
Quality Improvements for Trace Links between
Source Code and Requirements

Paul Hübner

Institute for Computer Science, Heidelberg University,
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

huebner@informatik.uni-heidelberg.de

Abstract. [Context and Motivation] Traceability between source
code and requirement artifacts is important for various tasks during
software development. However, it is a lot of effort to create and main-
tain traceability links manually. Therefore, semi-automatic traceability
support is developed. [Question/ problem] Traceability research has
a strong focus on trace link recovery using information retrieval (IR)
techniques. These techniques use the textual similarity of documents to
create trace links. The quality according to precision and recall of these
techniques is still not satisfying. [Principal ideas/ results] Precision
and recall can be improved by providing more data as used in IR. In
this thesis, we evaluate two new data source types to create trace links.
To link two specific artifacts, we exploit existing links in the context of
these artifacts. Furthermore, we use the interaction logs of developers for
trace link creation between the artifacts the developers touched. [Con-
tribution] In this paper, we present the research problems as well as the
principal solutions to deal with these challenges, our research methodol-
ogy, and our progress so far.

Keywords: traceability, quality, interaction, requirement, source code

1 Introduction

Traceability between source code and requirements is important for many soft-
ware engineering tasks e.g., maintenance, program comparison, verification [10,
11, 16, 5, 1] and is a major concern of software engineering research [7, 2, 3, 15].
IR-based trace link recovery is the most common used technique to discover
trace links between artifacts [2]. This technique creates links between artifacts
with textual similarity as implemented in the used IR model. Thus, IR-based
trace link creation is limited with respect to similarity measure and the used IR
model [12]. Also precision and recall are not satisfying [13].

To improve the semi-automatic creation of trace links between implemen-
tation and requirements artifacts, we investigate different possibilities to create
trace links during software development. We build on the approach of Delater
et al. [6] which uses the actual working task of developers as an intermediate
element to link the requirements and the code involved in this task. Our main



idea is to evaluate two new data sources to create trace links. To link two specific
artifacts, we exploit the existing links in the context of these artifacts. Further-
more, we use the interaction logs of developers for trace link creation between
the artifacts the developers touched. Therefore, we implement algorithms for
these new data sources and compare them with traditional IR methods, based
only on the artifacts, as well as with the working task approach of Delater. We
also analyze combinations of these methods to improve precision and recall for
the recovered trace links. In which precision is the fraction of retrieved trace
links that are relevant, while recall is the fraction of relevant trace links that are
retrieved.

The remainder of this paper is structured as follows. Section 2 describes the
research problem tackled in this thesis. Section 3 presents the proposed solutions
and discusses their novelty. Section 4 gives an overview of related work. Section
5 discusses the applied research methods. With our progress, we conclude the
paper in Section 6.

2 Problem

The problem of established trace link recovery techniques is their insufficient
quality regarding precision and recall [3]. According to Gotel et al. [7] there is
a tradeoff between precision and recall: if IR-based methods have a good recall
(up to 90%), the generated candidate links include a lot of false positives, i.e.
precision is between 10 to 20% [7]. Even with recall values of 90%, important
links might be missing. Therefore, we investigate the following general research
question: (RQ) How to improve semi-automatically detected trace link
quality according to precision and recall? One reason for this problem is
that textual similarity is not sufficient to detect links. E.g., a use case is relevant
for the class implementing system functions required in the use case, but the class
text may use different words than the use case. Another reason for this problem
is the dependency between recall and precision when using IR-based recovery
techniques. To get high recall values, the threshold defining that two artifacts are
linked has to be low [13]. This often results in a bad precision, as many unrelated
artifacts are included. Thus, we propose to use interaction logs and existing links
as additional data sources. These additional data sources can improve recall,
since they are likely to yield new links compared with IR. Precision will be
improved, since false positive links are more unlikely for interaction logs and
existing links as for IR. We investigate the following detailed research questions:
(RQ1) Do the additional data sources improve precision and recall? (RQ2) Can
the combination improve the precision and recall even more? (RQ 2.1) How can
the best combination of trace link recovery techniques be determined? (RQ 2.2)
Is there a certain combination of trace link recovery techniques which leads to
most improvements in precision and recall in different settings?



3 Proposed Solution

To answer RQ1, our proposed solution is based on the usage of two new data
sources for trace link creation. We build on the approach of Delater et al. [6],
where trace links between requirements and code are captured semi-automatically
by using tasks as intermediate elements. Trace links are created along with the
processing of the task and the associated requirement and code elements based
on artefact changes. Figure 1 shows our extension of Delater’s approach. It can
be separated into two parts.

Task

Interaction Data

Use 

Case

Class

Method
System 

Function

VCS 

Revision

Class
Use 

Case

Interaction Patterns

(1) Developers 

Interaction Data

(2) Existing Trace 

Link Structure

Already used Elements New used Elements Inferred Trace Link Existing Trace Link

(3) Information 

Retrieval

Fig. 1. Already used and new Trace Link Data Source Types

On the one hand, we use developer’s interaction data produced while working
with an integrated development environment (IDE) (cf. Figure 1 (1)). Interac-
tion data consists of interaction events. These interaction events have different
types e.g., edit, selection, navigation, execution, etc. and are typically related to
artifacts like source code or requirements. A set of certain interaction events like
edit → navigation → edit is a navigation path. Frequently occurring interaction
paths are called interaction patterns. The knowledge of interaction patterns will
improve precision as frequent navigation indicates a stronger relation between
the artifacts.

On the other hand, we exploit the existing trace link structure (cf. Figure
1(2)). to improve the trace link precision, since trace links are created based on
already verified trace links. When using data created during runtime for trace
link recovery, it is natural to also apply this recovery repeatedly during devel-
opment and not only after development as it is typical in traditional methods
[4]. This extends trace link recovery to trace link recommendation to developers
directly during development. It makes trace links available early in a project.
Furthermore, the assessment of the trace links by developers is facilitated, since
link recommendations fit to the actual context of a developer. To investigate
RQ2, we compare different combinations of trace link recovery techniques re-
garding precision and recall. The starting point is the combined usage of IR and
interaction data-based recovery to increase trace link recall. To increase preci-
sion we combine this with the exploitation of the existing trace link structure
or interaction patterns. Both can also be used to focus IR-based recovery on
specific artifacts.

In the following we illustrate our ideas by an example. We assume that a
developer knows the requirement s/he has to implement. E.g., the developer
implements a system function as a set of methods within a class.



First, we outline how to use developers’ interaction data to infer trace links.
During the implementation of the methods s/he looks up the detailed specifi-
cation of the system function in the requirements specification. This navigation
between system function definition and implemented methods is logged. After
s/he has finished the implementation of the methods, trace links between system
function specification and methods can be inferred based on the used navigation
paths. Using the working task context as in Delater’s work [6] is an additional
benefit, since navigation interactions can be separated based on their association
to a task (cf. Figure 1).

Second, we outline how to exploit the existing trace links structure of imple-
mentation and requirements. Both, requirements and code are typically hierar-
chical. E.g., a use case includes a system function and a class includes a method.
Trace links between upper level artifacts can be used to infer trace links between
lower level artifacts and vice versa. Assume that the class in which the methods
for the system functions should be implemented is already linked with a use case.
In the requirements specification the use case is linked with system functions.
Thus, the existence of links between the use case and the system functions as well
as the use case and the class increases the likelihood that some methods should
be linked to the system functions. This can be applied as a filter on previously
identified navigation paths or can be used to add additional link candidates. In
both cases, precision can be improved by using IR to check the textual similarity
between implemented methods and the systems functions specification.

4 Related Work

A recent overview of important IR-based trace link recovery approaches in the
last decade and an evaluation of the approaches is given by Borg et al. [2].
We use the evaluation results of the discussed IR approaches as comparison
measure for the quality assessment of our approach. Other approaches using
additional data sources exist. The following two approaches also exploit the
artifacts hierarchy, but not for trace link recovery. De Lucia et al. [5] presented an
approach for a fine-grained management of trace links using a software artifacts
hierarchy in addition to traditional IR-based recovery methods. In contrast to our
approach, the hierarchy relations were not directly used when recovering trace
links, instead they were used to navigate between linked artefacts. Wentao et al.
[17] use existing trace links for further data processing actions. They compare
the evolution of code, requirements, and trace links and use the trace links as a
starting point to compensate for the divergence between those elements.

The use of interaction data of developers is widespread in software engi-
neering, especially in the domain of recommendation systems. Maalej et al. [9]
describe how to use interaction data, based on examples of existing recommenda-
tion systems, to trigger recommendations about used source artifacts. Further-
more, they describe different methods to aggregate this data to sessions, tasks,
and activities and how to filter such data for productive use. We build on these
methods for the development of our interaction patterns. Cleland-Huang et al.



[4] present a study in which they implemented and evaluated an approach to
recommend trace links between system model (UML) and requirements during
model changes. They use edit interactions to trigger recommendations of trace
links which is similar to our approach, but use IR instead of the interaction data
to create links. The use of interaction data to find software artifact relations
is also applied in the domain of software architecture. Konopka et al. [8] find
relations between source code artifacts and tasks based on IDE interaction data.
This is used for grouping code, but not for linking requirements and code as in
our approach.

There are further ways to improve the precision of links. Niu and Mahmoud
[14] presented a machine learning-based clustering approach to reduce the false
positives in a trace link candidate list. This has a different focus and could be
applied in addition to our approach.

5 Research Method

The research method used in this thesis is based on an adapted version of
Wieringa’s Design Science Methodology [18] in which we combine several small
studies. It consists of the four phases: (1) problem identification, (2) problem
establishment, (3) solution design, and (4) solution validation. In the following
we introduce these four phases for our research.

The identified problem (1) is that the quality of IR-based trace link recovery
is not sufficient for software engineering tasks. We establish this problem (2) by
the analysis of existing studies and related work for trace link recovery and usage.
We conduct a literature review to get an overview of existing trace link recovery
approaches, to find possibilities to improve precision and recall of trace links,
and to discover options to embed trace link creation in the software development
process. Thus, the research questions we answer with our literature review are:
What are existing trace link recovery approaches, which data sources and which
recovery techniques are used? What are the reasons for insufficient precision and
recall of existing approaches? Which options for improvements are discussed and
how are they applied? Which kind of experimental setup and which kind of data
sets are used to evaluate trace link recovery approaches?

Our solution design (3) is described in Section 3. To validate the solution (4),
we perform studies with two open source projects. The Existing Link Struc-
ture Study will use the iTrust project data1 which consist of a use case-based
requirement specification, Java and JSP-based source code, existing trace link
definitions, and a project history with multiple versions of the previously men-
tioned resources available in a version control system (VCS). A history version
of the trace link specification can be used to check the recall and precision of our
existing link structure algorithm. The Developers’ Interaction Data Study
will use Mylyn project data2 which consists of a Bugzilla project consisting of

1 http://agile.csc.ncsu.edu/iTrust, last checked February 25, 2016
2 http://www.eclipse.org/mylyn/developers/, last checked February 25, 2016

http://agile.csc.ncsu.edu/iTrust
http://www.eclipse.org/mylyn/developers/


tasks (bugs, issues, etc.) including attached interaction data. The task descrip-
tions are used to specify requirements (as features). Due to the attached Mylyn
interaction data, it is possible to see the interaction associated with a specific
requirement and the affected source code elements.

To compare our results with established IR-based trace link recovery ap-
proaches we will apply a set of such IR-based recovery approaches to both
projects. Moreover, for the developer’s interaction data study we also apply
Delater’s working task-based recovery approach [6]. This is possible since in the
used project data development tasks are explicitly specified.

We are still looking for project data which give us the possibility to apply both
of our new recovery techniques in combination to completely investigate RQ2.
Another way to get data to evaluate all our recovery techniques in combination
are practical student courses. This requires the integration of our algorithms in
the eclipse3 IDE and their usage to recommend trace links during development.

6 Progress

We perform the literature review in parallel to the other task of this thesis. We
plan to finalize the research questions and the execution of the search process
by mid of 2016, followed by the result evaluation and documentation which we
plan to finish by the end of 2016.

We have already implemented the basic algorithms for the interaction path
detection and the use of existing trace link structure. We already performed a
statistical analysis on the Mylyn interaction data and extracted basic interac-
tion patterns which we use in the current implementation of our algorithm. For
using existing trace link structures we transferred the iTrust data into a local
data base implementing a schema for the structured, hierarchical specification of
requirements and source code elements as this is necessary for using trace links
between those elements.

We plan to finish the existing link structure analysis with iTrust data in
June 2016 and the developers’ interaction data study with Mylyn project data
in September 2016, including the comparison to only using IR-based trace link
recovery. Until then, we also hope to find project data which allows the appli-
cation and evaluation of both interaction data and existing trace link structure
based trace link creation. We plan to finish the research for this thesis by the
end of 2017.

If time permits, we will integrate these algorithms in the eclipse IDE and use
them to recommend trace links during development. However, for the evaluation
of trace link recommendation a further study with developers using the tool in
a real project or at least a student course will be necessary. This is difficult to
achieve and therefore not planned as an integral part of the thesis.

Acknowledgment I thank my advisor Barbara Paech for her excellent support.

3 http://www.eclipse.org, last checked February 25, 2016

http://www.eclipse.org


References

1. Bavota, G., Colangelo, L., De Lucia, A., Fusco, S., Oliveto, R., Panichella, A.:
TraceME: Traceability Management in Eclipse. In: ICSM 2012. pp. 642–645. IEEE
(Sep 2012)

2. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empirical Software
Engineering 19(6), 1–52 (May 2013)

3. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
ware traceability: trends and future directions. In: FOSE 2014. pp. 55–69. ACM
Press, New York, New York, USA (May 2014)

4. Cleland-Huang, J., Mäder, P., Mirakhorli, M., Amornborvornwong, S.: Breaking
the big-bang practice of traceability: Pushing timely trace recommendations to
project stakeholders. In: RE 2012. pp. 231–240. IEEE (Sep 2012)

5. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Fine-grained management of
software artefacts: the ADAMS system. Software: Practice and Experience 40(11),
1007–1034 (Oct 2010)

6. Delater, A., Paech, B.: Tracing Requirements and Source Code during Software
Development: An Empirical Study. In: ESEM 2013. pp. 25–34. IEEE, Baltimore,
MD, USA (Oct 2013)

7. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grunbacher,
P., Antoniol, G.: The quest for Ubiquity: A roadmap for software and systems
traceability research. In: RE 2012. pp. 71–80. IEEE (Sep 2012)

8. Konopka, M., Navrat, P., Bielikova, M.: Poster: Discovering Code Dependencies by
Harnessing Developer’s Activity. In: ICSE 2015. pp. 801–802. IEEE (May 2015)

9. Maalej, W., Fritz, T., Robbes, R.: Collecting and Processing Interaction Data for
Recommendation Systems. In: Recommendation Systems in Software Engineering,
pp. 173–197. Springer Berlin, Heidelberg (2014)

10. Mäder, P., Egyed, A.: Do software engineers benefit from source code navigation
with traceability? An experiment in software change management. In: ASE 2011.
pp. 444–447. IEEE (Nov 2011)

11. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empirical Software Engineering 20(2),
413–441 (Apr 2015)

12. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural anal-
ysis of software artifacts for traceability link recovery. In: TEFSE 2009. pp. 41–48.
IEEE (2009)

13. Niu, N., Bhowmik, T., Liu, H., Niu, Z.: Traceability-enabled refactoring for man-
aging just-in-time requirements. In: RE 2014. pp. 133–142. IEEE (Aug 2014)

14. Niu, N., Mahmoud, A.: Enhancing candidate link generation for requirements trac-
ing: The cluster hypothesis revisited. In: RE 2012. pp. 81–90. IEEE (Sep 2012)

15. Panichella, A., De Lucia, A., Zaidman, A.: Adaptive User Feedback for IR-Based
Traceability Recovery. In: SST 2015. pp. 15–21. IEEE (May 2015)

16. Rempel, P., Mäder, P., Kuschke, T., Cleland-Huang, J.: Mind the gap: assessing
the conformance of software traceability to relevant guidelines. In: ICSE 2014. pp.
943–954. ACM Press, New York, New York, USA (May 2014)

17. Wentao Wang, Gupta, A., Yingbo Wu: Continuously delivered? Periodically up-
dated? Never changed? Studying an open source project’s releases of code, require-
ments, and trace matrix. In: JITRE 2015. pp. 13–16 (2015)

18. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)


	Quality Improvements for Trace Links between Source Code and Requirements
	Introduction
	Problem
	Proposed Solution
	Related Work
	Research Method
	Progress


