software specifications: a new corpus and svm-based

classifier,‖ In Computer Software and Applications Conference (COMPSAC), IEEE 37th

Annual, pp. 381-386, 2013.

49. Jingbai, T., Keqing, H., Chong, W. and Wei, L., ―A context awareness non-functional

requirements metamodel based on domain ontology,‖ In Semantic Computing and

Systems, WSCS'08, IEEE International Workshop on, pp. 1-7, 2008.

50. Ledru, Yves, et al., "An attempt to combine UML and formal methods to model airport

security," CAiSE Forum, 2006.

51. Snook, C. and Butler, M., ―UML-B: Formal modeling and design aided by UML,‖ ACM

Transactions on Software Engineering and Methodology (TOSEM), vol.15(1), pp.92-122,

2006.

52. WordNet (2010) Princeton University [online] http://wordnet.princeton.edu/wordnet

(accessed 27 November 2015).

53. De Marneffe, M.C., MacCartney, B. and Manning, C.D., ―Generating typed dependency

parses from phrase structure parses,‖ InProceedings of LREC (Vol. 6, No. 2006, pp. 449-

454, 2006.

54. Unnati Shah and Devesh Jinwala (in Press), ―Resolving ambiguity in natural language

specification to generate UML diagrams for requirements specification‖, In International

Journal of Software Engineering, Technology and Applications, Inderscience.

55. Borgatti, Stephen P., "How to explain hierarchical clustering," pp.78-80, 1994.

56. Duan, Chuan, and Jane Cleland-Huang, "A clustering technique for early detection of

dominant and recessive cross-cutting concerns," In Proceedings of the Early Aspects at

ICSE: Workshops in Aspect-Oriented Requirements Engineering and Architecture Design,

p. 1. IEEE Computer Society, 2007.

57. Li, Z., Rahman, Q.A. and Madhavji, N.H., ―An Approach to Requirements Encapsulation

with Clustering,‖ In WER, pp. 92-96, 2007.

58. Belsis, P., Koutoumanos, A. and Sgouropoulou, C., ―PBURC: a patterns-based,

unsupervised requirements clustering framework for distributed agile software

development,‖ Requirements Engineering, vol. 19(2), pp.213-225, 2014.

