
Supporting Natural Language Queries across the
Requirements Engineering Process

Sugandha Lohar

School of Computing
DePaul University, Chicago, IL, 60604, USA

slohar@cs.depaul.edu

Abstract. [Context and Motivation:]Software project artifacts such
as regulatory codes, requirements, design, code, and test cases facili-
tate many requirements-related engineering tasks including change im-
pact analysis, safety assessment, and coverage analysis. Unfortunately,
users often lack technical expertise in query languages such as SQL or
XQuery and therefore have difficulties constructing meaningful queries.
The problem can be alleviated when users express their queries using nat-
ural language (NL). [Question/problem:] NL interfaces depend upon
domain models that capture the concepts and terminology of the do-
main. While prior studies have explored the types of queries, and as-
sociated terminology, used by software developers and maintainers, no
such systematic study has been conducted in the requirements domain.
We therefore do no fully understand the queries, terminology, and user
interfaces needed to interactively support NL queries for requirements
engineers. [Principal ideas/results:] This dissertation proposes a se-
ries of empirical studies to discover the information needs, and related
queries, pertinent to requirements engineers. A domain model captur-
ing concepts and terminology of the domain will be extracted from the
sample queries. The work will also include a series of user-studies fo-
cusing on improving query representation techniques for displaying and
communicating the interpreted NL Queries back to the requirements
engineer. [Contribution:]Prior work has developed a prototype NL in-
terface for supporting Software Engineering queries but has not studied
its use in practice. The proposed solution will focus on NL Queries in
the requirements domain, delivering a domain model to enhance under-
standing of requirements-related queries, and developing and evaluating
query representations which support requirements engineers in the tasks
they perform.

Keywords: Software Project Queries, Natural Language Processing,
Human Computer Interaction

1 Introduction

Software projects produce a huge amount of data artifacts throughout their de-
velopment process. This data can be leveraged to analyze and improve the soft-

ware systems by supporting activities such as requirements engineering, regres-
sion analysis, predictive analysis, coverage analysis, impact analysis and so on [4].
However, retrieving this data can be challenging as it is often stored in both
structured and unstructured formats and geographically distributed. Further-
more, the queries for extracting this data are often extremely complex, requiring
multiple joins and negations across varied artifact types. Writing non-trivial
queries in structured languages, can be challenging even for experts; thereby,
aggravating the data accessibility problem [9,11].

A Natural Language Interface(NLI) addresses this problem by allowing users
to express queries in their own words; however, general purpose NL interfaces
have limited information of a particular domain and as a result, they fail to
fully understand many complex domain-specific queries [12]. Customizing an in-
terface for a particular domain requires extensive knowledge of the terminology
and concepts of the domain. The goal of this work is to deliver a NLI solution
for supporting requirements engineering queries. To this end, we will identify
the information needs of business analysts and requirements engineers through
a series of interviews, construct an appropriate NL domain model, evaluate and
customize our current NLI tool, and evaluate the use of the NLI for support-
ing queries related to Requirements Engineering tasks. The proposed work will
address the following research questions:

– RQ1 : What kinds of queries are useful for requirements engineers and
business analysts?

– RQ2 : In what ways does the Natural Language domain model for general
Software Engineering need to be modified to accommodate Requirements
Engineering queries?

– Controlled natural language queries must be displayed to the user to ensure
that the queries have been correctly interpreted. We therefore need to learn,
RQ3 : What kinds of interactive displays provide effective and sufficient
support for Requirements Engineers as they integrate queries into common
requirements-related activities?

The remainder of this paper is laid out as follows. Section 2 provides the
literature review of NL queries in the software engineering domain and discusses
various query mechanisms. Section 3 gives an overview of the prior work on do-
main model construction and query representations. Finally, Section 4 discusses
the proposed work and the final contribution of this research study.

2 Literature Review

This section summarizes the related work on natural language project queries
and the query representation techniques.
Software Project Queries : Many researchers have identified the questions
asked by software practitioners, however limited studies have been done that fo-
cus on the information needs of a requirements engineer. Fritz et al. interviewed

11 software developers and identified 78 questions spanning from multiple ar-
tifacts such as source change, change sets, work items, etc., [3]. Begel et al.
provided a ranked list of 145 questions that a software engineer seeks from an
analyst. The questions were classified based on their roles and activities. Roles in-
cluded were developer, tester, program manager, customer and data analyst [1].
To identify the queries pertaining to the area of software evolutions, Silito et
al. derived and categorized 44 questions that are to be answered by a program-
mer in order to gain sufficient comprehension to maintain source code [13].Other
researchers have identified questions related to software development activities
like software testing [2] or security analysis [14].

Query Representations : Many techniques have been developed to represent
queries in the software engineering domain. Mäder et al. developed the Visual
Traceability Modeling Language(VTML) which, assumes an underlying Unified
Modeling Language(UML) class diagram representing the traceability strategies
of the project [9]. The entities represent the traceable artifacts and the links
represent the permitted traces between these artifacts. This class diagram is
also generally called a Traceability Information Model (TIM). The queries are
presented as a subset of this model along with the associated filter conditions.
Maletic and Collard model queries for the artifacts stored in XML format by
hiding the low level details of XQuery [10]. Speaking of the more general purpose
query representations, Visual SQL by Jaakkola et al. represents SQL features
graphically, similar to the entity relationship diagram or a UML diagram [5].
The PICASSO approach by Kim et al. is another general purpose database vi-
sual query representation for relational database system System/U [6]. However,
these representation techniques either do not support all the query features or
require some degree of technical expertise to read/write them.

3 Previous Work

An overview of our preliminary work in creating an elementary level domain
model and query representation technique is presented here.

3.1 Building a Domain Model

Natural language project queries were collected from practitioners through a
series of different user studies. The queries were then analyzed for extracting the
domain terms to construct a domain vocabulary.

Query Collection : In our pilot study, we developed a web-collection tool
that displayed a set of Traceability Information Models(TIM) [11]. Each partici-
pant was asked to issue five useful queries against it. The second study included
project specific scenarios, which were designed to be used as prompts. An
example scenario from the study is, “The safety officer is worried that an im-
portant requirement R136 is not correctly implemented. The developer tells him

Table 1. Sample Queries collected from Practitioners

Natural Language Query Query Topic

1 How many high level hazards are associated with the
security camera?

Safety Analysis

2 Did we develop components which are not backed up by
project goals?

Gold Plating

3 Which programmers are more error prone in their code
according to the test results?

Personnel

4 Is any of the open fault logs related to an exception case? Fault Analysis

5 Which use cases have more than 5 requirements
associated to them?

Requirements-Coverage
Analysis

that it is not only implemented but has also passed the acceptance test. The secu-
rity officer runs a trace query to confirm this. What is his query?” Participants
were asked to address each of the scenarios by creating a NL query. Lastly, we
conducted a live study at the Conference on Requirements Engineering for
Software Quality where we gathered over 300 query samples from almost 50 dif-
ferent participants [8]. The study design was similar to the previous two studies.
The participants were also encouraged to create NL queries based on the project
they had been working or had previously worked on. Table 1 lists some sample
queries gathered from these three studies.

Query Analysis : From the initial parsing of the query, we determined the
project specific terms and the question terms. The project specific terms included
words or phrases present within the data artifacts while the question terms holds
the query together and represents specific query functions. For example, “List
all”, “Show me” or “Provide me a list of” relate to selecting a particular set of
data. Similarly, the terms, “How many” or “Count the number of” are associated
with aggregation functions. Further, the queries were catalogued according to
their related software engineering tasks. The queries shown in Table 1 list sample
query topics they were classified into. They were also grouped based on their
semantic and syntactical charecteristics related to the query type and required
functions. Example query, “Which use cases have the highest risks?” depicts a
characteristic of listing some set of rows and to perform an aggregation function.

3.2 User Evaluation of Query Representation Techniques

We conducted three empirical studies to assess the efficacy of different query
representation techniques [7]. The participants recruited in all three studies had
a minimum of one year of IT experience and /or had sufficient background in
software engineering. There were 39 participants recruited for the entire process.

The initial study included a survey designed to comparatively evaluate
the four different query representations, which included SQL, VTML, Reverse
Snowflake Joins(SFJ) and the output of the query(QO) as shown in figure 1. SQL
is one of the most common structured textual query representation. VTML and
SFJ are visual query presentation techniques where VTML specifically represents
software data queries and SFJ represents more general purpose database queries.
QO can help users to analyze a query by reviewing the data returned.

SELECT DISTINCT environmental-assumptions.Id,
environmental-assumptions.Assumptions
FROM environmental-assumptions, requirements,
tm_SRS_EA
WHERE requirements.type= "Security" AND (tm_SRS_EA.
envID = environmental-assumptions.Id AND
tm_SRS_EA.reqId = requirements.Id)

SQL Query

Reverse Snowflake Join Query Sample Results

VTML Query

type = “Security”

Requirements1…*
Environmental
Assumptions

Id

Assumptions

Id Assumptions

EA1 All temperatures shall be recorded in degrees
Fahrenheit.

EA6 All changes in temperature shall be managed at
increments of one degree Fahrenheit.

Environmental Assumptions as EA

Id

Assumptions

type = “Security”

Requirements as SRS

Id reqId

tm_SRS_EA

envId

Fig. 1. Four query representations presented to participants.

The multiple choice survey consisted of sixteen queries, four of each kind. For
each of them, participants were asked to select the NL query which they believe
best matched the given representation of the multiple options provided. The
result analysis showed that the VTML representation allowed users to interpret
a query more accurately in less time as compared to the other techniques.

We were then interested to know, whether users integrate knowledge from
different query representations in order to comprehend the meaning of the query.
Another study was designed that included an eye-tracker with a usability
software which recorded the participants eye-gaze information from the display
screen. The study included nine NL queries. Each of these queries were deliber-
ately transformed incorrectly and presented in VTML, SQL and QO. All three
representations were displayed on a single screen along with the NL query to
be interpreted. The common transformation errors included mapping onto in-
correct artifacts or their associated properties, logical errors etc. An example
query from the study, “List any test cases which have failed in the past week”
was represented as “List any test cases which have failed in the past month”.
The participants were asked to determine whether the NL query matched the
given representation and if not then to explain how it differed from the actual
query. We asked them to use think-out-loud protocol to answer these questions.

From the result analysis, we observed that even though most users favored
a specific representation technique the majority of them leveraged information
from multiple sources to analyze the query. Secondly, the users often spent too
much time on superfluous details thereby, increasing the total query interpre-
tation time. To address this, we designed another user study which simplified
the original query displays by hiding unnecessary details and JOIN paths. The
results showed that the time to identify errors in reduced displays was signif-
icantly decreased in comparison to the original displays.

Results from this work have been integrated into our TiQi tool (see TiqiAn-
alytics.com) and will be used to support the proposed work.

4 Proposed Work

Previously, we created a domain model that covers broader but more general
purpose software domain queries. To customize the domain model supporting
requirements related queries, we propose the following:

– Identifying Requirements Engineer’s Tasks and Questions: We will
interview requirements engineers and business analysts to understand the
kind of queries they are interested in posing. For this, we plan to use mailing
lists such as the RE mailing list, and our network of contacts with profes-
sional requirements engineers to recruit at least 10-20 participants. Each
participant will be asked to identify requirements-related tasks that they
perform, the data they need to support those tasks, and relevant NL queries.

– Constructing a Requirements-Related Domain Model: We will cre-
ate a comprehensive knowledge base to support RE related queries. The
knowledge base will initially be populated using our existing existing data
mining techniques to mine domain-specific terminology from the text of on-
line requirements textbooks, white-papers, and other requirements-related
documents. We will perform the same analysis on the collected queries and
augment the domain model accordingly. For example, requirements related
terminology that should be recognized by the NL interface includes terms
such as “User Story”, “Mitigating Requirement” or “Design Constraint”.

– Evaluating the use of NL Queries within the Requirements En-
gineering Context: Using the generated domain model and the display
mechanisms developed in earlier phases of this dissertation work, we will
evaluate the use of NL queries for supporting requirements engineering ac-
tivities. We will recruit 10-12 requirements engineers using the same protocol
as used in the proposed work for,“Identifying the Requirements Engineer’s
Tasks and Questions”. Each participant will be presented with a series of
identified RE related tasks. Half of the participants will be asked to perform
tasks by issuing NL Queries using our NLI, while the others will be given
only raw data in a database. For the NL queries we will evaluate the ex-
tent to which they are correctly interpreted. Furthermore, we will evaluate
the extent to which the use of NL Queries supports and/or augments the
completion of tasks.

Requirements Engineers can greatly benefit from increased accessibility to
underlying data. This work will contribute an enriched domain model which
captures RE terminology and concepts, and a NL interface which provides effec-
tive support for requirements engineers to utilize NL Queries to perform common
analytic tasks.

5 Acknowledgement

I am very thankful to my advisor Dr. Jane Cleland-Huang and co-advisor Dr.
Alexander Rasin for their continuous guidance and immense support for carrying
out this research.

References

1. A. Begel and T. Zimmermann. Analyze this! 145 questions for data scientists
in software engineering. In Proceedings of the 36th International Conference on
Software Engineering, pages 12–23. ACM, 2014.

2. S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs in bug
reports: improving cooperation between developers and users. In Proceedings of
the 2010 ACM conference on Computer supported cooperative work, pages 301–310.
ACM, 2010.

3. T. Fritz and G. C. Murphy. Using information fragments to answer the questions
developers ask. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1, pages 175–184. ACM, 2010.

4. Gotel, O et al.,. Traceability fundamentals. In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability, pages 3–22. Springer, 2012.
10.1007/978-1-4471-2239-51.

5. H. Jaakkola and B. Thalheim. Visual SQL – High-Quality ER-Based Query Treat-
ment. In Conceptual Modeling for Novel App. Domains, Lecture Notes in Comp.
Science. Springer Berlin / Heidelberg, 2003. 10.1007/978-3-540-39597-3.

6. H.-J. Kim, H. F. Korth, and A. Silberschatz. Picasso: a graphical query language.
Software, Practice and Exp., 18:169–203, March 1988.

7. S. Lohar, J. Cleland-Huang, and A. Rasin. Evaluating the interpretation of natural
language trace queries. In Joint Proceedings of REFSQ-2016 Workshops, Research
Method Track, and Poster Track co-located with the 22nd International Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ 2016),
Gothenburg, Sweden, March 14-17, 2016., page to appear, 2016.

8. S. Lohar, J. Cleland-Huang, A. Rasin, and P. Mäder. Live study proposal: Collect-
ing natural language trace queries. In Joint Proceedings of REFSQ-2015 Work-
shops, Research Method Track, and Poster Track co-located with the 21st Interna-
tional Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2015), Essen, Germany, March 23, 2015., pages 207–210, 2015.

9. P. Mäder and J. Cleland-Huang. A visual language for modeling and executing
traceability queries. Software and System Modeling, 12(3):537–553, 2013.

10. J. I. Maletic and M. L. Collard. Tql: A query language to support traceability. In
TEFSE ’09: Proceedings of the 2009 ICSE Workshop on Traceability in Emerging
Forms of Software Engineering, pages 16–20, Washington, DC, USA, 2009. IEEE
Computer Society.

11. P. Pruski, S. Lohar, G. Ott, W. Goss, A. Rasin, and J. Cleland-Huang. Tiqi: An-
swering unstructured natural language trace queries. Requirements Engineering.,
20(3):215–232, 2015.

12. S. P. Shwartz. Problems with domain-independent natural language database ac-
cess systems. In Proceedings of the 20th annual meeting on Association for Com-
putational Linguistics, ACL ’82, pages 60–62, Stroudsburg, PA, USA, 1982. Asso-
ciation for Computational Linguistics.

13. J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask during
software evolution tasks. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 23–34. ACM, 2006.

14. J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. Questions
developers ask while diagnosing potential security vulnerabilities with static anal-
ysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 248–259. ACM, 2015.

