
Requirements Inheritance in Continuous Requirements

Engineering: a Position Paper

Anita Finke

Riga Technical University, Riga, Latvia

anita.finke@rtu.lv

Abstract. Requirements, information about project’s history and information

about existing situation of enterprise have important role in successful require-

ment engineering process during the project and in post-project phases. The first

appearance of requirements is in the pre-project phase, then in the project and

even in the post-project phase. Each idea and requirement has a history that can

be a very important aspect of a successful project and the information system

development, management and support. By author’s observation, one of today’s

problems in the beginning of an IT project and during the project’s phases is

historical information and requirements availability and inheritance. There are

situations when specialists need to spend time searching and discovering require-

ment history instead of studying it. The goal of this position paper is to discuss

the problem of poor information and requirements inheritance and to point out

the importance of it in continuous requirements engineering.

Keywords: Requirements engineering, Continuous requirements engineering,

Requirements inheritance.

1 Introduction

If we try to model a situation where a stakeholder or a team member, during the inter-

views or other kind of sessions, needs to tell the full story from the first idea and stated

requirements till the current moment, we can assume that it will not be normally appli-

cable in the most of situations. In this context, we have observed the following problem

in practice: poor information inheritance at the start of the project and during the project

hinders the productive collaboration of stakeholders and possibly minimizes the analy-

sis work effectiveness. We can only imagine how lengthy the process can be, if each

involved person needs first to seek for historical information and then only study it

instead of just opening the repository (system, notes, documents etc.) and immediately

starting studying the information. Term “requirements inheritance” is understood as a

process of transfer of full package of information and requirements (including

metadata, requirements versions, related documents etc.) from one involved person to

another from one project or system lifecycle phase to another. In future researches this

definition will be expanded with explanation of inheritance techniques, tools and scope.

To better understand the concepts of continuity and inheritance, the author will point

out the situation in requirements inheritance with the help of the case example. This

case will be used as an illustration of the complexity of the project, flow of information,

and continuous requirements analysis and maintenance. Related research is described

in the Section 2. The case example is described in Section 3, and Section 4 discusses

CRE (Continuous Requirements Engineering), Section 5 – requirements inheritance. In

Section 6 the conclusion of this research is presented.

2 Related work

The term “Continuous Requirement Engineering” is quite new [1]. While some issues

relevant in continuous requirements engineering have been discussed much earlier [2],

still there are only few research papers with keywords “Continuous requirements engi-

neering” available. M. Kirikova describes continuous RE with respect to Enterprise

Architecture and Knowledge Perspectives [1]. One of her paper’s goals was to list out

different challenges in continuous RE, including ideal linkage between knowledge, en-

terprise architecture, business processes and development projects. Although these are

specific topics relevant to CRE, a big picture of continuous requirements engineering

and Requirements Inheritance role in this is still not properly addressed.

In SWEBOK [3] it is pointed out that requirements process is “… initiated at the

beginning of a project that continues to be refined throughout the life cycle.”. In practice

the requirements appear before the IT project is started when business ideas come in.

Those pre-project requirements can take an important role in successful IT projects and

solutions development.

The Requirements Engineering (RE) concept represented in systems life cycle [4],

contains activities like identifying the stakeholders, gaining and understanding their

needs, identifying requirements, clarifying and restating the requirements, analyzing,

defining, specifying, prioritizing, deriving, partitioning, allocating, tracking, managing,

testing and verifying, and validating requirements. These are activities for a “develop-

ment process” and can fully support requirements engineering processes when the de-

velopment project team members are involved from the first ideas and requirement

generation. But in situations when project team members and other involved persons

are changing, these activities are not enough to provide effective requirements engi-

neering processes. They do not include questions about information inheritance – ac-

tivities where the main task is to study, for example, the history of pre-project phase,

the history of existing requirements and existing requirements created before current

project phase. And these tasks do not include the precondition of accessibility of this

information. It is very important in case of change of project team members or even

project team.

BABOK 2.0 [5] describes 6 dimensions – Elicitation, Enterprise Analysis, Require-

ments Analysis, Solution Assessment and Validation, Requirements Management &

Communication, Business Analysis Planning and Monitoring. And inputs and outputs

for each of these activities. But strict sequence of these activities is not recommended.

The new version of BABOK 3.0 [6] consists of new improvements in dimen-

sions/knowledge areas but still do not include continuity and requirements inheritance.

Ruhaya Ab. Aziza, Bernard Wongb [7] talks about requirements relationship

knowledge. They describe importance of requirement relationship knowledge, because

“…managing these incremental changes in software development is very challenging.

The knowledge and management of requirements changes is crucial in the management

of software changes. However, the knowledge of requirements change is not enough

where we need to know how the requirements are related to one another. Furthermore,

as requirements change, there is a need to understand what happens to existing relation-

ships between those changing requirements…. “. Ebert and De Man [8] state that

knowledge and information are important in continuous systems and requirements im-

provements. Without information and knowledge inheritance or information flow, each

new phase or iteration may require starting information gathering from the beginning.

3 Case example – IS Project

To highlight the mentioned problems, the author will use the case example - a real life

project in company Star (the author can’t divulge the real name of the company), where

there is a need to develop a new cooperation relationship management system. It will

be a custom made system with specific functionality, introduced by an outsourced de-

velopment team. It is an appropriate example, because it shows the full set of project

phases. The whole situation during the development of the first part of the project was:

project managers from client’s side changed twice; analysts from client’s side changed

3 times; 5 analysts from development side changed; pre-project phase was 2 years long;

development of the first part of the project took 2 years; maintenance started form the

second development year; 3 platforms were used for captured requirements – 2 plat-

forms in client’s side (JIRA and SharePoint) and 1 platform at the developer sides

(JIRA); many different tools and many RE methods were used by clients and develop-

ers. The systems were launched in production after one year of development. After that,

the development of the systems continued. Parallel to the development of the current

system analysis for further developments was carried out on the client’s side.

The biggest problem during the project was requirements management by two sides.

On client’s side - in e-mails, documents and information systems like JIRA and Share-

Point. And in developer’s side - also in e-mails, documents and information systems

like JIRA. It was challenging to keep up to date information at both sides. Another

problem was information flow from one person to another, because of the existing com-

munication model. The third problem was information and requirements inheritance in

moments of new team member’s appearance – there were too many questions asked by

each new staff member. In the result, there were unsatisfied business stakeholders and

delayed project deadlines.

4 Continuity of Requirements Engineering

Regarding this case example we can see that the process of requirements life cycle does

not end up with the start of the systems usage in operations. This especially holds for

new systems, where in practice there is a common situation when some of the function-

ality becomes clearer after this functionality is launched in operations and it is being

used. Pre-project phase, project, post-project phase, maintenance, change management

etc. - it is continuous work on the system. Today technologies, business laws and reg-

ulations, market competition, needs and other factors can change so fast, that it almost

is not possible to develop an information system that will not be changed or improved.

So, continuity is inevitable.

For this reason we need to consider the following question: what are the precondi-

tions that will best support RE continuity according to a specific system, process and

other analyzable elements? In this paper the author chooses to focus on the inheritance.

But this is not the only necessary precondition. To list all necessary preconditions for

continuous RE, deeper research will be needed.

5 Requirements Inheritance

If we take a look on project phases described and take into account the whole project

history of changing staff and involved sides (clients side, development team, etc.), we

can make the following assumptions or conclusions (see Fig.1.): each new person, e.g.,

a new analyst, needs to repeat all RE (or business analysis activities), from the scratch:

gather information, analyze it, etc. Gathering each bit of information is time-consuming

task; there can be a number of questions raised repeatedly from each analyst to better

understand the situation; the involved stakeholders can become intolerant; projects

communication can become complicated; some information can be lost over time, etc.

For successful requirements inheritance we need to consider: the way of information

transfer from one tool to another; the historical information and requirement availability

for all teams; the inheritance effectiveness (well-structured and available information);

and the number and the size of involved teams. This consideration is independent from

used project management methodologies and RE methods and methodologies, enter-

prise politics etc.

One of the problems of successful information transfer from one tool to another and

from one person to another is the time we need to collect all existing information, pre-

pare it and send to another party. And the next step is to receive, transform or make

some formatting work for the received information, to produce correct “import”. Some

of the RE tools support import and export functionality, however, in many cases this

support is too limited. It is essential to provide information flow from all phases. But it

may be impossible because in some phases there are no specific tools for requirements

capturing, some phases may require very specific tools, and some phase can be sup-

ported by much simpler tools.

Fig. 1. Requirements inheritance process during the project phases

6 Conclusion

We can say that the start of RE is the first moment when someone starts to consider

necessity of system or some solutions of its problems. It is the moment when we start

to document some ideas, issues and other information. Of course, not always will it end

up with a system or other solution, but in cases when it will, a lot of information will

start to be formed and accumulated. The initial idea may grows into a feasibility study,

into a project, into development process, into a system. But the system is not the end

point of activities; it may be followed by maintenance, change management, and other

activities. One system can transform into another, and the life cycle continues. And if

we imagine what is happening if the information inheritance from one phase to another

is not ensured, we can say that each time someone is trying to understand requirements

and the existing situation, he “invents the wheel again”, which cannot be considered as

profitable and time saving approach. Information inheritance or, in this case, Require-

ments Inheritance is very important if we want to fluently work with the system, system

requirements, systems improvements, maintenance, etc.

Regarding continuity, we know that the system development does not end up with

the systems launch in production because the use of system can create bugs, new ideas,

and new needs. As IT technologies are changing “by days” not by years, the business

needs are also more and more rapidly changing, the environment and laws and regula-

tions are changing. So system changes and the need for requirements engineering are

unstoppable. Even disabling or transformation of the system requires RE processes.

This continuity of requirements engineering emphasizes the need for good requirements

inheritance.

This paper just introduces the discussion on requirements inheritance. The ideas

about continuous RE and Requirements inheritance described in this paper have to be

investigated and researched deeper in order to provide a “big picture” of the role of

continuous RE and requirements inheritance, and to provide a method or methods and

the tool to support requirements inheritance in CRE.

Acknowledgment

This work is supported in part by the Latvian National research program SOPHIS

under grant agreement Nr.10-4/VPP-4/11.

References

1 M. Kirikova, “Enterprise Architecture and Knowledge Perspectives on Continuous Require-

ments Engineering,” 2015. [Online]. Available: http://ceur-ws.org/Vol-1342/05-CRE.pdf.

[Accessed: 10-Jan-2016].

2 J.-P. Finance, Ed., Fundamental Approaches to Software Engineering, vol. 1577. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 1999.

3 P. Bourque and R. E. Fairley, Guide to the Software Engineering - Body of Knowledge. 2014.

4 R. R. Young, The Requirements Engineering Handbook. 2004.

5 IIBA, A Guide to the Business Analysis Body of Knowledge ® (BABOK ® Guide). 2009.

6 “BABOK Guide v3 - Business Analysis Training - Watermark Learning.” [Online]. Availa-

ble: http://www.watermarklearning.com/blog/babok-guide-v3/. [Accessed: 10-Jan-2016].

7 R. A. Aziz and B. Wong, “The Interplay between Requirements Relationships Knowledge

and Requirements Change towards Software Project Success: An Assessment Using Partial

Least Square (PLS),” Procedia Comput. Sci., vol. 46, pp. 732–741, 2015.

8 C. Ebert and J. De Man, “Requirements uncertainty: influencing factors and concrete im-

provements,” in Proceedings. 27th International Conference on Software Engineering, 2005.

ICSE 2005., pp. 553–560.

