
Tool Support for Traceability-Adaptation

Marcus Seiler

Institute of Computer Science, University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

seiler@informatik.uni-heidelberg.de

Abstract. [Context & motivation] Traceability of software engineer-
ing artifacts is important in software development. Tools are used to es-
tablish traceability between software engineering artifacts. [Problem]
One of the open traceability challenges is the traceability-configuration
during usage. At any time within a project, the traceability informa-
tion model (TIM) should be adaptable to changing contexts and needs.
[Principal idea] Our approach for adaptable traceability is based on two
main ideas. First, the TIM can be configured based on a comprehensive
meta-model. Second, a TIM-repository enables consistent management
of adapted TIMs and artifacts and links instantiated from it. [Contri-
bution] This paper describes the problem, related work, main solution
ideas, research methodology and progress so far.

Keywords: traceability, adaptation, information model, tool support

1 Introduction

Traceability is used to follow and understand relationships between various soft-
ware engineering artifacts such as requirements, design artifacts or source code.
Comprehensive traceability of software engineering artifacts is important to en-
sure the quality of a software being developed or being maintained. A recent
study shows that traceability has a positive impact on software quality in terms
of time to implement a solution and the correctness of the solution [14]. Al-
though traceability has a positive effect, it is still far from satisfying in current
development practices. One of the open challenges is traceability-configuration
during usage [8]. Traceability tool support should be adaptable to changing con-
texts and needs. To provide adaptable traceability tool support, the project’s
traceability should be defined upfront. A traceability information model (TIM)
can be used to define the traceability within a project [5]. According to [13],
a basic TIM consists of at least two types of artifacts and a traceability rela-
tion between these artifacts. However, adaptable traceability provided by tools
is insufficient in practice. Current software engineering tools such as DOORS1,
Polarion2 or Jira3 are e.g. limited by a fixed number of traceable artifact and
1 https://www.doorsng.com/, last checked Feb 18, 2016
2 https://www.polarion.com/, last checked Feb 18, 2016
3 https://www.atlassian.com/software/jira, last checked Feb 18, 2016



link types as well as by a pre-defined TIM. Thus tools are inflexible in case of
changing project needs. Therefore, this thesis aims to address this challenge by
providing tool support for traceability-adaptation.

This paper is structured as follows: Section 2 describes the research problems
concerning this thesis. Section 3 gives an overview on related work. Section 4
presents the proposed solutions. Section 5 discusses the applied research meth-
ods. The progress concludes the paper in Section 6.

2 Problem

In the following, requirements on adaptable tool support are presented which
were collected from literature and practice (cf. Sec. 5). The research question to
answer is: How can adaptable traceability tool support be provided satisfying
the following requirements?

R1-Comprehensive meta-model: Traceability tool meta-models have been
already proposed [1, 2]. In industry, various software engineering artifacts exist
and tools need to provide a wide spectrum of artifact types including e.g. re-
quirements, architecture and code. However, tools are mostly restricted to trace-
ability between two particular types of artifacts [19]. Many different link types
with customizable semantics between artifacts are needed [7]. Link types de-
scribe the meaning of relations between two or more artifacts such as requires,
implemented in or verified by. It must be possible to use these link types be-
tween all artifacts. Thus, due to the many artifact types and many link types a
comprehensive meta-model is needed.

R2-Definition and application of a project-specific TIM: Traceability
usage is project-specific and thus usage varies from project to project [4]. Based
on the meta-model for different projects different TIMs that reflects different
types of projects and usage scenarios need to be definable. The artifacts and
links must be instantiated and validated according to the defined TIM.

R3-Incremental TIM-adaptation: Software evolves over time and trace-
ability cannot be planned upfront [4]. To reflect changing contexts and needs,
the TIM must be adaptable [5]. Being able to only adapt the TIM once is not
sufficient. Our interview results show that an incremental TIM-adaptation is
needed [16]. At the beginning, only few changes have been made on the trace-
ability. Later, some changes wrt traceability were reverted or existing changes
were refined.

R4-Consistent management of TIM and artifacts and links: Artifacts
and links must comply to the TIM. After TIM-adaptation, existing artifacts and
links must also be adapted. For example, if an artifact type is removed from
the TIM, all corresponding artifacts must be deleted without losing traceability
information. Furthermore, in case of artifact type addition, new artifacts can
be stored. Similarly, for link type changes. If a TIM-adaptation is not helpful
for a project, it should be possible to revert to prior consistent states of TIM
and corresponding artifacts and links. Therefore, TIM version management is
needed.



R5-Visualization of TIM and the corresponding artifacts and links:
Our interviews showed that TIM-adaptations were documented explicitly to be
able to discuss different TIM-versions [16]. Thus, a requirement is to provide
visualization of different TIM-versions including the corresponding artifacts and
links, e.g. display two different versions of a TIM.

3 Related Work

Providing traceability tool support is a challenging task and therefore a field of
intense research. The search for related work (cf. Sec. 5 and 6) has so far re-
vealed the following approaches. The approaches are assessed against the stated
requirements.

Table 1: Requirements satisfaction of approaches

B
or
on

at
[3
]

D
e
L
uc
ia

[6
]

K
el
le
he

r
[9
]

L
in
ds
ay

[1
1]

M
ac
fa
rl
an

e
[1
2]

M
al
et
ic

[1
5]

T
ar
om

ir
ad

[1
7]

R1 Comprehensive meta-model
√ √ √ √

◦ ◦
√

R2 TIM-Definition and -application
√
◦ ◦

√
-
√ √

R3 Incremental TIM-adaptation
√ √

- - -
√ √

R4 Consistent management - - - - - - -
R5 TIM-Visualization - - - - - - -

Tab. 1 shows the requirements satisfaction of the approaches whereby
√

means full-, ◦ means partial- and − means no satisfaction. In the following, the
approaches from Tab. 1 are discussed wrt requirements satisfaction. Approaches
to support model-to-model traceability where artifacts such as requirements or
source code are defined as models are presented by [15, 3, 17]. All three ap-
proaches allow users to define their own meta-model to fit into a specific working
context and allow TIM-adaptation during the project. However, the approach
by Maletic et al. [15] only provides three different types of traceability links
between the models. Furthermore, none of these approaches satisfies R4 or R5.
De Lucia et al. [6] present an approach for fine-grained management of trace-
ability links based on a hierarchy of software artifact documents. Traceability
links between artifacts can be inserted manually and for each traceability link a
stereotype describes the link semantics can be defined and also adapted. How-
ever, no restrictions of the link types between artifacts are made upfront. Thus,
the approach lacks in application of a project-specific TIM. In addition, the ap-
proach does not satisfy R4 and R5. Kelleher [9] presents a framework for reusable
traceability practices. The framework consists of a traceability meta-model and a
traceability process. From the meta-model traceable artifacts are defined for the
process providing a project-specific TIM. However, the TIM is only published on
a website to guide users on traceability. The approach does not satisfy R3-R5.



Lindsay et al. [11] use a generic document model to represent and link artifacts.
The approach allows definition and application of a project-specific TIM, but
does not support R3-R5. Macfarlane et al. [12] describes the fine-grained re-
quirements traceability based on files supporting traceability through all phases
of the software life cycle. However, no traceability link types are defined by this
approach, and lacks in satisfaction for R2-R5.

4 Solution Ideas

Git Jira Trac Word DB...

Tool Integration

Consistency 
Management

TIM Definition

TIM Adaptation

TIM Repository
(TIM-R)

Meta-Model

Tool-TIM-Mapping
<<Jira>>

UserStory
<<Git>>

Code
<<Jira/Git>>

ImplementedInsource target

Composed from

As a user, I 
can backup 
my entire 

hard drive.

Instance of

Instance of

TIM

Instantiated Artifacts & Links

Artifact

Code TestCaseUserStory ImplementedIn VerifiedBy

Link
source

target

Meta-Model

implemented in

Instance of

Fig. 1: Approach for adaptable traceability tool support

Our approach for adaptable traceability tool support shows in Fig. 1 on the
left side the components involved and on the right side an example. The tool
integration component is required for two reasons. (i) Artifacts and links can be
stored in different tools, e.g. source code is stored in a version control system
such as git4 and requirements are stored in an issue tracking system such as Jira
or Trac5. (ii) On TIM-adaptations, changes of the TIM must be populated to
the tools, e.g. if an artifact type is added to a TIM, the artifact type is also
added to the tools. The component for tool integration can be implemented
using the Open Services for Lifecycle Collaboration6-specification. The meta-
model component is used as a basis for TIM-definition and -adaptation (shown
as green dashed box in the left part of Fig. 1). The green top right part shows
the proposed comprehensive meta-model. Due to readability reasons, only parts
of the meta-model are shown, e.g. artifact attributes are hidden and in the full
version more artifact types and more link types are available. Traceability links
between artifacts are not pre-defined and thus artifacts can be linked to each
other by any kind of traceability link. This satisfies R1. In the TIM-definition
component, the TIM is derived from the meta-model by selecting the artifacts
and the links. For example, we can compose the TIM shown in the blue middle
right part of Fig. 1. Artifacts and links can be only instantiated if they are defined
within the TIM and have a tool mapping. The TIM-Tool-Mapping component
4 https://git-scm.com/, last checked Jan 13, 2016
5 https://trac.edgewall.org/, last checked Feb 23, 2016
6 http://open-services.net/, last checked Feb 23, 2016



is used to define a mapping between tools, artifacts and links in the TIM. In
our example TIM, the tool mapping is shown as stereotypes, e.g. Jira is used to
manage UserStories, git is used for Code and a combination of Jira and git is
used to link both artifacts. The instantiated artifacts and links (shown in the
red right lower part of Fig. 1) are versioned within the tools. This satisfies R2.
The TIM-adaptation component allows editing the defined TIM. The initial TIM
and all versions of it which arise due to adaptations are versioned within a TIM-
repository (TIM-R). Model repositories (MR) such as EMFStore7 or AMOR8 can
be used to versioned TIMs, because MR are designed to handle model changes
appropriately. Thus, R3 is satisfied.

In the following, possible changes resulting from a TIM-adaptation are dis-
cussed. If instantiated artifacts or links change, e.g. another link is added between
UserStory and Code, the artifacts and links are updated in their respective tools.
If a new artifact type is added to the TIM, e.g. add TestCase to example TIM,
a new TIM-version is stored in the TIM-R and the new artifact type is popu-
lated to the tool. Similarly, for adding link types e.g. add link type VerifiedBy
between UserStory and TestCase. If a link type is removed from the TIM, e.g.
remove the VerifiedBy link, all existing links of that type should be also removed
from the respective tools. The link type is kept in the tool to be able to revert
to prior consistent states of artifacts and links. If an artifact type without link
types is removed from the TIM, e.g. remove the TestCase artifact, all artifacts
of this type are removed. As in the case before, the artifact type remains in the
tool. If an artifact type with a link type is removed from the TIM, e.g. remove
the UserStory artifact having the link type ImplementedIn, then all artifacts
and corresponding links are removed, but the types are kept in the tools. In our
meta-model, and thus, in a TIM in principle the source or the target artifact type
of link types could be changed. This is handled by removing the link type and
adding a new link type. Due to the applied TIM-versioning, no link-information
is lost.

On TIM-adaptations affected artifacts and links must be retrieved and up-
dated. For this, two solutions are possible. (i) The TIM-R could hold references
between TIM-versions and the artifacts and links. In a TIM-version, each artifact
type and each link type keep references to the corresponding artifacts and links.
The references can be created during TIM-application, i.e. on instantiation and
validation of artifacts and links according to the TIM. On TIM-adaptations, the
references are used to update affected artifacts and links. (ii) Affected artifacts
and links could be retrieved from their respective tools when needed. For each
changing artifact type or link type all corresponding artifacts and links are re-
trieved. Thus, only artifacts and links of interest are retrieved and updated on
TIM-adaptation. The TIM, artifacts and links are managed consistently for both
solutions and thus R4 is satisfied. From the TIM-R, a graph can be generated
containing e.g. two TIM-versions and corresponding artifacts for each version.
This finally satisfies R5.

7 http://www.eclipse.org/emfstore/, last checked Jan 13, 2016
8 http://www.modelversioning.org/index.php, last checked Feb 23, 2016



5 Research Method

Design science is used as research method [18]. First, an analysis of the as-is-state
in research and practice is done. Based on the as-is-state, theories for solution
ideas can be implemented in a software prototype. To prove that the solution
ideas and the prototype solve the problem, evaluation in practice is performed.
Our as-is-study comprises a literature review and a series of interviews with
experts from practice. The literature review is conducted as a systematic map-
ping study according to Kitchenham and Charters [10]. The research question
to answer is: What approaches exist to adapt the traceability during software
development projects (RQ1)? For the series of expert interviews, we use approx-
imately 8 to 10 semi-structured interviews. The research question to answer is:
What is the current state of practice wrt traceability-adaptation (RQ2)? During
the interviews, open questions are used to elicit as much information as possible
from the experts minimizing prior bias. We use an interview guideline to ensure
that all relevant aspects are covered during the interviews. Within the evalu-
ation, the overall goal is to validate the feasibility of the proposed solutions.
For this, we build a prototypical tool realizing the solution ideas. The tool is
validated by application in student theses and in practical courses. In addition,
experts from practice evaluate our software prototype, in particular evaluation
is planned with the experts we have interviewed to derive the requirements.

6 Progress

In 2015, we implemented the comprehensive meta-model in a prototypical tool
based on UNICASE9. In its early state, our tool provides the ability to use a
flexible TIM. We have started with the systematic mapping study in order to
answer RQ1 using the search string: traceability∧(adaptation∨configuration∨
adjustment∨modification∨customization∨ tailoring∨evolution). The search
string has been used in 5 different sources. Overall 913 hits have been identified,
the initial selection based on publication title and abstract lead to currently 30
relevant publications. This selection has then been reviewed with defined exclu-
sion criteria. Moreover, we conducted two interviews with two experts settled
in different domains to answer RQ2 [16]. In 2016, we first plan to finish the
systematic mapping study. We also plan to conduct more expert interviews on
the as-is-state in practice. From the interview results, we will be able to sharpen
existing requirements. We will adapt and extend our implementation of the TIM-
repository to manage different TIM-versions. In 2017, we want to conduct the
case study for validation and expect to finish this thesis by December.

Acknowledgement. I would like to thank my supervisor Barbara Paech for
support of this research.

9 http://unicase-ls1.github.io/unicase/, last checked Jan 13, 2016



References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceabil-
ity. IBM Syst. J. 45(3), 515–526 (2006)

2. Badreddin, O., Sturm, A., Lethbridge, T.C.: Requirement Traceability: A Model-
Based Approach. In: MoDRE14. pp. 87–91. IEEE, Karlskrona, Sweden (2014)

3. Boronat, A., Carsí, J., Ramos, I.: Automatic support for traceability in a generic
model management framework. In: Model Driven Architecture – Foundations and
Applications, LNCS, vol. 3748, pp. 316–330. Springer Berlin Heidelberg (2005)

4. Cleland-Huang, J., Gotel, O., Hayes, J.H., Mäder, P., Zisman, A.: Software Trace-
ability: Trends and Future Directions. In: FOSE 2014 (ICSE 2014). pp. 55–69.
ACM, Hyderabad, India (2014)

5. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): Software and Systems Traceability.
Springer London, London, United Kingdom (2012)

6. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Fine-grained management of
software artefacts: the adams system. Software: Practice and Experience 40(11),
1007–1034 (2010)

7. Espinoza, A., Garbajosa, J.: Tackling traceability challenges through modeling
principles in methodologies underpinned by metamodels. CEE-SET WiP pp. 41–
54 (2008)

8. Gotel, O., Cleland-Huang, J., Hayes, J., Zisman, A., Egyed, A., Grünbacher, P.,
Dekhtyar, A., Antoniol, G., Maletic, J.: The grand challenge of traceability (v1.0).
In: Software and Systems Traceability, pp. 343–409. Springer London (2012)

9. Kelleher, J.: A reusable traceability framework using patterns. In: TEFSE 2005.
pp. 50–55. ACM, New York, NY, USA (2005)

10. Kitchenham, B.A., Charters, S.: Guidelines for Performing Systematic Literature
Reviews in Software Engineering (Version 2.3). Tech. Rep. EBSE 2007-001, Keele
University; University of Durham, Keele, Staffs, UK; Durham, UK (2007)

11. Lindsay, P., Liu, Y., Traynor, O.: A generic model for fine grained configuration
management including version control and traceability. In: ASWEC 1997. pp. 27–
36 (1997)

12. Macfarlane, I., Reilly, I.: Requirements traceability in an integrated development
environment. In: RE 1995. pp. 116–123 (1995)

13. Mäder, P., Gotel, O., Philippow, I.: Getting back to basics: Promoting the use of
a traceability information model in practice. In: TEFSE 2009. pp. 21–25 (2009)

14. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empirical Software Engineering 20(2),
413–441 (2014)

15. Maletic, J.I., Collard, M.L., Simoes, B.: An xml based approach to support the
evolution of model-to-model traceability links. In: TEFSE 2005. pp. 67–72. ACM,
New York, NY, USA (2005)

16. Seiler, M., Kücherer, C., Paech, B.: Traceability Usage and Adaptation in Practice.
Softwaretechnik-Trends (2016), (accepted to appear)

17. Taromirad, M., Paige, R.F.: Agile requirements traceability using domain-specific
modelling languages. In: XM 2012. pp. 45–50. ACM, New York, NY, USA (2012)

18. Wieringa, R.J.: Design science methodology for information systems and software
engineering. Springer Verlag, London (2014)

19. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and
model-driven development. Software & Systems Modeling 9(4), 529–565 (2009)


