
An IRT-based Parameterization for Conditional Probability Tables

Russell G. Almond
Educational Psychology and Learning Systems

College of Education
Florida State Univeristy
Tallahassee, FL 32312

Abstract

In educational assessment, as in many other ar-
eas of application for Bayesian networks, most
variables are ordinal. Additionally conditional
probability tables need to express monotonic re-
lationships; e.g., increasing skill should mean in-
creasing chance of a better performances on an
assessment task. This paper describes a flex-
ible parameterization for conditional probabil-
ity tables based on item response theory (IRT)
that preserves monotonicity. The parameteriza-
tion is extensible because it rests on three aux-
iliary function: a mapping function which maps
discrete parent states to real values, a combina-
tion function which combines the parent values
into a sequence of real numbers corresponding
to the child variable states, and a link function
which maps that vector of numbers to condi-
tional probabilities. The paper also describes an
EM-algorithm for estimating the parameters, and
describes a hybrid implementation using both R
and Netica, available for free download.

1 INTRODUCTION

The most commonly used parameterization for learning
conditional probability tables (CPTs) in discrete Bayesian
networks with known structure is the hyper-Dirichlet
model (Spiegelhalter & Lauritzen, 1990). Spiegelhalter
and Lauritzen show that under two assumptions, global pa-
rameter independence and local parameter independence,
the hyper-Dirichlet distribution is a natural conjugate of
the conditional multinomial distribution, that is, a Bayesian
network. In the complete data case, parameter learning
is accomplished by generating contingency tables corre-
sponding to the CPT and simply counting the number of
events corresponding to each combination in the training
data. This counting algorithm is easily extended to an EM
algorithm when some of the variable are missing at ran-

dom (e.g., some are latent), and this EM algorithm is imple-
mented in many common Bayesian network software pack-
ages (e.g., Netica; Norsys, 2012).

In many applications, all of the variables in the Bayesian
network are ordinal and the network is expected to be
monotonic (van der Gaag, Bodlaender, & Feelders, 2004),
higher values of parent variables are associated with higher
values of child variables. For example, in education, in-
creasing ability should result in a better performance (say
a higher partial credit score on short answer assessment
item). This monotonicity condition is a violation of the
local parameter independence assumption, which assumes
that the distribution of the parameters for the rows of the
CPT are independent.

Even ignoring this assumption violation, the hyper-
Dirichlet results may not provide stable estimates of the
CPT. If the parent variables of a particular node are mod-
erately to strongly correlated, then certain row configura-
tions may be rare in the training set. For example if Skill 1
and Skill 2 are correlated, few individuals for whom Skill 1
is high and Skill 2 is low may be sampled. The problem
gets worse as the number of parents increases, as number
of parameters of the hyper-Dirichlet distribution grows ex-
ponentially with the number of parents.

The solution is to build parametric models for the CPTs.
A common parametric family is based on noisy-min and
noisy-max models (Dı́ez, 1993; Srinivas, 1993). Almond et
al. (2001) proposed a method based adapting models from
item response theory (IRT). This new model class has three
parts: (1) a mapping from the discrete parent variables to
an effective theta, a value on an equal interval real scale,
(2) a combination function that combined the effective
thetas for each parent variable into a single effective theta
for the item, and (3) a link function, based on the graded
response model (Samejima, 1969). Almond (2010) and
Almond, Mislevy, Steinberg, Yan, and Williamson (2015)
extend and develop this model adding a new mapping func-
tion and new link function based on the probit function.
Almond, Kim, Shute, and Ventura (2013) provides an ad-
ditional extension based on the generalized partial credit

14

model (Muraki, 1992).

This paper organizes these IRT-based parametric models
into an extensible framework that can be implemented
in the R language (R Core Team, 2015). It intro-
duces a Parameterized Node object which has two func-
tional attributes: rules—which specifies the combination
rules,—and link—which specifies the link function. It
also has a parent tvals method which specifies the
mapping from discrete states to effective thetas, which can
be overridden to extend the model Because R is a func-
tional language (functions can be stored as data), this cre-
ates an open implementation protocol (Maeda, Lee, Mur-
phy, & Kiczales, 1997) which can be easily extended by an
analyst familiar with R.

2 ITEM RESPONSE THEORY FOR
CONDITIONAL PROBABILITY
TABLES

Item response theory (IRT; Hambleton, Swaminathan, &
Rogers, 1991) describes a family of models for the perfor-
mance of an examinee on a assessment. Let Xij be a bi-
nary variable representing whether Examinee i got Item j
correct or incorrect and let θi be the (latent) ability of the
examinee. The probability of a correct response is mod-
eled as a function of the examinee ability and item parame-
ters. A typical parameterization is the 2-parameter logistic
(2PL) model:

Pr (Xij = 1 | pai(Xj)) =
exp (1.7αj(θi − βj))

1 + exp (1.7αj(θi − βj))
,

(1)
also written as logit−1 (1.7αj(θi − βj)). The scale param-
eter αj is called the discrimination and the location param-
eter βj is called the difficulty. The constant 1.7 a scaling
factor used to make the inverse logistic function approxi-
mately the same as the normal ogive (probit) function. In
order to identify the latent scale, the mean and variance of
the latent ability variables θi are set to 0 and 1 in the target
population. There are many variations on this basic model;
two variations for polytomous options are the graded re-
sponse model (GRM; Samejima, 1969) and the generalized
partial credit model (GPC; Muraki, 1992).

A key insight of Lou DiBello (Almond et al., 2001) is that
if each configuration of parent variables can be mapped to
an effective theta, a point on a latent normal scale, then
standard IRT models can be used to calculate conditional
probability tables. This section reviews the following prior
work in IRT-based parameterizations of CPTs. The general
framework can be described in three steps:

Mapping Each configuration, i′, of theK parent variables
is mapped into a real value vector of effective thetas,
θ(i′) =

(
θ̃1(i′), . . . , θ̃K(i′)

)
.

Combination Rule A combination function, Zj

(
θ̃(i′)

)
,

is applied to the effective thetas to yield a combined
effective theta for each row of the CPT for Variable j.

Link The link function, gj(z), is evaluated at Zj (θ(i′)) to
produce the conditional probabilities for Row i′ of the
CPT for Variable j.

This is an extension of the generalized linear model
(McCullagh & Nelder, 1989) with a linear predictor Zj(θ̃),
and a link function, gj(z).

Section 2.1 reviews the hyper-Dirichlet model of
Spiegelhalter and Lauritzen (1990). Section 2.2 de-
scribes how to map discrete parent variables on the theta
scale. Section 2.3 describes rules for combining multiple
parent variables. Section 2.4 describes the generalized
partial credit model, graded response and probit link
functions.

2.1 HYPER-DIRICHLET MODEL

The work of constructing a Bayesian network consists of
two parts: constructing the model graph, and construct-
ing the conditional probabilities Pr (X|pa(X)), the con-
ditional probability tables (CPTs). A CPT is usually ex-
pressed as a matrix in which each row corresponds to a
configuration of the parent variables and each column cor-
responds to a state of the child variable. A configuration
is a mapping of each of the parent variables into a possible
state, and the corresponding row of the CPT is the condi-
tional probability distribution over the possible values of
the child variable given that the parent variables are in the
corresponding configuration.

A commonly used parameterization for Bayesian networks
is the hyper-Dirichlet model (Spiegelhalter & Lauritzen,
1990). Note that in a discrete Bayesian network, a node
which has no parents follows a categorical or multinomial
distribution. The natural conjugate prior for the multino-
mial distribution is the Dirichlet distribution. If the node
has parents, then each row of the CPT is a multinomial dis-
tribution, and the natural conjugate for that row is also a
Dirichlet distribution.

Spiegelhalter and Lauritzen (1990) introduce two addi-
tional assumptions. The global parameter independence
assumption states that the probabilities for the conditional
probability tables for any pair of variables are indepen-
dent. (In the psychometric context, this is equivalent to
the assumption that the parameters for different items are
independent.) The local parameter independence assump-
tion states that the probabilities for any two rows in a CPT
are independent. Under these two assumptions, the hyper-
Dirichlet distribution, the distribution where every row of
every CPT is given an independent Dirichlet distribution, is
the natural conjugate of the Bayesian network.

15

Let the matrix AX be the parameter for the CPT of Vari-
able X . The rows of AX correspond to the possible
configurations of pa(X) and the columns of AX corre-
spond to the possible states of X , indexed by the num-
bers 0 to S.1 Thus, ai′ = (ai′0, . . . , ai′S) (the i′th row
of AX) is the parameters of the Dirichlet distribution for
Pr (X | pa(X) = i′).

Let ŶX be the matrix of observed counts associated with
Variable X . In other words, let yi′v be then number of
times when pa(V) = i′ that V = v. Under the global in-
dependence assumptions, this is the sufficient statistic for
the CPT. Under the hyper-Dirichlet distribution, the pos-
terior parameter for the CPT for X is ŶX + AX . The
posterior probability for Row i′ is a Dirichlet distribution
with parameter, (ŷi′0 + ai′0, . . . , ŷi′S + ai′S). The weight
given to the data, the observed sample size for the row, is
yi′+ =

∑
s yi′s and the weight given the prior, or effective

sample size of the prior, is ai′+ =
∑

s ai′s.

The number of elements of AX grows exponentially with
the number of parents. Furthermore, the observed sam-
ple of certain rows will be higher, sometimes much higher
than others. In particular, when the parent variables are
moderately correlated, rows corresponding to configura-
tions where one variable has a high value and the other a
low variable will be less common than cases where both
parents have similar values. In extreme cases, or with small
training samples, Ŷi′s will be very close to ai′s for those
rows.

A second problem is that in many applications the CPTs
should be monotonically non-decreasing. When the par-
ent variables take on higher values, the probability that
the child variable should take on higher values should not
decrease. It is possible, especially with a small training
sample, for the estimated CPT to have an unexpected non-
monotonic pattern.

The IRT-based CPT parameterizations described below
mitigate both of these problems. First, the number of pa-
rameters grows linearly in the number of parents. Second,
the parameterizations force the CPTs to be monotonically
increasing.

2.2 MAPPING DISCRETE VARIABLES ONTO
CONTINUOUS SCALES

IRT models assume that the parent variables are continu-
ous. Basing CPTs for discrete Bayesian networks on IRT
models requires first assigning a real value θ̃mk to each
possible state, m, of each parent variable Vk. Following
the IRT convention, these numbers should be on the same
scale as a unit normal distribution with 0.0 representing the
median individual in the population and 1.0 representing an

1In the equations, the states run from lowest to highest, but in
the implementation the states run from highest to lowest.

individual one standard deviation from the median.

Almond (2010) suggested using equally spaced quantiles
of the normal distribution as effective theta values. For a
parent variable Vk that takes one ofMk possible values, the
effective theta values for state m is Φ−1((2m + 1)/2Mk),
where Φ(·) is the cumulative distribution function of the
standard normal distribution. The quantiles need not be
equally spaced, but can be matched to any marginal dis-
tribution (Almond et al., 2015). However, equally spaced
quantiles form a uniform marginal distribution over the par-
ent variable, and thus are ready to be combined with infor-
mation about the distribution of the parent variable from
elsewhere in the network.

The function which assigns a configuration of the parent
variables, i′ to a vector of effective theta values, θ̃(i′), is
called the mapping function. In most cases, this is a com-
position function consisting of separate mapping functions
for each parent variable. The function based on normal
quantiles given above is one example of a mapping func-
tion; however, any function that maps the states of the par-
ent variables to the values on the real line is a potential
mapping function. To preserve monotonicity, the mapping
should also be monotonic.

2.3 COMBINATION RULES

In the case of a binary child variable, the IRT 2PL function
gj(z) = logit−1(1.7z) is a natural link function. The com-

bination rule Zj

(
θ̃1(i′), . . . , θ̃K(i′)

)
must map the effec-

tive thetas for the parent variables onto a single dimension
representing the item. Also, in order to preserve mono-
tonicity, Zj(·) must by monotonic.

Almond et al. (2001) noted that changing the functional
form of Zj(·) changed the design pattern associate with the
item. They suggested the following functions:

Compensatory This structure function is a weighted av-
erage of relevant skill variables. Zj

(
θ̃(i′)

)
=

1√
K

∑
k αjkθ̃k(i′) − βj . Here 1/

√
K is a variance

stabilization term which keeps the variance of Zj(·)
from growing as more parents are added.

Conjunctive This structure function is based on the mini-
mum of the relevant skill variables (weakest skill dom-
inates performance). Zj

(
θ̃(i′)

)
= mink αjkθ̃k(i′)−

βj .

Disjunctive This structure function is based on the
maximum of the relevant skill variables (strongest
skill dominates performance). Zj

(
θ̃(i′)

)
=

maxk αjkθ̃k(i′)− βj .

Inhibitor A conditional function where the if the first skill

16

is lower than a threshold, θ∗, then the value is at a
nominal low value (usually based on the lowest pos-
sible value of the second skill, θ̃2(0)), but if the first
skill exceeds that threshold, the other skill dominates
the value of the function. This models tasks where a
certain minimal level of the first skill is necessary, but
after that threshold is achieved more of the first skill
is not relevant.

Zj

(
θ̃1(i′), θ̃2(i′)

)
=

{
βj + αj θ̃2(0) if θ̃1(i′) < θ∗,
βj + αj θ̃2(i′) if θ̃1(i′) ≥ θ∗,

(2)

Note that the difficulty and discrimination parameters are
built into the structure functions here. When there are mul-
tiple parent variables, there are multiple slope parameters,
αjk, giving the relative importance of the parent variables.
This makes a lot of sense in the case of the compensatory
rule (which is just a linear model). In the case of the con-
junctive and disjunctive rules, it often makes more sense
to have multiple intercepts (indicating different minimum
levels of skill are required for successful performance).

Offset Conjunctive Structure function is based on the
minimum of the relevant skill variables with different
thresholds. Zj

(
θ̃(i′)

)
= αj mink(θ̃k(i′)− βjk).

Offset Disjunctive Structure function is based on the
maximum of the relevant skill variables with different
thresholds. Zj

(
θ̃(i′)

)
= αj maxk(θ̃k(i′)− βjk).

The link function for polytomous items (variables that take
on more than two states) typically require a different value
Zjs

(
θ̃(i′)

)
for each state s of the child variable. Often

this is achieved by simply using different values of the dif-
ficultly parameter for each s. In the more general case,
each level of the dependent variable would have a different
set of discriminations, αjs, and difficulties, βjs, or even

potentially a different functional form for Zjs

(
θ̃(i′)

)
.

Von Davier (2008) proposed a similar class of generalized
diagnostic models based on an IRT framework. Von Davier
expresses the parent-child relationship proficiency vari-
ables and observable outcome variables through aQ-matrix
(Tatsuoka, 1984). This is a matrix where the columns rep-
resent proficiency variables and the rows represent observ-
able outcomes. When Variable k is thought to be relevant
for Item j, then qjk = 1; otherwise, qjk = 0. Note that the
Q-matrix defines a large part of the graphical structure of
the Bayesian network (Almond, 2010): there is a directed
edge between the Proficiency Variable k and the Observ-
able Outcome Variable j if and only if qjk = 1.

In a Bayesian network, the structure of the graph is used
in place of the Q-matrix (the Q-matrix approach is really

only useful for bipartite graphs where the parent variables
and child variables each form distinct sets). However, this
notation is useful for situations in which certain parent
variables have relevance for certain state transitions. Let
qjsk = 1 if Parent k of Item j is relevant for the transi-
tion from state s− 1 to s and zero otherwise, so that Qj is
an item specific Q-matrix with columns corresponding to
the parent variables. Let the combination rule for state s
be Zjs

(
θ̃(i′)[qjs]

)
, where the square bracket represents a

selection operator (it is styled after the R selection opera-
tor) which selects those values of θ̃(i′) for which qjsk = 1.
Note that in this case, the parameters for different states of
the child variable (e.g., αjs and αjs′) could have different
dimensions.

2.4 LINK FUNCTIONS

The expressions Zjs (θ(i′)[qjs]) associates a real value
with each configuration of parent variables, i′, and each
state of the child variable, s (although usually Zj0(·) is set
to a constant such as zero or infinity). The goal of the link
function gj(·) is to change these values into the conditional
probability function. In the case of the binary variable, the
inverse logit function is a possible link function. This sec-
tion describes three more possibilities for cases where there
the child variable has more than one state.

Graded Response Link. Almond et al. (2001) suggested
using the graded response function (Samejima, 1969) for
the link function. The graded response is based off of a se-
ries of curves representing Pr(Xj ≥ s|θ), and the probabil-
ity thatXj = s is given by subtracting two adjacent curves.

In this case, let P ∗js(i
′) = logit−1

(
1.7Zjs

(
θ̃(i′)[qjs]

))
and set P ∗j0 = 1 and Pj,S+1 = 0, where the states are
represented by integers going from 0 to S. Then the en-
tries for Row i′ of the conditional probability table will be
pjs(i

′) = P ∗js(i
′)− P ∗j,s+1(i′).

Note that in order for the graded response function to
not produce negative probabilities, it must be the case
that Zj1

(
θ̃(i′)[qj1]

)
< Zj2

(
θ̃(i′)[qj2]

)
< · · · <

ZjS

(
θ̃(i′)[qjS]

)
for all i′. Note that the easiest way to

achieve this is to have all of the Zjs(·) with the same func-
tional form and slopes, differing only in the intercepts.

Probit Link. Almond et al. (2015) presents an alternative
way of thinking about the link function based on a regres-
sion model. The child variable like the parent variables in
mapped onto an effective theta scale. In particular a series
of cut points c0 = −∞ < c1 < · · · < cS < cS+1 = ∞
are established so that Φ(cs+1) − Φ(cs) provides a de-
sired marginal probability (Almond, 2010). The values
Zj

(
θ̃(i′)

)
are a series of linear predictors for each row, i′,

of the CPT, and the conditional probabilities Pr(Xj = s|i′)
is calculated by finding the probability that a normal ran-

17

dom variable with mean Zj

(
θ̃(i′)

)
and standard deviation

σj falls between cs and cs+1.

Note that this link function uses a single combination rule
for all states of the child variable. It also introduces a link
scale parameter, σj . Guo, Levina, Michailidis, and Zhu
(2015) introduce a similar model with σj = 1.

Partial Credit Link. Muraki (1992) introduces an IRT
model appropriate for a constructed response item where
the solution to the problem requires several steps. Assume
that the examinee is assigned a score on that item based on
how many of the steps were completed. If Item j has Sj

steps, then the possible scores are 0, . . . , Sj . For s > 0, let

Pjs|s−1

(
θ̃(i′)

)
= Pr

(
Xj ≥ s | Xj ≥ s− 1, θ̃(i′)

)
=

logit−1
(

1.7Zjs

(
θ̃(i′)[qjs]

))
; that is, let Pjs|s−1

(
θ̃(i′)

)
be the probability that the examinee completes Step s,
given that the examinee has completed steps 0, . . . , s − 1.
Note that Pr(Xj ≥ 0) = 1, and so let Pj0|−1 = 1, and

Zj0

(
θ̃(i′)

)
= 0. The probability that examinee whose

parent proficiency variables are in Configuration i′ will
achieve Score s on Item j is then:

Pr
(
Xj = s | θ̃(i′)

)
=

∏s
r=0 Pjr|r−1

(
θ̃(i′)

)
C

,

where C is a normalization constant. Following Muraki
(1992), note that this collapses to:

Pr
(
Xj = s | θ̃(i′)

)
=

exp
(

1.7
∑s

r=0 Zjr

(
θ̃(i′)[qjr]

))
∑Sj

R=0 exp
(

1.7
∑R

r=0 Zjr

(
θ̃(i′)[qjr]

)) . (3)

The partial credit link function is the most flexible of the
three. Note that each state of the child variable can have
a different combination rule Zjs(·) as well as potentially
different slope and intercept parameters.

3 THE PARAMETERIZED NETWORK
AND NODE OBJECT MODELS

The mapping, combination rule and link functions de-
scribed above represent a non-exhaustive survey of those
known to the author at the time this paper was written.
Software implementing this framework should be extensi-
ble to cover additional possibilities. The implementation in
R (R Core Team, 2015) described in this paper uses an open
implementation framework (Maeda et al., 1997) to ensure
extensibility. The design is opened in two ways. First,
because R is a functional language, the combination rule
and link functions can be stored as fields of a parameter-
ized node object. While library functions are available for

the combination rule and link functions described above,
adding variants is straightforward. Second, it uses stan-
dard object oriented conventions to allow functions such
the mapping function and the function that computes the
CPT from the parameters to be overridden by subclasses.

3.1 PACKAGE STRUCTURE

The implementation in R uses four R packages to take ad-
vantage of previous work (Figure 1) and to minimize de-
pendencies on the specific Bayes net engine used for the
initial development (Netica; Norsys, 2012). The packages
are as follows:

CPTtools CPTtools (Almond, 2015) is an existing collec-
tion of R code that implements many of the mapping,
combination rule and link functions described above.
In particular, it creates CPTs as R data frames (tables
that can store both factor and numeric data). The first
several factor-valued columns of the data frame de-
scribe the configurations of the parent variables and
the last few numeric columns the probabilities for
each of the states.

RNetica RNetica (Almond, 2015) is basically a binding in
R of the C API of Netica. It binds Netica network
and node objects into R objects so that they can be
accessed from R. It is able to set the CPT of a Netica
node from the data frame representation calculated in
the CPTtools package.

Peanut Peanut2 is a new package providing abstract
classes and generic functions. The goal is similar
to the DBI package (R Special Interest Group on
Databases, 2013); that is, to isolate the code that de-
pends a specific implementation to allow for easy ex-
tensibility.

PNetica PNetica is a new package that provides an imple-
mentation of the Peanut generic functions using RNet-
ica objects. In particular, fields of Peanut objects are
serialized and stored as node user data in Netica nodes
and networks. Collections of nodes are represented as
node sets in Netica.

Peanut uses the S3 class system (Becker, Chambers, &
Wilks, 1988) which is quite loose. In particular, any ob-
ject can register itself as a parameterized node or network,
it just needs to implement the methods described in the ob-
ject model below. This should make it straightforward to
replace the RNetica (which requires a license from Norsys
for substantial problems) and PNetica packages with simi-
lar packages which adapt the algorithm to a different Bayes
net engine.

2The name is a corruption of parameterized net.

18

Figure 1: Package Structure

Figure 2: Parameterized Network (Peanut) Class diagram

3.2 OBJECT MODEL

Figure 2 shows the object model for Peanut. There are
two important classes, Parameterized Network and Param-
eterized Node, both of which extend ordinary Bayesian
network and node classes. The Parameterized network is
mostly a container for Parameterized Node and Observable
Node (nodes which are referenced in the case data). Most
of its methods iterate over the the parameterized nodes.

The attributes3 can be divided into two groups: numeric at-
tributes representing parameters and functional attributes
which take functions (or names of functions) as values.
In the key methods, build tables() and max CPT
params() the functional attributes are applied to numeric
values to construct the tables.

The three functional attributes, rules, link and prior
all must have specific signatures as they perform specific
functions.

rule(theta,alpha,beta) A combination rule must take ta-
ble of effective thetas, corresponding to the configu-
ration of parents, and return a vector of values, one
for each row. Note that in R all values can be either
scalars or vectors, so that there can be either a differ-
ent alpha or different beta for each parent (depending
on the specific rule.

link(et,link scale=NULL) When the rule is applied re-

3These are expressed attributes in the object diagrams, but im-
plemented through accessor methods.

peatedly, once for each state except for the last one
(CPTtools assumes the states are ordered highest to
lowest), the result is a matrix with one fewer columns
than the child variable has states. The link function
takes this matrix and produces the conditional proba-
bility tables. Note that there is an optional link scale
parameter which is used for the probit method, but not
for the partial credit or graded response method.

prior(log alpha,beta,link scale) This takes a set of pa-
rameters and returns the log prior probability for that
parameter set. Note that any of the parameters may be
vectors or lists.

Figure 3 describes the calcDPCTable function (part of
the CPTtools package) which shows how these func-
tional arguments are used. Key to understanding this code
is that the R function do.call takes two arguments, a
function and a list of arguments and returns the value of
evaluating the call. Consequently, the rules and link
argument are functions or names of functions. Also, R is
vectorized. So if the rules argument is a list of rules,
then a different function will be applied for each state
of the child variable. Similarly if the lnAlphas4 and
betas are lists, then different values are used for each
state. The build table()method of the Parameterized
Node class is just a wrapper which calls calcDPCTable
with arguments taken from its attributes and uses it to set
the CPT of the node.

The use of functional arguments makes calcDPCtable
(and hence the Parameterized Node) class easy to extend.
Any function that fits the generic model can be used in this
application, so the set of functions provided by CPTtools
is easily extended. The mapping function is slightly dif-
ferent, as the mapping is usually associate with the parent
variable. As a consequence, a generic function parent
tvals() is used to calculated the effective values. The
current implementation for Netica nodes retrieves them
from the parent nodes, but this could be overridden using a
subclass of the parameterized node.

4 AN EM ALGORITHM FOR
ESTIMATING PARAMETERIZED
NODE PARAMETERS

A large challenge in learning educational models from data
is that the variables representing the proficiencies are sel-
dom directly observed. The EM algorithm (Dempster,
Laird, & Rubin, 1977) provides a framework for MAP or
MLE estimation in problems with latent or missing vari-

4Because in educational settings, the discrimination parame-
ters are restricted to be strictly positive, a log transformation of
the alphas is used in parameter learning instead of the original
scale.

19

calcDPCTable <−
f u n c t i o n (s k i l l L e v e l s , obsLeve l s ,

lnAlphas , b e t a s ,
r u l e s =” Compensatory ” ,
l i n k =” p a r t i a l C r e d i t ” ,
l i n k S c a l e =NULL,Q=TRUE,
t v a l s = l a p p l y (s k i l l L e v e l s ,

f u n c t i o n (s l)
e f f e c t i v e T h e t a s (l e n g t h (s l)))

) {
Error c h e c k i n g and argument
p r o c e s s i n g code o m i t t e d

C re a t e t a b l e o f e f f e c t i v e t h e t a s
t h e t a s <− do . c a l l (” expand . g r i d ” , t v a l s)

Apply r u l e s f o r each s t a t e (e x c e p t
l a s t) t o b u i l d per s t a t e t a b l e o f
e f f e c t i v e t h e t a s .
e t <− matrix (0 , nrow (t h e t a s) , k−1)
f o r (kk i n 1 : (k−1)) {

e t [, kk] <−
do . c a l l (r u l e s [[kk]] ,

l i s t (t h e t a s [,Q[s ,]] ,
exp (l n A l p h a s [[kk]]) ,
b e t a s [[kk]]))

}

Apply L ink f u n c t i o n t o b u i l d t h e CPT
do . c a l l (l ink , l i s t (e t , l i n k S c a l e ,

o b s L e v e l s))
}

Figure 3: Function to build CPT

ables. The EM algorithm alternates between two opera-
tions:

E-Step Calculate the expected value of the likelihood or
posterior by integrating out over the missing values
using the current set of parameter values. When
the likelihood comes from an exponential family, as
the conditional multinomial distribution does, this is
equivalent to setting the sufficient statistics for the dis-
tribution to their expected values.

M-Step Find values for the parameters which maximize
the complete data log posterior distribution.

Dempster, Laird and Rubin show that this algorithm will
converge to a local mode of the posterior distribution.

For Bayesian network models, the E-Step can take ad-
vantage of the conditional independence assumptions en-
coded in the model graph. Adopting the global parameter
independence assumption of Spiegelhalter and Lauritzen
(1990) allows the M-Step to take advantage of the graph-
ical structure as well. The global parameter independence
assumption says that conditioned on the data being com-
pletely observed, the parameters of the CPTs for different
variables in the network are independent. This means that
the structural EM algorithm (Meng & van Dyk, 1997) can
be used, allowing the M-Step to be performed separately
for each CPT.

Another simplification can be found through the use of
sufficient statistics. Under the global global parameter
independence assumption, the contingency table formed
by observing Xj and pa(Xj), ŶXj

, is a sufficient statis-
tic for Pr(Xj |pa(Xj) (Spiegelhalter & Lauritzen, 1990).
Thus in the E-Step it is sufficient to work out the ex-
pected value for this contingency table. If Oi is the ob-
served data for Participant i, then this can be found by
ỸXj

=
∑

i Pr(Xij , pa(Xij)|Oi); the inner term of the sum
can be calculated by normal Bayesian network operations.
In this case the M-Step consists of finding the values of the
parameters for Pr (Xj | pa(Xj)), θj , that maximize∑

i′

Pr(ỹi′Xj
|pa(Xj) = i′,θj) (4)

It is quite likely that sparseness in the data will cause cells
in ỸXj to have zero or near-zero values. This can come
about for two reasons. One is that certain responses may
be rare under certain configurations of the parent variables.
The second is that often Bayesian networks are used to
score complex constructed response tasks, and some vari-
ables may not be observed unless the examinee employs
a certain approach to problem, producing a low effective
sample size for that variable. In either case, the zero values
are a problem for maximum likelihood estimation. Equally
problematic are values that are small integers, because the

20

0.
0

0.
4

0.
8

Z(θi)

P
ro

ba
bi

lit
y

−6 −4 −2 0 2 4 6

●

●

Z1

Z2

ZZ1

ZZ2

Figure 4: Two possible solutions (labeled Z and ZZ) for a
probability difference of .1

parameter values may be determined by only a handful of
observations.

A common approach used in the analysis of contingency ta-
bles is to add a value less than one (usually 0.5) to each cell
of the table. (Note that the Dirichlet distribution with all
parameters equal to 0.5 is the non-informative prior pro-
duced by applying Jeffrey’s rule.) Applying any proper
prior distribution mitigates the problem with low cell count,
and often the Bayesian network construction process elicits
a proper prior parameters from the subject matter experts.
In this case, suppose the experts supply parameter values
ψ

(0)
j , then Pr(Xj |pa(Xj),ψ

(0)
j) is a matrix containing the

expected value of a Dirichlet prior for the CPT for Xj . To
get the Dirichlet prior, choose a vector of weights wj where
wi′j is the weight in terms of number of observations to
be given to Parent Configuration i′. Then set the Dirichlet
prior Aj = wt

j Pr(Xj |pa(Xj),ψ
(0)
j). The the expression

to maximize in the M-step becomes:∑
i′

Pr
(
ỹi′Xj

+ ai′j | pa(Xj) = i′,ψj

)
(5)

This provides a semi-Bayesian approach to estimating the
CPT parameters.

If the discrete partial credit model is used for the condi-
tional probability table, Equation 5 finds the points on the
logistic curve that will maximize the likelihood of the ob-
served data. However, the full logistic curve does not enter
the equation, just the points corresponding to possible con-
figurations of the parent variables. Consider a very simple
model where the target variable has one parent with two
states. Assume that the conditional probabilities for one
outcome level given those states differ by .1. There are
multiple points on the logistic curve that provide that prob-
ability difference, Figure 4 illustrates this. The two points
marked with circles (Z1 and Z2) differ by .1 on the y-axis
and correspond to a solution with a difficulty of zero and a
discrimination of around 0.3. The two points marked with
crosses (ZZ1 and ZZ2) also differ by .1 on the y-axis and
correspond to a solution with a difficulty of 2.2 and a dis-
crimination of 2.3.

A fully Bayesian estimation would not have this identifi-
ability problem: even if the solutions shown in Figure 4
have identical likelihoods, the posterior distribution would
differ, and provide a preference for the solution which is
closer to the normal range of the parameters. Assuming
that the experts have provided initial values for the param-
eters, ψ(0)

j , a weakly informative prior can be created by

using a normal distribution with a mean at ψ(0)
j and the

variance chosen so that the 95% interval includes all of the
reasonable values for the parameters. Let the resulting dis-
tribution be π(ψj). The M-Step for the fully Bayesian so-
lution then maximizes:

∑
i′

Pr
(
ỹi′Xj

+ ai′j | pa(Xj) = i′,ψj

)
π(ψj) . (6)

4.1 IMPLEMENTATION OF THE GENERALIZED
EM ALGORITHM IN PEANUT

The GEMfit method takes advantage of the fact that the
E-step of the EM algorithm is already implemented in Net-
ica! Netica, like many other Bayes net packages, offers a
version of the EM algorithm for hyper-Dirichlet distribu-
tions described in Spiegelhalter and Lauritzen (1990). In
Netica, running the learning algorithm on the case file (ba-
sically, a table of values of observable nodes for various
subjects) produces both a new CPT for each node as well
as a set of posterior weights.5 Multiplying the new table
by the prior weights produces the table of expected counts
which is the sufficient statistic required for the E-step.

Figure 5 shows the EM algorithm implementation
in Peanut. Note the most of the work is done
by four generic functions BuildAllTables(),
calcPnetLLike(), calcExpTables(), and
maxAllTableParameters(), allowing the EM
algorithm to be customized by overriding those
methods. The functions BuildAllTables() and
maxAllTableParameters() iterate over the Param-
eterized Nodes, allowing for further customization at the
node rather than the net level.

In particular, these functions perform the following roles:

PnetBuildTables() This calculates CPTs for all Parame-
terized Nodes and sets the CPT of the node as well as
its prior weight.

calcPnetLLike(cases) This calculates the log likelihood
of the case files using the current parameters. In the
Netica implementation, it loops over the rows in the
case file and calculates the probability of each set of
findings. The log probabilities are added together to
produce the log-likelihood for the current parameter
values.

5These are called node experience in Netica.

21

GEMfit <−
f u n c t i o n (ne t , c a s e s , t o l =1e−6,

max i t =100 , E s t e p i t =1 ,
M s t e p i t =3) {

Base case
conve rged <− FALSE
l l i k e <− rep (NA, max i t +1)
i t e r <− 1

T h i s n e x t f u n c t i o n s e t s bo th t h e
p r i o r CPTs and t h e p r i o r w e i g h t s
f o r each node .
B u i l d A l l T a b l e s (n e t)

I n i t i a l v a l u e o f l i k e l i h o o d f o r
c o n v e r g e n c e t e s t
l l i k e [i t e r] <−

c a l c P n e t L L i k e (ne t , c a s e s)

whi le (! conve rged && i t e r <= maxi t) {
E−s t e p
c a l c E x p T a b l e s (ne t , c a s e s ,

E s t e p i t = E s t e p i t , t o l = t o l)

M−s t e p
maxAllTableParams (ne t ,

M s t e p i t = M s t e p i t , t o l = t o l)

Update p a r a m e t e r s and
do c o n v e r g e n c e t e s t
i t e r <− i t e r + 1
B u i l d A l l T a b l e s (n e t)
l l i k e [i t e r] <−

c a l c P n e t L L i k e (ne t , c a s e s)
conve rged <−

(abs (l l i k e [i t e r]−
l l i k e [i t e r −1]) < t o l)

}

l i s t (conve rged = converged , i t e r = i t e r ,
l l i k e s = l l i k e s [1 : i t e r])

}

Figure 5: Generalized EM algorithm for Parameterized
Networks

calcExpTables(cases) This runs the E-step. In the Net-
ica implementation it calls Netica’s EM learning algo-
rithm.

maxAllTableParams() This runs the M-step. It iterates
over the max CPT params() methods for the Pa-
rameterized Node objects. The Netica implementation
calculates the expected table from the current CPT and
posterior weights. It then calls the CPTtools func-
tion mapDPC(). Like calcDPCTable() this func-
tion takes most of the attributes of the Parameterized
Node as arguments. It then finds a new set of parame-
ters (of the same shape as its input) to fit the expected
table using a gradient decent algorithm.

Note that neither the EM algorithm embedded in the E-
step (the one run natively in Netica) nor the gradient decent
algorithm in the M-step need to be run to convergence. The
convergence test is done at the level of the whole algorithm
(this makes it a Generalized EM algorithm).

The prior weight is a tuning parameter for the algo-
rithm. High values of prior weight will cause the es-
timates to shrink towards the prior (expert) values. Low
values of prior weight will cause the estimates to be
unstable when the data are sparse. I have found that values
around 10 provide a good compromise.

5 SOFTWARE AVAILABILITY

The software is available for download from http://
pluto.coe.fsu.edu/RNetica. All of the software
is open source, which also should assist anyone trying to
extend it either to cover more distribution types or different
Bayes net engines; however, RNetica links to the Netica
API which requires a license from Norsys.

The framework described here is very flexible, perhaps too
flexible. First, it allows an arbitrary number of parameters
for each CPT. There is no guarantee that those parameters
are identifiable from the data. In many cases, the posterior
distribution may look like the prior distribution. Second, R
has a very weak type system. The framework assumes that
the combination rules and link functions are paired with ap-
propriate parameters (alphas, betas and link scale parame-
ters). This is not checked until the calcDPCTable func-
tion is called to build the table meaning that errors could be
not caught until the analyst tries to update the network with
data.

Despite these weaknesses, the framework is a flexible one
that supports the most common design patterns used in edu-
cational testing applications (Mislevy et al., 2003; Almond,
2010; Almond et al., 2013, 2015). Hopefully, these design
patterns will be useful in other application areas as well. If
not, the open implementation protocol used in the frame-
work design makes it easy to extend.

22

References

Almond, R. G. (2010). ‘I can name that Bayesian
network in two matrixes’. International Journal
of Approximate Reasoning, 51, 167–178. Re-
trieved from http://dx.doi.org/10.1016/
j.ijar.2009.04.005 doi: 10.1016/j.ijar.2009
.04.005

Almond, R. G. (2015, May). RNetica: Binding the Net-
ica API in R (-3.4 ed.) [Computer software man-
ual]. Retrieved from http://pluto.coe.fsu
.edu/RNetica/RNetica.html (Open source
software package)

Almond, R. G., DiBello, L., Jenkins, F., Mislevy, R. J.,
Senturk, D., Steinberg, L. S., & Yan, D. (2001).
Models for conditional probability tables in educa-
tional assessment. In T. Jaakkola & T. Richard-
son (Eds.), Artificial intelligence and statistics 2001
(p. 137-143). Morgan Kaufmann.

Almond, R. G., Kim, Y. J., Shute, V. J., & Ventura,
M. (2013). Debugging the evidence chain. In
R. G. Almond & O. Mengshoel (Eds.), Proceed-
ings of the 2013 uai application workshops: Big
data meet complex models and models for spatial,
temporal and network data (UAI2013AW) (pp. 1–
10). Aachen. Retrieved from http://ceur-ws
.org/Vol-1024/paper-01.pdf

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D.,
& Williamson, D. M. (2015). Bayesian networks in
educational assessment. Springer.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988).
The new S language: a programming environment
for data analysis and graphics. Wadworth & Brook-
s/Cole.

Dempster, A. P., Laird, N., & Rubin, D. B. (1977). Maxi-
mum likelihood from incomplete data via the em al-
gorithm. JRSS B, 39, 1-38.

Dı́ez, F. J. (1993). Parameter adjustment in Bayes net-
works. the generalized noisy or-gate. In D. Heck-
erman & A. Mamdani (Eds.), In uncertainty in
artificial intelligence 93 (pp. 99–105). Morgan-
Kaufmann.

Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2015).
Graphical models for ordinal data. Journal of
Computational and Graphical Statistics, 24(1), 183-
204. Retrieved from http://dx.doi.org/10
.1080/10618600.2014.889023 doi: 10
.1080/10618600.2014.889023

Hambleton, R. K., Swaminathan, H., & Rogers, H. J.
(1991). Fundamentals of item response theory.
Sage.

Maeda, C., Lee, A., Murphy, G., & Kiczales, G. (1997).
Open implementation analysis and design. In Ssr
’97: Proceedings of the 1997 symposium on software
reusability (pp. 44–52). New York, NY, USA: ACM.
doi: http://doi.acm.org/10.1145/258366.258383

McCullagh, P., & Nelder, J. A. (1989). Generalized linear
models. (2nd edition). Chapman and Hall.

Meng, X.-L., & van Dyk, D. (1997). The EM algorithm
— an old folk-song sung to a fast new tune. Journal
of the Royal Statsitical Society, Series B, 59(3), 511-
567.

Mislevy, R. J., Hamel, L., Fried, R. G., Gaffney, T.,
Haertel, G., Hafter, A., . . . Wenk, A. (2003).
Design patterns for assessing science inquiry
(PADI Technical Report No. 1). SRI Interna-
tional. Retrieved from http://padi.sri.com/
publications.html

Muraki, E. (1992). A generalized partial credit model:
Application of an em algorithm. Applied Psycholog-
ical Measurement, 16(2), 159–176. doi: 10.1177/
014662169201600206

Norsys. (2012). Netica-c programmer’s module
(5.04 ed.) [Computer software manual]. Re-
trieved from http://norsys.com/netica c
api.htm (Bayesian Network Software)

R Core Team. (2015). R: A language and environment
for statistical computing [Computer software man-
ual]. Vienna, Austria. Retrieved from http://
www.R-project.org/

R Special Interest Group on Databases. (2013). DBI: R
database interface [Computer software manual]. Re-
trieved from http://CRAN.R-project.org/
package=DBI (R package version 0.2-7)

Samejima, F. (1969). Estimation of latent ability using
a response pattern of graded scores. Psychometrika
Monograph No. 17, 34(4), (Part 2).

Spiegelhalter, D. J., & Lauritzen, S. L. (1990). Sequen-
tial updating of conditional probabilities on directed
graphical structures. Networks, 20, 579–605.

Srinivas, S. (1993). A generalization of the noisy-or model,
the generalized noisy or-gate. In D. Heckerman &
A. Mamdani (Eds.), Uncertainty in artificial intelli-
gence ’93 (pp. 208–215). Morgan-Kaufmann.

Tatsuoka, K. K. (1984). Analysis of errors in fraction ad-
dition and subtraction problems (Vol. 20; NIE Fi-
nal report No. NIE-G-81-002). University of Illinois,
Computer-based Education Research.

van der Gaag, L. C., Bodlaender, H. L., & Feelders, A.
(2004). Monotonicity in Bayesian networks. In
M. Chickering & J. Halpern (Eds.), Proceedings of
the twentieth conference on uncertainty in artificial
intelligence (pp. 569–576). AUAI.

von Davier, M. (2008). A general diagnostic model applied
to language testing data. British Journal of Mathe-
matical and Statistical Psychology, 61, 287–307.

23

