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Abstract

Gated Bayesian networks (GBNs) are an exten-
sion of Bayesian networks that aim to model sys-
tems that have distinct phases. In this paper, we
aim to use GBNs to output buy and sell decisions
for use in algorithmic trading systems. These
systems may have several parameters that require
tuning, and assessing the performance of these
systems as a function of their parameters cannot
be expressed in closed form, and thus requires
simulation. Bayesian optimisation has grown in
popularity as a means of global optimisation of
parameters where the objective function may be
costly or a black box. We show how algorithmic
trading using GBNs, supported by Bayesian opti-
misation, can lower risk towards invested capital,
while at the same time generating similar or bet-
ter rewards, compared to the benchmark invest-
ment strategy buy-and-hold.

1 INTRODUCTION

Algorithmic trading can be viewed as a process of actively
deciding when to own assets and when to not own assets,
S0 as to get better risk and reward on invested capital, com-
pared to holding the assets over a long period of time. On
the other end of the spectrum is the buy-and-hold strategy,
where one owns assets continuously over a period of time
without making any decisions of selling or buying. An al-
gorithmic trading system consists of several components,
some which may be automated by a computer, and others
that may be manually executed [1, 2, 3]. At the heart of an
algorithmic trading system are the alpha models. They are
responsible for outputting decisions for buying and selling
assets based on the data they are given. These decisions
are commonly referred to as signals. The data which is
supplied to the alpha models varies greatly, e.g. potential
prospects, sentiment analysis, previous trades, or technical
analysis, which will be the focus of the included applica-

tion. If the signals are followed, then they give rise to cer-
tain risk and reward on the initial investment, which will be
described further in Section 3.2. Further down the line in
algorithmic trading systems are components that combine
signals from several alpha models, and other so called risk
models, to combine a portfolio of assets. We will not ad-
dress these later components in this paper, our focus will
be on the alpha models.

In Figure 1, the price of an asset is plotted along with
buy signals (upward arrows) and sell signals (downward
arrows). We view the time spent between these signals as
two different phases: before a buy signal, our intention is
to have a model that identifies good opportunities to buy
the asset, once such an opportunity has been identified and
a buy signal has been generated, we move into a different
phase. In this second phase, we intend to model the identi-
fication of good opportunities to sell the asset. Once a sell
signal is generated, we move back to the original phase,
once again using a model to generate buy signals. This par-
ticular situation was the main motivation for the introduc-
tion of gated Bayesian networks (GBNs) [4, 5, 6], which
we will describe in Section 2.
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Figure 1: Buy and Sell Signals

Alpha models normally take a set of parameters, allowing
them to be tuned to the input data. Naturally, two different
sets of parameters may yield two different sets of signals.
Therefore, it is imperative to assess how good a set of sig-
nals are, so that different parameter sets may be compared.



This is usually done by backtesting, a type of simulation
that calculates certain scores of the signals, e.g. how much
the return on the initial investment would have been. Back-
testing cannot be written as a function of the alpha model’s
parameters in closed form, thus it is not possible to ana-
Iytically find the optimal parameters. Instead, backtesting
must be considered a black box function that should be op-
timised.

Bayesian optimisation has grown in popularity in the ma-
chine learning community as an intuitive way of maximis-
ing either black box objective functions and/or very costly
objective functions (costly in the sense of both time and
resources) [7]. Utilising a prior over objective functions,
and then sparingly evaluating the objective function at cer-
tain points (guided by the posterior), Bayesian optimisation
attempts to find the global maximum of the objective func-
tion within a predefined grid.

Our intention in this paper is to combine the use of GBNs as
alpha models and optimising the parameters of these GBNs
using Bayesian optimisation.

The rest of the paper is organised as follows. We begin by
giving a brief introduction to GBNs in Section 2, this will
illuminate how GBNs can be used as alpha models. We
continue by explaining by which metrics alpha models can
be evaluated in Section 3, and give slightly more details
regarding backtesting. In Section 4 we will describe the
components of Bayesian optimisation, including the use of
Gaussian processes as priors, as well as kernel and acqui-
sition functions. In Section 5 we will account for the pro-
cedure we will use to evaluate the expected performance of
using Bayesian optimisation over the parameters of GBNs.
Once the procedure has been described, we will in Sec-
tion 6 account for a real-world application where we show
how GBNs can be used as alpha models with support from
Bayesian optimisation. Finally, in Section 7 we will offer a
few words regarding our conclusions and future work.

2 GATED BAYESIAN NETWORKS

Bayesian networks (BNs) can be interpreted as models
of causality at the macroscopic level, where unmodelled
causes add uncertainty. Cause and effect are modelled us-
ing random variables that are placed in a directed acyclic
graph (DAG). The causal model implies some probabilistic
independencies among the variables, that can easily be read
off the DAG. Therefore, a BN does not only represent a
causal model but also an independence model. The qualita-
tive model can be quantified by specifying certain marginal
and conditional probability distributions so as to specify
a joint posterior distribution, which can later be used to
answer queries regarding posterior probabilities, interven-
tions, counterfactuals, etc. The independencies represented
in the DAG make it possible to compute these queries effi-
ciently. Furthermore, they reduce the number of parameters
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Figure 2: Two Phased GBN

needed to represent the joint probability distribution, thus
making it easier to elicit the probability parameters needed
from experts or from data. See [8, 9, 10] for more details.

Despite their popularity and advantages, there are situa-
tions where a BN is not enough. For instance, when try-
ing to model the process of buying and selling assets, we
wanted to model the constant flow between identifying
buying opportunities and then, once such have been found,
identifying selling opportunities, as is required by an al-
pha model. These two phases can be very different and the
variables included in the BNs modelling them are not nec-
essarily the same. The need to switch between two different
BN was the foundation for the introduction of GBNs.

Switching between phases is done using so called gates.
These gates are encoded with predefined logical expres-
sions regarding posterior probabilities of random variables
in the BNs. This allows for the activation and deactivation
of BNs based on posterior probabilities. A GBN that uses
two different BNs (BN1 and BN2) is shown in Figure 2.
Here, we will give a brief explanation of GBNs in general,
and the GBN in Figure 2 in particular (for the full definition
of GBNSs see [4, 6]):

o A GBN consists of BNs and gates. BNs can be active
or inactive. The label of BN1 is underlined, indicating
that it is active at the initial state of the GBN. The BNs
supply posterior probabilities to the gates via so called
trigger nodes. The node S is a trigger node for gate G1
and W is a trigger node for G2. A gate can utilise more
than one trigger node.

e Each gate is encoded with a predefined logical expres-
sion regarding its trigger nodes’ posterior probabil-
ity of a certain state, e.g. G1 may be encoded with
p(S = slle) > 0.7. This expression is known as the
trigger logic for gate G1.

e When evidence is supplied to the GBN, an evidence
handling algorithm updates posterior probabilities and
checks if any of the logical statements in the gates are
satisfied. If the trigger logic is satisfied for a gate it is
said to trigger. A BN that is inactive never supplies
any posterior probabilities, hence G2 will never trig-
ger as long as BN2 is inactive.

e When a gate triggers, it deactivates all of its parent



BNs and activates its child BNs (as defined by the
direction of the edges between gates and BNs). In
our example, if G1 was to trigger it would deactivate
BN1 and activate BN2, this implies that the model has
switched phase.

If the GBN was used as an alpha model, then when the
GBN identifies a buying opportunity, and moves to the sell
phase, a buy signal is generated. Looking again at Fig-
ure 1, each buy and sell signal was generated as the GBN
switched back and forth between its phases.

For the purpose of discussing GBN parameter optimisation
in general, we will say that a GBN is parameterised by three
disjoint parameter sets ©, A and I". The parameters in © are
the parameters of the marginal and conditional probabil-
ity distributions of the variables in the contained BNs. All
other free parameters are contained in A, while any fixed
parameters are contained in I'. For instance, in a setting
where the only unknowns are the thresholds in the trigger
logic of the gates, we say that the thresholds are in A and
all other parameters are fixed in I'. This notation allows
a bit of convenience when discussing the evaluation of the
optimisation procedure in Section 5 and the application in
Section 6.

3 EVALUATION OF ALPHA MODELS

As we alluded in Section 1, and as we shall see in Sec-
tion 6, it is necessary to assess how good a set of signals
are, thereby assessing the performance of an alpha model.
Regression models can be evaluated by how well they min-
imise some error function or by their log predictive scores.
For classification, the accuracy and precision of a model
may be of greatest interest. Alpha models may rely on re-
gression and classification, but cannot be evaluated as ei-
ther. An alpha model’s performance needs to be based on
its generated signals over a period of time, and the per-
formance must be measured by the risk and reward of the
model. This is known as backtesting.

3.1 BACKTESTING

The process of evaluating an alpha model on historic data
is known as backtesting, and its goal is to produce met-
rics that describe the behaviour of a specific alpha model.
These metrics can then be used for comparison between al-
pha models [11, 12]. A time range, price data for assets
traded and a set of signals are used as input. The back-
tester steps through the time range and executes signals
that are associated with the current time (using the supplied
price data) and computes an equity curve (which will be ex-
plained in Section 3.2). From the equity curve it is possible
to compute metrics of risk and reward. To simulate poten-
tial transaction costs, often referred to as commission, every
trade executed is usually charged a small percentage of the

total value (0.06% is a common commission charge used in
the included application).

Alpha models are backtested separately from the other
components of the algorithmic trading system, as the back-
testing results are input to the other components. There-
fore, we execute every signal from an alpha model during
backtesting, whereas in a full algorithmic trading system
we would have a portfolio construction model that would
combine several alpha models and decide how to build a
portfolio from their signals.

3.2 ALPHA MODEL METRICS

What constitutes risk and reward is not necessarily the
same for every investor, and investors may have their own
personal preferences. However, there are a few metrics that
are common and often taken into consideration [12]. Here
we will introduce the metrics that we will use to evaluate
the performance of our alpha models.

Although not a metric on its own, the equity curve needs
to be defined in order to define the following metrics. The
equity curve represents the total value of a trading account
at a given point in time. If a daily timescale is used, then it
is created by plotting the value of the trading account day
by day. If no assets are bought, then the equity curve will
be flat at the same level as the initial investment. If assets
are bought that increase in value, then the equity curve will
rise. If the assets are sold at this higher value then the eq-
uity curve will again go flat at this new level. The equity
curve summarises the value of the trading account includ-
ing cash holdings and the value of all assets. We will use
& to reference the value of the equity curve at point ¢.

Metric 1 (Return) The return of an investment is defined
as the percentage difference between two points on the eq-
uity curve. If the timescale of the equity curve is daily, then
re = (& — Ei—1)/|Et—1| would be the daily return between
day ¢t and ¢t — 1. We will use 7 and o, to denote the mean
and standard deviation of a set of returns.

Metric 2 (Sharpe Ratio) One of the most well known
metrics used is the so called Sharpe ratio. Named after
its inventor Nobel laureate William F. Sharpe, this ratio is
defined as: (7 —risk free rate)/o,.. The risk free rate is usu-
ally set to be a ”’safe” investment such as government bonds
or the current interest rate, but is also sometimes removed
from the equation [12]. The intuition behind the Sharpe ra-
tio is that one would prefer a model that gives consistent
returns (returns around the mean), rather than one that fluc-
tuates. This is important since investors tend to trade on
margin (borrowing money to take larger positions), and it
is then more important to get consistent returns than returns
that sometimes are large and sometimes small. This is why
the Sharpe ratio is used as a reward metric rather than the
return.
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Figure 3: Equity Curve with Drawdown Risks

Furthermore, under certain assumptions it can be shown
that there exists an optimal allocation of equity between
alpha models (in the portfolio construction model), such
that the long-term growth rate of equity is maximised [12].
This growth rate turns out to be ¢ = r + 52 /2, where r
is the risk free rate and S' is the Sharpe ratio. Thus, a high
Sharpe ratio is not only an indication of good risk adjusted
return, but holding the risk free rate constant, the optimal
growth rate is an increasing function of the Sharpe ratio.

Using the Sharpe ratio as a metric will ensure that the alpha
models are evaluated on their risk adjusted return, however,
there are other important alpha model behaviours that need
to be measured. A family of these, that are known as draw-
down risks, are presented here (see Figure 3 for examples
of an equity curve and these metrics).

Metric 3 (Maximum Drawdown (MDD)) The percent-
age between the highest peak and the lowest trough of the
equity curve during backtesting. The peak must come be-
fore the trough in time. The MDD is important from both
a technical and psychological regard. It can be seen as a
measure of the maximum risk that the investment will live
through. Investors that use their existing investments that
have gained in value as safety for new investments may be
put in a situation where they are forced to sell everything.
Other risk management models may automatically sell in-
vestments that are loosing value sharply. For the individual
who is not actively trading but rather placing money in a
fund, the MDD is psychologically frustrating to the point
where the individual may withdraw their investment at a
loss in fear of loosing more money.

Metric 4 (Lowest Value From Investment (LVFI)) The
percentage between the initial investment and the lowest
value of the equity curve. This is one of the most important
metrics, and has a significant impact on technical and
psychological factors. For investors trading on margin,
a high LVFI will cause the lender to ask the investor for
more safety capital (known as a margin call). This can be
potentially devastating, as the investor may not have the
capital required, and is then forced to sell the investment.
The investor will then never enjoy the return the investment
could have produced. Individuals who are not investing
actively, but instead are choosing between funds that invest

in their place, should be aware of the LVFI as it is the
worst case scenario if they need to retract their investment
prematurely.

Metric 5 (Time In Market Ratio (TIMR)) The percent-
age of time of the investment period where the alpha model
owned assets. This metric may seem odd to place within
the same family as the other drawdown risks, however it
fits naturally in this space. We can assume that the days the
alpha model does not own any assets the drawdown risk is
zero. If we are not invested, then there is no risk of loss.
In fact, we can further assume that our equity is growing
according to the risk free rate, as it is not bound in assets.

4 BAYESIAN OPTIMISATION

Our intention is to use GBNs as alpha models and to opti-
mise the free parameters A with respect to the metrics given
in Section 3.2. In order to do so we must backtest the sig-
nals that a GBN produces, and thus we cannot analytically
solve the optimisation problem, as backtesting as a function
of A has no general closed form expression. At the same
time, backtesting is relatively costly, as one must create the
model, prepare data, estimate parameters, generate signals
and walk through the time range to simulate the trading.
For this reason, it is not feasible to exhaustively sweep a
large grid of parameters. However, Bayesian optimisation
allows us to prioritise the points on the grid to evaluate,
thus reducing the number of evaluations, while still finding
the global maximum of a potentially costly and black box
objective function.

4.1 GAUSSIAN PROCESS AS SURROGATE
FUNCTION

Essentially, we would like to find the parameters A* € A
that maximises an unknown function f. We place a
prior, p(f), over the possible functions f, and compute
the posterior over f using observations {A1.;, f1.;}, where
fi = f(A;). Hence, we compute p(f|{A1,, fii})
p({A1:4, f1::}f)p(f). We can then use this posterior distri-
bution over objective functions as an estimate of our objec-
tive function. This is sometimes known as using the poste-
rior as a surrogate function to the true objective function.

In Bayesian optimisation it is common to use a Gaussian
process (GP) as the surrogate function [7]. It is defined
as a multivariate normal distribution of infinite dimension,
where each dimension is a point along some grid. A finite
set of these dimensions will form a Gaussian distribution,
thus allowing a GP to be defined completely by a mean
function p and a kernel function x. The GP over the grid
A is then defined as NV ((A), k(A, A)) forall A, A’ € A.
Commonly, the prior (A) is assumed to be zero for all
A € A, although this is by no means necessary if prior
information is available to suggest otherwise. The more



involved task is to define the kernel function x. With &
we can express our prior belief about the objective function
that we wish to maximise. Although we do not know the
form of the objective function, we often assume that points
close to each other on the grid give similar results, thus
we assume the objective function to possess at least some
smoothness. These assumptions can be articulated in &,
for instance by the rational quadratic kernel in Equation 1,
where c is a tuning constant for how smooth we believe
the objective function to be. For points close to each other,
Equation 1 will result in values close to 1, while points fur-
ther away will be given values closer to 0. The GP prior
will obtain the same smoothness properties, as the covari-
ance matrix is completely defined by x. To visualise the
smoothness achieved by tuning ¢, Figure 4 shows the de-
creasing covariance as distance grows with three different
settings of ¢ (1, 5 and 10). As can be seen, as c increases
the decrease is slower, thus more smoothness is assumed.
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Assuming that we have observed {A1.;, f1.;}, and that we
wish to calculate the posterior predictive distribution for
an unobserved point A; 1, a closed form expression exists
for this calculation as described in Equation 2. Thus, it is
possible to efficiently calculate the posterior distribution of
an unobserved point where both the prior smoothness and
observed data have been considered. For more on GPs,
please see [13].
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4.2 ACQUISTION FUNCTIONS AND BAYESIAN
OPTIMISATION

Using a GP as a surrogate to the objective function al-
lows us to encode prior beliefs about the unknown objec-
tive function, and sampling the objective function allows
us to update the posterior of the surrogate. What is left
to do is to decide where to sample the objective function.
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Figure 4: Covariance Decrease by Distance

In Bayesian optimisation we make use of a so called ac-
quisition function. Several acquisition functions have been
suggested, however the goal is to trade off exploring the
grid where the posterior uncertainty is high, while exploit-
ing points that have a high posterior mean. We will use
the upper confidence bound criterion, which is expressed
as UCB(A) = u(A) + no(A), where p(A) and o(A) rep-
resent the mean and standard deviation at the point A of
the GP, and 7 is a tuning parameter to allow for more ex-
ploration (as 7 is increased) or more exploitation (as 7 is
decreased).

Succinctly, define a GP over a grid with some kernel func-
tion, then randomly sample a point and evaluate the objec-
tive function at this point. Calculate the posterior of the
GP given this new observation and find A’ that maximises
the acquisition function. Then A’ is the next point where
to evaluate the objective function. Iterate these steps for a
predefined number of iterations. Once all iterations have
passed, the A with the highest posterior mean is the set of
parameters that maximises the objective function.

S EVALUATION PROCEDURE

In Section 6 we will account for a real-world application
of GBNs as alpha models supported by Bayesian optimi-
sation. However, in this section we will introduce the op-
timisation procedure used, as well as the method used to
evaluate the performance of the optimisation, which is es-
sentially the same method used in [5].

A data set D of consecutive evidence sets, e.g. observations
over all or some of the random variables in the GBN, is di-
vided into n equally sized blocks (Ds, ..., D,,), such that
they are mutually exclusive and exhaustive. Each block
contains consecutive evidence sets and all evidence sets in
block D; come before all evidence sets in D; for all ¢ < j.
Depending on the amount of available data, k is chosen as
the number of blocks used for optimisation. Starting from
index 1, blocks 1,...,k are used for optimisation and k + 1
for testing, thus ensuring that the evidence sets in the test-
ing data occurs after the optimisation data. The procedure
is then repeated starting from index 2 (i.e. blocks 2, ..., k+1
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are used for optimisation and k + 2 for testing). By doing
so we create ¢ repeated simulations, moving the testing data
one block forward each time. An illustration of this proce-
dure when n = 12, £ = 5 and t = 7 is shown in Figure 5.

During Bayesian optimisation, when the objective function
is evaluated for some acquired A, a cross-validation esti-
mate is calculated for the k blocks used. Here, k — 1 blocks
are used to estimate the parameters © of the contained BNs
and the held out block is used as validation data to calcu-
late a score p. The value of the objective function, given
parameters A, is thus the average of all p when each block
in the optimisation data has been held out.

In order to formalise the procedure used to evaluate the op-
timisation, recall from Section 2 that A is used to represent
the free parameters of a GBN and I is used to represent
all fixed parameters. Let [ be a score function such that
J (A, D, {D}*|I') is the score for a GBN under some pa-
rameterisation A and I" when block j has been used for
either testing or validation and the blocks Dy, ..., D,, have
been used to estimate © of the BNs in the GBN (under the
parameters A and T).

1. For each simulation ¢, where (as discussed previously)
D,k is the testing data and Dy, ..., Dy g1 is the op-
timisation data, use Bayesian optimisation to find the
parameters A’ that satisfies Equation 3.

t+k—1

At =arg max% E J (A, D;, {D}*\D,|I)
AeA ot
(3)

2. For each A! calculate the score pf7 on the testing set
with respect to the scoring function J according to
Equation 4.

ply = T(A', Dy, {D} 1) 4)

3. The expected performance ps of the optimisation,
with respect to the score function 7, is then given by
- 1
the average of the scores p';,i.e. py = 1 >, pl;.

Two things to note about this procedure. First, during
cross-validation inside the objective function we disregard

the natural order of the data, thus allowing a validation
block to come before a block used for estimating the pa-
rameters ©. This could potentially induce a bias in the
cross-validation estimate as the data used for estimating the
parameters would not have been known at the time the data
for the validation block was generated. However, as we do
not use this scheme when we evaluate the performance of
the optimisation, the expected performance of the optimi-
sation is not biased in this way. We simply use this scheme
to make the best use of the data during cross-validation.
Second, one scoring function 7 has been used both during
optimisation and for evaluating the expected performance
of the optimisation. The scoring function J could inter-
nally use many different metrics to come up with one score
to maximise. However, it is natural in the coming setting
to expose the actual values of several metrics, thus several
scoring functions 7 are used to get a vector of mean scores

[ﬁju "'7ﬁj]u]'

Another approach to combine Bayesian optimisation with
cross-validation is to reduce the number of fold evaluations
necessary [14], as certain folds may be closely correlated,
however our approach is to reduce the number of parame-
ters that we need to test with cross-validation.

6 APPLICATION

Having established the optimisation procedure, and the
method we intend to use to evaluate the performance of
the optimisation, we turn our attention to a real-world ap-
plication. We aim to use GBNs as alpha models to gener-
ate buy and sell signals of stock indices in such a way that
drawdown risks are mitigated, compared to the buy-and-
hold strategy, while at the same time maintaining similar or
better rewards.

Stock indices are weighted averages of their respective
stock components. For instance, the Dow Jones Industrial
Average (DJIA) is a weighted average of 30 large compa-
nies based in the United States. Indices may have different
schemes for how the different components are weighted,
however they all aim to give a collective representation of
their components.

An index fund owns shares of the components of a specific
index, proportional to the weights, such that the fund’s re-
turn is mirrored by the index. These funds are very popular,
as they are easy for the investor to comprehend but at the
same time trading the individual components of an index
requires a lot of effort.

A buy-and-hold strategy on stock indices via index funds
may be convenient, however it implies that the equity is put
through the full force of drawdown risks described in Sec-
tion 3.2. The buy-and-hold strategy holds assets over the
entire backtesting period and so will be subject to the full
force of these metrics. For instance, as an asset will be held



Figure 6: GBN-1 and GBN-2

throughout the period, the lowest point of the assets value
will coincide with LVFI. In dwindling stock markets, the
index funds will lose value, and equity could be salvaged
and possibly be placed in risk-free assets during these peri-
ods. Furthermore, utilising certain financial products, it is
also possible to increase equity during these times of dis-
tress by purchasing short positions of the index. Short posi-
tions can be thought of as a loan, where the value of the loan
increases if the index decreases in value, and it is possible
to sell the loan at its higher value (to make the distinction,
regular positions are called long when short positions are
considered).

At first the buy-and-hold strategy may seem naive, how-
ever it has been shown that deciding when to own and not
own assets requires consistent high accuracy of predictions
in order to gain higher returns than the buy-and-hold strat-
egy [15]. The buy-and-hold strategy has become a standard
benchmark, not only because of the required accuracy, but
also because it requires very little effort to execute (no com-
plex computations and/or experts needed).

6.1 METHODOLOGY

We used two different GBN structures to create alpha mod-
els. The first GBN structure (henceforth known as GBN-1)
modelled buying and selling long positions only, while the
second GBN structure (GBN-2) modelled buying and sell-
ing long and short positions. The structures are depicted in
Figure 6 (GBN-1 on the left and GBN-2 on the right). The
structure for GBN-1 works as described in Section 2. The
structure for GBN-2 starts in the T'rend phase, from where
either G1 or G2 can trigger. If G1 triggers then a long open
signal is generated and the Long phase is activated (deac-
tivating the Trend phase). If then gate G3 triggers then a
long close signal is generated, and the Trend phase is ac-
tivated again (deactivating the Long phase). However, if
before G'1 triggers G2 triggers instead, then a short open
position is generated, and the Short phase is activated (de-
activating T'rend). In similar fashion, when G4 triggers a
short close signal is generated, activating Trend and deac-
tivating Short.

6.1.1 Variables

The variables used in the GBNs were discretisations of
so called technical analysis indicators. One of the major
tenets in technical analysis is that the movement of the price
of an asset repeats itself in recognisable patterns. Indicators
are computations of price and volume that support the iden-
tification and confirmation of patterns used for forecasting.
Many classical indicators exists, such as the moving aver-
age (MA), which is the average price over time, and the
relative strength index (RSI) which compares the size of
recent gains to the size of recent losses. For the full defini-
tion of these indicators, please see [16, 17].

For each phase in the GBNs (Buy, Sell, Trend, Long
and Short), we placed a naive Bayesian classifier over the
same technical analysis indicators. However by allowing
the parameterisation of one of the technical analysis indi-
cators to vary between the phases, we essentially created
different variables in the different phases. The tuning of
the technical analysis parameters allowed us to better cap-
ture the dynamics of the data, as they may differ between
assets as well as between the different phases of trading.

Figure 7 depicts the classifier structure and variables used.
The variables are explained below, along with an example
in Figure 8.

e S represents the first-order finite backward difference
of 5 periods of the MA of 1) periods, shifted 5 periods
into the future. To clarify, the first plot in Figure 8
shows the price of an asset along with the MA. If the
current time is ¢, then S represents the slope of the line
between what the MA will be at ¢ + 5 and what it is at
t.

e A represents the same slope as .S but at its current
value (i.e. between t and ¢t — 5).

e B represents the difference between the current value
of the MA of v periods and the current raw price. This
can be seen in Figure 8 as the difference between the
two time series in the first plot.

e ( represents the current RSI value (at ¢ in the second
plot of the figure) using 14 periods.

e D represents what C' was 5 time steps in the past (at
t — 5 in the second plot of the figure).

The choice of 14 periods for RSI is based on the prevailing
standard [16, 17], and the choice of 5 periods as the pre-
diction horizon is based on the number of trading days in a
week.

Variables A, B, C' and D were discretised into six bins,
each using equal width binning, and S was discretised into
two bins separated by zero. Thus, the states of .S represents



S
ViIMA()
Offset(+5)

D
RSI(14)
Offset(-5)

A
VIMA®)

B
PDIFF(MA (1))

Figure 7: Bayesian Classifier in GBN Phases

1325

A

i Price-!

Price and MA
1305 1315
@
»

1295

t-5 ! t] sl o

Mar01 Mar04 Mar07 Mar10 Mar 14 Mar 17 Mar21  Mar24
2011 2011 2011 2011 2011 2011 2011 2011

\— "

C //

55

/N
Ri/ \D

RSI

35 45
L

t-5 t

T T 1 L T T 1 T T T 7T

Mar 01 Mar 04 Mar 07 Mar 10 Mar 14 Mar 17 Mar 21 Mar 24
2011 2011 2011 2011 2011 2011 2011 2011

Figure 8: Visualisation of Variables

a predicted positive or negative future value of the modelled
asset price (smoothed by the moving average of v periods).
As S represents a future value, evidence for S was only
available during estimation of the parameters ©, not during
the generation of signals.

The gates all defined trigger logic over the posterior dis-
tribution of S with some threshold 7. For instances,
in GBN-1, the trigger logic for G1 was TL(G1)
p(S = positive | €) > 71, i.e. if the posterior probabil-
ity of a positive climate is greater than some threshold, then
the model should give a buy signal and move to the next
phase (the sell phase). Naturally, the trigger logic for G2
in the same GBN was TL(G2) : p(S = negative | ) >
TG2, thus giving a sell signal if the posterior probability of
a negative future value exceeds some threshold.

6.1.2 Bayesian Optimisation Settings

The previous section implies the following for the two
GBNs:

e For GBN-1 the free parameters A to be optimised are:
A= {TG17 TG2, wBuyv ¢Sell}-

e For GBN-2 the free parameters A to be optimised are:
A= {Tle TG2, TG3, TG4, YTrend, wL(mga 7/}Shm“t}-

e In both cases all 7 were confined to [60, 90] and all
to [10, 40].

We used the upper confidence bound acquisition function
(as described in Section 4.2) with = 5, which allowed
for abundant exploration, as our objective function was
not extremely expensive to evaluate. We used the rational
quadratic kernel as described in Equation 1 with ¢ = 1.

For GBN-1 we ran the Bayesian optimisation for 1,600 it-
erations, and for GBN-2 we ran 12,800 iterations.

6.1.3 Data Sets

We used four indices in this study, DJIA and NASDAQ
which are both based on companies in the United States,
FTSE100 which is based on companies in the United King-
dom and DAX which is based on companies located in Ger-
many. We ran our experiments on daily adjusted closing
prices for these indices ranging from 2001-01-01 to 2012-
12-28 (data downloaded from Yahoo! Finance™). This
gave a total of 12 years of price data for each index, where
each year was allocated to a block, thus n = 12. For the
cross-validation step we used k = 5 giving ¢t = 7 simula-
tions from which to calculate [p 7, ..., p7, ] (the data split
is depicted in Figure 5).

6.1.4 Scoring Functions

The signals generated were backtested in order to calculate
relevant metrics. During optimisation (i.e. step 1 in Sec-
tion 5) the objective function used the Sharpe ratio. The
choice was made as it combines both risk and reward into
one score, for which a cross-validation estimate could be
returned by the objective function. For evaluating the per-
formance of the optimisation (step 2 in Section 5), we used
the return and the drawdown risks described in Section 3.2
to create a score vector [py,, ..., P, |- The same metrics
were calculated for the buy-and-hold strategy.

6.2 RESULTS AND DISCUSSION

The score vectors from the evaluation of the optimisation
versus the the score vector for the buy-and-hold strategy
over the seven simulations are shown in Table 1. The an-
nual Sharpe presented in the table is the mean return di-
vided by the standard deviation of returns over the seven
simulation, and since each block was allocated one year of
data it becomes the annual Sharpe ratio.

Will will first turn our attention to GBN-1. We use the
Sharpe ratio as our measure of reward, prioritised above
the raw return for reasons discussed in Section 3.2. There-
fore, we must first ensure that the Sharpe ratio of our al-
gorithmic trading system produces similar or better Sharpe
ratios than the buy-and-hold strategy. As can be seen, this
was the case for DJIA, NASDAQ and DAX, but not for



Table 1: Metric Values for GBNs and Buy-and-Hold

DJIA [ Score | GBN-1 [ GBN-2 | BaH
Annual Sharpe | 0.289 0.330 0.157
Return | 0.019 0.032 0.028
MDD | 0.085 0.116 0.167
LVFI | 0.058 0.062 0.119

TIMR | 0.628 0.91 1.0

NASDAQ \ Score | GBN-1 | GBN-2 | BaH
Annual Sharpe | 0.308 0.081 0.254
Return | 0.033 0.012 0.067
MDD | 0.101 0.164 0.207
LVFI | 0.062 0.099 0.146

TIMR | 0.554 0.94 1.0

FTSE100 \ Score | GBN-1 | GBN-2 | BaH
Annual Sharpe | -0.057 | -0.64 0.127
Return | -0.006 | -0.074 | 0.022
MDD | 0.098 0.167 0.188
LVFI | 0.074 0.121 0.142

TIMR | 0.649 0.962 1.0

DAX \ Score | GBN-1 | GBN-2 | BaH
Annual Sharpe | 0.778 0.589 0.278
Return | 0.081 0.062 0.069
MDD | 0.107 0.171 0.213
LVFI | 0.056 0.059 0.154

TIMR | 0.610 0.926 1.0

FTSE100. Secondly, we must take into consideration the
TIMR. For GBN-1, we were invested only slightly above
half of the time compared to buy-and-hold, reducing risk
to equity considerably. Meanwhile, the rest of the time the
equity could have gained in value from interest rates (or
other risk-free assets), this potential gain was not consid-
ered in these results. Risk to equity from MDD was half
its counterpart from the buy-and-hold strategy for all in-
dices. The LVFI is a major threat to equity (as discussed in
Section 3.2), and one where buy-and-hold severely under-
performs. For DAX the LVFI was only a third of the buy-
and-hold LVFI, and for the other three indices it was half.

All in all, the results clearly indicate that GBN-1 was com-
petitive with the buy-and-hold strategy for three of the in-
dices, as Sharpe ratios were improved upon and risk to eq-
uity was decreased significantly. Furthermore, these results
were achieved while at the same time only having equity in-
vested half of the investment period. It is also clear that we
cannot expect the same GBN to be useful for all indices, as
the reward was not improved upon for FTSE100. Some of
the parameters that were fixed in I' may have to be tuned in
order to accommodate the dynamics of FTSE100, such as
the technical analysis indicators used, or the fixed parame-
ters of the ones used currently.

Moving on to GBN-2, we can see that allowing the GBN to
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open short positions changes the results dramatically. For
DIJIA, we improved upon the Sharpe ratio, at the cost of
the drawdown risks. Both MDD and LVFI were increased
marginally, yet still lower than buy-and-hold. The TIMR
was also increased to such a degree that we were invested
almost the entire investment period. There is potential gain
in reward from using GBN-2 for DJIA, however the in-
creased risk must be considered.

For NASDAQ, FTSE100 and DAX there is no improve-
ment over GBN-1. Instead, Sharpe ratios are decreased, as
well as an increase in drawdown risks. There could be sev-
eral reasons for this that are worth investigating, however
our immediate response is that we have either overfitted the
model due to several more parameters being optimised over
the same amount of data, or the fact that a bad short posi-
tion is doubly bad on equity as we will lose out of the profit
from a long position during the same time.

7 CONCLUSIONS AND FUTURE WORK

Our results show that it is feasible to use GBNs as alpha
models, and to use Bayesian optimisation to tune them in
order to beat the buy-and-hold benchmark, with respect to
certain risk and reward metrics. Some of the design deci-
sions made before optimisation may however have reduced
the performance of the GBNs on some of the used data sets.
Short positions are optimally taken during times of distress,
and due to increased volatility, markets move very differ-
ently compared to stable increasing markets. We decided to
lock in the forward and backward horizons to 5 time steps,
and the RSI period of 14, which may have made it impos-
sible to capture the more volatile dynamics. Furthermore,
stock indices generally increase in value over long periods
of time, thus short selling will always be in the opposite of
the long term trend, which in general is ill-advised.

Nevertheless, we are encouraged to see the included posi-
tive results and are at the same time motivated to address
the problems we faced with GBN-2. We would not ex-
pect the exact same model to perform well on all given
data sets, and so further work is needed to improve upon
the results on FTSE100 to make them in par with the other
three indices. For instance, there is room to make the ob-
jective function even more expensive by not only estimat-
ing BN parameters, but also performing variable selection
and structure learning during cross-validation.
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