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Abstract

Bayesian Model Averaging (BMA), computa-
tionally feasible using Markov Chain Monte
Carlo (MCMC), is a well-known method for re-
liable estimation of predictive distributions. The
use of decision tree (DT) models for the averag-
ing enables experts not only to estimate a pre-
dictive posterior but also to interpret models of
interest and estimate the importance of predictor
factors that are assumed to contribute to the pre-
diction. The MCMC method generates parame-
ters of DT models in order to explore their pos-
terior distributions and to draw samples from the
models. However, these samples can often over-
represent DT models of an excessive size, which
in cases of real-world applications affects the re-
sults of BMA. When this happens, it is unlikely
for a DT model that provides Maximum a Poste-
riori probability to explain the observed data with
high accuracy. We propose a new technology in
order to estimate and interpret predictive posteri-
ors. In our experiments with aircraft short-term
conflict alerts, we show how this technology can
be used for analysing uncertainties in detections
of conflicts.

1 INTRODUCTION

In many cases of engineering applications, such as air-
traffic control, estimation of uncertainty in predictions is
of crucial importance, e.g. (Majeske, 2012; Ayusoa, 2012).
For such applications, the methodology of Bayesian Model
Averaging (BMA) has been shown to provide the most ac-
curate estimates of uncertainty. The BMA methodology
has been made computationally feasible with the use of
Markov Chain Monte Carlo (MCMC) approximation, e.g.
(Green, 1995; Robert, 2009).

The use of decision trees (DTs) models within BMA is
preferable for applications when experts aim to interpret

models of probabilistic inference and evaluate factors that
cause uncertainty in predictions. DTs are hierarchical
structures of splitting and terminal nodes that recursively
split data. The size of a DT model is determined by the
number of its terminal nodes (Chipman, 1998; Denison,
2002).

There are two phases during MCMC approximation. At the
first, so-called burn-in, phase the MCMC generates the pa-
rameters of a DT in order to explore areas of its maximal
likelihood on the given set of observed data. At the second,
so-called post burn-in phase, samples of a DT model are
collected for averaging according to the Bayesian method-
ology. It has also been shown that the most accurate results
of BMA are achieved when prior information on DT mod-
els is available for the MCMC approximation (Chipman,
1998; Denison, 2002).

For interpretation purposes, a single DT which provides the
Maximum a Posteriori probability (MAP) could be selected
from a set of DT models that were accepted during the post
burn-in phase (Domingos, 1998). The other approach to
finding a single explanatory model is based on the idea of
clustering DT models in a two-dimensional space that is
represented by size and fitness of DT models (Chipman,
1998).

According to the Bayesian methodology, samples collected
during the post burn-in phase have to be diverse in order to
achieve the best accuracy of approximation of predictive
density. However, in practice the desired diversity of DT
models cannot be achieved in reasonable computing time
when prior information on the models is absent or incom-
plete (Domingos, 2000; Denison, 2002).

Possible reasons of this are as follows. First, the likelihood
distribution could be multimodal, which limits MCMC in
exploring the full posterior distribution (Robert, 2009).
Second, MCMC is limited in exploring all possible DT
structures because of the hierarchical structure of DT mod-
els (Denison, 2002). A side effect of this results in sam-
pling DT models that contain an excessive number of
nodes. Consequently, the ensemble of DT models collected
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during the MCMC sampling, as well as any single DT
model that is selected for interpretation of the ensemble,
will underperform. To mitigate the negative effect, a tech-
nique has been suggested for selecting a single DT model
which has been tested in a clinical application (Schetinin,
2007).

In this paper, we explore the potential of the Bayesian ap-
proach for an air-traffic control problem known as Short-
Term Conflict Alert (STCA) detection, where it is critically
important to analyse uncertainty intervals in the detection
of conflicts. The approach is verified on real data that have
been made available by the UK National Air Traffic Ser-
vices, (NATS, 2002). First we show that Bayesian mod-
elling of the STCA system can explain 89% of decisions
that the STCA system has made on these data. We demon-
strate that the Bayesian approach allows us to estimate un-
certainty in detection of conflicts, which is necessary for
specifying possible areas of improvement of the STCA sys-
tem. The use of DT models allows us to estimate the impor-
tance of predictor variables in terms of their contributions
to the conflict detection. Finally we show how DT mod-
els can be used to find conditions under which the STCA
system makes false detections. To achieve this goal we pro-
pose a technique for selecting a single DT model from an
ensemble of models collected during BMA.

The rest of the paper is organized as follows. Section 2 in-
troduces the STCA problem and describes the data that are
used in our experiments. Section 3 briefly introduces the
methodology of BMA and MCMC approximation with DT
models. The details of the proposed technique and experi-
ments are described in Sections 4 and 5. Finally Section 6
concludes the paper.

2 PROBLEM OF SHORT-TERM
CONFLICT ALERT

STCA systems are used in airports to warn dispatchers
when the distance between two aircraft, landing or taking
off, is critically short in a given alert zone (Prandini, 2000;
Brooker 2005). The STCA system is therefore expected to
detect conflicts as accurately as possible in the presence of
uncertainty in the data that are provided by the airport op-
eration service. In this context, it is of crucial importance
to estimate predictive posterior probability distributions of
decisions made by the STCA system. The availability of a
model that can accurately model the detection of conflicts
will allow experts to analyse factors of uncertainty in the
detection of conflicts.

The primary information about aircraft movements comes
from airport radar. Fig. 1 shows the traces of two aircraft in
the 3-dimension system of coordinates X , Y , and Z. The
first two coordinates define the position of an aircraft on
the X-Y lateral plane with a scale factor, s, that is deter-

mined by the airport radar. Their negative values specify
the radar position on the lateral plane. The third coordinate
Z is height in feet. The alert cycles here are marked by the
filled (red) circle, while the normal cycles are shown by the
unfilled circles. In the lateral plane X-Y , the aircraft start
their flights at positions indicated here by 1 and 2.

This figure shows that after the 18th radar cycle the sys-
tem detects a series of 5 alarm cycles during which both
aircraft pilots, being warned by the operator, attempt to re-
solve the conflict. The distance between the aircraft criti-
cally decreases from 2100 to 1200. The following 5 cycles
are false negative errors as the distance keeps decreasing to
900, and the system is expected to continue detecting the
alarm. The system triggers the alarm only at the 28th cy-
cle when the distance decreases to a minimum of 500. In
this case the series of 5 false negative error cycles cannot
be explained without analysis of factors of uncertainty.

Figure 1: Example of Conflict Prediction Problem

In this paper we aim to model the STCA system in order to
find possible solutions to the problem. For the modelling
we use primary data about aircraft positions and velocities,
which are received by the system as part of the flight infor-
mation. All flight information is updated each radar cycle,
in our case every 6 seconds.

In our research we use these data as follows. The posi-
tions are used for calculating the distances dx, dy , and dz
between aircraft 1 and 2 along axes X , Y , and height axis
Z, respectively. Velocities Vx,∗, Vy,∗ and Vz,∗ of the air-
craft are given on axes X , Y , and Z. We assume that
distance between aircraft 1 and 2 is important information
for detecting conflicts in the airport environment when air-
craft change positions in X , Y and Z during landing or
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taking off. For this reason distance d is calculated in a 3-
dimensional space as d =

√
d2x + d2y + d2z . We assign here

a scale factor s = 1ft, as s has not been specified for the
flight data available for our research. The secondary infor-
mation about times T1 and T2 in the lateral plane for the
aircraft 1 and 2 could be also taken into account.

The above assumptions allow us to generate the 12 input
variables listed in Table 1. Here, negative values reflect the
positions of aircraft in the radar coordinate system.

In our research we use operational data about traces of air-
craft pairs. A trace is represented by a sequence of radar
cycles as described above. Each cycle in the sequence rep-
resents the aircraft movements and is labelled as normal or
alert. We aim to use these data for modelling the STCA
system within the Bayesian framework in order to quanti-
tatively estimate the uncertainty in detection of conflicts.
We assume that this uncertainty is dependent first on the
flight parameters, such as aircraft distances and velocities,
and second on the accuracy of the radar data. The use of
DT models will allow us first to estimate the importance of
predictor variables and second to specify conditions under
which the system makes false decisions of conflicts. For
interpretation of the results of BMA, we will finally select
a single DT model in order to find new insights into false
detections.

Table 1: Predictor Variables
VARIABLE NOTATION MIN MAX

x1 dx -48.11 51.70
x2 dy -52.93 35.78
x3 dz -10297 8760
x4 d 2.40 10297.06
x5 Vx,1 -691 584
x6 Vy,1 -806 473
x7 Vz,1 -83.10 96.66
x8 Vx,2 -444 599
x9 Vy,2 -527 426
x10 Vz,2 -95.05 11.53
x11 T1 0 9
x12 T2 0 9

3 BAYESIAN MODEL AVERAGING
OVER DECISION TREES

DTs are known as hierarchical models consisting of split-
ting and terminal nodes. The DT models are said to be
binary if the splitting nodes divide data points into two dis-
joint subsets. The terminal node assigns a data point to one
of the possible classes, the probability of which is dominant
(Breiman, 1984). This section is mainly focused on details

of MCMC implementation of BMA over DT models.

3.1 MCMC IMPLEMENTATION

Except for trivial cases the Bayesian methodology of aver-
aging over DTs can be feasibly implemented with MCMC
approximation. For the approximation, the parameters, θ,
of a DT candidate are drawn from the given proposal dis-
tributions. A candidate is accepted or rejected according to
the Bayes rule calculated on the given data D. For the m-
dimensional input vector x, data D and parameters θ, the
predictive posterior distribution p(y|x,D), y ∈ {1, . . . , C},
is

p(y|x,D) =

∫
p(y|x, θ,D)p(θ|D)dθ

≈ 1

N

N∑
i=1

p(y|x, θ(i),D),

(1)

where p(y|x, θ,D) is the posterior distribution given a
model with parameters θ and data D; p(θ|D) is the pos-
terior distribution of parameters θ conditioned on data D;
N is the number of samples taken from the posterior distri-
bution, and C is the number of classes.

In practice, DT models are learnt from data and so their
dimensionality (or number of nodes) is variable. The Re-
versible Jump (RJ) extension of MCMC makes possible the
approximation over such models (Green, 1995). Given pri-
ors and a sufficient number of samples, the RJ MCMC tech-
nique explores the posterior distribution and takes samples
of model parameters.

The exploration of DT models of variable size has been
efficiently made by using the following moves (Denison,
2002):

Birth moves randomly split the data points falling in one of
the terminal nodes by a new splitting node with a variable
and rule drawn from the corresponding priors.

Death moves randomly pick a splitting node with two ter-
minal nodes and assign it as a single terminal with the
united data points.

Change-split moves randomly pick a splitting node and as-
sign it a new splitting variable and rule drawn from the cor-
responding priors.

Change-rule moves randomly pick a splitting node and as-
sign it a new rule drawn from a given prior.

The first two moves lead to a change in the dimensional-
ity of parameters. The other moves explore the distribution
within the current dimensionality. In particular, the change-
split move makes “large” jumps which potentially increase
the chance of sampling from a maximal posterior. By con-
trast, the change-rule move makes “local” jumps in order
to explore the details of an area of interest.
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As the birth and death moves change the dimensionality,
the Bayesian rule includes a ratio R to achieve the condi-
tion for reversibility of Markov Chain. For the birth moves,
R is written as follows:

R =
q(θ|θ′)p(θ′)
q(θ′|θ)p(θ)

, (2)

where q(θ|θ′) and q(θ′|θ) are the proposal distributions, θ′
and θ are (k + 1) and k-dimensional vectors of DT param-
eters, respectively, and p(θ) and p(θ′) are the probabilities
of the DT with parameters θ and θ′, respectively.

The above probability p(θ) is defined by a DT structure as
follows (Denison, 2002):

p(θ) =

(
k−1∏
i=1

1

N(svari )

1

m

)
k

Sk

1

K
, (3)

where N(svari ) is the number of possible values of svari

that can be assigned as a new splitting rule, Sk is the num-
ber of possible structures of a DT with k terminal nodes,
and K is the maximal number of terminal nodes.

The proposal distribution is defined as follows:

q(θ|θ′) = dk+1

DQ1
, (4)

where DQ1 = DQ + 1 is the number of splitting nodes
whose both branches are terminal nodes.

The MCMC sampler will accept birth and death moves
with rates Rb and Rd as follows:

Rb =
dk+1

bk

k

DQ1

Sk

Sk+1
, (5)

Rd =
bk
dk−1

DQ

(k − 1)

Sk

Sk−1
. (6)

If the prior on the number of splitting nodes is given prop-
erly, most samples are expected to be drawn from the pos-
terior that is related to areas of interests. If such a prior is
unavailable, a DT model will grow excessively and most
of the samples will be drawn from posterior distributions
that are calculated for oversized DT models. As a result,
the estimates of the predictive distribution will be biased
(Denison, 2002).

3.2 SWEEPING STRATEGY OF MCMC

In practice, priors on DT structures are often unavail-
able, and the MCMC sampler cannot efficiently control DT
structures, which leads to poor mixing. However, the DT
structure can be better controlled with a sweeping strategy
of the MCMC approximation as proposed in (Schetinin,
2007). The main idea behind this strategy is to assign the
prior probability of splitting DT nodes dependent on the

range of values within which the size of a new data parti-
tion will exceed 2pmin, where pmin is the minimal number
of data points allowed in a partition. This prior is adapted
to the range of a data partition. The new splitting threshold
qj ′ proposed for variable j and partition i is drawn from a
uniform distribution: qj ′ ∼ U(xi,jmin, x

i,j
max).

When the change move is applied to a node that is close
to the DT root, distributions of data points in its terminal
nodes can be greatly changed, and one or more terminal
nodes can contain fewer data points than pmin. If there
is one such node, this node is swept from the DT and the
move is counted as a death move. In cases when there is
more than one such node, the move is deemed unavailable.

4 SELECTION OF A SINGLE DECISION
TREE MODEL

As discussed in the Introduction, experts need to interpret
an ensemble of DT models collected during MCMC sam-
pling as a single DT. Although such a model will likely ex-
plain the observed data less accurately, experts will have an
opportunity to look at new insights into data. For selection
of a single DT model from an ensemble, the MAP and the
Maximum a Posterior Weight (MAPW) techniques have
been proposed as described in (Domingos, 1998; Chip-
man, 1998). A drawback of these techniques is that a
DT model can be selected from any oversized DT mod-
els which are present in the ensemble and as a result this
model will under-perform. The idea of a new approach is
based on quantitative estimates of classification confidence
as described in (Krzanowski et al, 2006). Classifiers that
were included in the ensemble produce different outputs
for a given input, and each of them is considered as having
voted for positive or negative output. The counts over all
votes will therefore reflect the difficulty (or confidence) of
assigning a given input to a class of interest.

Within this approach, we can define an ensemble of N DT
models and then count the number Ni of the classifiers that
assign a given input to classes i, i = 1, . . . , C. Therefore
for a given class i and a given input, the consistency of the
ensemble is calculated as a ratio γ = Ni

N . Its value has a
maximum of 1.0, when all the classifiers assign a given in-
put to one class. The minimum value of confidence is 1/C,
when the classifiers assign the input to the all C classes
with an equal probability. So for a given input the classifi-
cation confidence of the ensemble is estimated by the ratio
γ whose value is proportional to the accuracy of classifica-
tion.

We can then define a threshold confidence ratio γ0 : 1/C ≤
γ0 < 1, for which the cost of misclassifications is consid-
ered acceptably small on the given labelled data. The out-
come of the ensemble is said to be confident if γ ≥ γ0.

Having counted the number of confident and correct out-
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comes on the observed labelled data set, we can select a
single DT that covers the maximal number of the labelled
data instances that were classified as confident and correct
while the number of misclassifications of the remaining ex-
amples is kept minimal. Then the DTs with a maximal cov-
erage are selected from the ensemble, and finally a single
DT model that has a minimal number of splitting nodes is
chosen.

The main steps of the selection technique are as follows.

1. Given an ensemble of DT models, select a set of DT
models, S1, that cover a maximal number of the data
instances classified as confident and correct with a
given confidence level γ0.

2. Find the instances that were correctly classified by the
DT ensemble and denote these instances as D1.

3. Among the set S1 find DT models that provide a min-
imal misclassification rate on the data D1. Denote the
found set as S2.

4. Among the set S2, find DT models whose size is min-
imal. A set of such DT models, S3, includes at least
one DT model.

5. Randomly select a DT model from the set S3.

The above procedure finds a single DT model of interest
that covers a maximal number of the data instances clas-
sified as confident and correct with a given confident level
γ0. The resultant model is selected to be of minimal size,
which reduces the risk of overfitting unlike existing tech-
niques.

5 EXPERIMENTS

In this section we describe experimental results obtained
with the proposed BMA technology on real STCA data.
First we show that using the BMA technology we can
achieve an accuracy of modelling the STCA system around
89%. Second we estimate the importance of predictor vari-
ables that are used for modelling the system. Third we
demonstrate the proposed technique for selecting a single
DT model that is required for interpenetration and finding
conditions under which the STCA system can improve ac-
curacy of detections. Finally we show an example of esti-
mating uncertainties in detection of conflicts, which allows
us to demonstrate the ability of the proposed technology to
identify areas of possible improvement of the STCA sys-
tem.

5.1 STCA DATA

In our experiments we used 2,526 radar cycles that repre-
sent traces of 66 aircraft pairs that were landing or taking

off at the Heathrow, June 1998. The traces were selected
with high alertness. The number of cycles in a trace was de-
pendent on the aircraft velocities, and their average number
was around 40. Each trace was split into two parts, training
and testing, to evaluate the performance within the repeated
random sub-sampling validation over 5 runs.

5.2 MCMC IMPLEMENTATION

The BMA was run with a uniform prior on DT models as
there was no information about possible DT structures. The
minimal number pmin was set equal to 5. The proposal
probabilities for the death, birth, change-split and change-
rules were set to 0.1, 0.1, 0.2, and 0.6, respectively. The
numbers of burn-in and post burn-in samples were set to
100,000 and 10,000, respectively. The sampling rate was
set equal to 7. The proposal variance was set to 4.0 in or-
der to achieve an acceptance rate of updating the Markov
chain around 0.52, which indicates an efficient MCMC im-
plementation. With these settings, the BMA performance
within the random sub-sampling validation is 88.6± 1.3%.

Fig. 2 depicts samples of log likelihood values (upper
plots), the numbers of DT nodes (middle plots) and the
distributions of DT nodes for the burn-in (left) and post
burn-in (right side) phases.

Figure 2: Samples of Log Likelihood and DT Sizes

We can see that in the burn-in phase the Markov chain
started with log likelihood value around 1000 converges to
the stationary value that oscillates around 175. In the post
burn-in phase the log likelihood continues to oscillate be-
tween 200 and 150. The lower plots show that the average
number of DT nodes was around 46.
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5.3 FEATURE IMPORTANCE

During the post burn-in phase DT parameters are changed
within the given priors on the proposal distribution, and as
a result the accepted DT models include different predictor
variables. The frequencies of use of these variables reflect
the information about their importance - we assume that
a variable with a greater frequency makes more important
contribution to the classification.

The frequencies were calculated within the random sub-
sampling validation and are shown for all 12 variables in
Fig. 3. Table 2 lists these variables in the order of their im-
portance. In this table we see that the three most important
features are x8, the speed of the second aircraft on the X-
axis, x1, the distance between aircraft pair on the X-axis,
and x9, the speed of the second aircraft on the Y -axis.

By contrast, the variables x11 and x12, which give the times
T1 and T2 since the last correlated plot in the lateral plane
for the aircraft, are used with a much lower frequency, and
we conclude that they make the smallest contribution.

Table 2: Importance of Variables in Terms of Frequency of
Use

VARIABLE FREQUENCY

x8 0.168
x1 0.137
x9 0.120
x6 0.110
x4 0.095
x5 0.090
x3 0.078
x2 0.061
x10 0.050
x7 0.042
x11 0.001
x12 0.008

5.4 SINGLE DECISION TREE MODELS

The total number of DT models that were collected dur-
ing the MCMC post burn-in phase was 10,000. In theory,
Bayesian averaging over an ensemble of models should
outperform any single model that is taken for interpreta-
tion purposes. In our case, we expect to find a single DT
model whose performance is maximally close to that ob-
tained with the ensemble average. Such a DT model is re-
quired for interpretation purposes and for specifying con-
ditions under which the STCA system makes wrong deci-
sions.

Having identified mistaken decisions made by the system
on the given data, we can use the selected DT model to
specify terminal nodes into which these decisions fall. The

Figure 3: Feature Importance within Random Sub-
Sampling Validation

terminals of interest can be converted into a set of n rules
in the form if xi ≥ qi then . . . , i = 1, . . . , n, which is
tractable by experts.

The desired model can be found by applying the technique
described in Section 4 as a Sure Correct (SC) DT model.
This model is compared with two other DT models that
were selected by the existing techniques, MAP and MAPW,
discussed in Section 4. The comparison is made in terms
of misclassification rate within the random sub-sampling
validation and shown in Fig. 4. We see that the SC DT
model more often outperforms the other two models. The
average accuracy is 87.6.

Figure 4: Test errors of SC, MAP, and MAPW Decistion
Tree Models within Random Sub-Sampling Validation

For comparison we also used the CART technique and
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found that the average accuracy was 87.0, which is compet-
itive with the above SC DT model. The CART technique
has been run with the Gini diversity index as splitting cri-
terion, using the same number (pmin = 5) of data points
allowed in terminals.

5.5 ESTIMATING UNCERTAINTIES IN
DETECTION OF CONFLICTS

Fig. 5 shows the uncertainty intervals estimated by the pro-
posed BMA technology for the aircraft pair whose traces
are plotted in Fig. 1. The upper plot shows the distance
d over radar cycles. The alert cycles here are marked by
the plus sign. We see that the STCA system missed de-
tection of 5 alerts between 23d and 27th cycles. Further-
more, the aircraft positions between 38th and 40th cycles
become closer and remain within the distance that triggered
the alert at the 18th cycle. This probably means that the
system missed detection of new alerts.

Figure 5: Esimates of Uncertainty Intervals for an Aircraft
Pair

The lower plot shows the estimates of uncertainties in de-
cisions made by the proposed Bayesian technology. Boxes
here show the summary of predictive posterior probability
distributions of alerts. The median probability values ex-
ceed the threshold 0.5 between the 16th and 24th cycles.
The following 3 cycles are detected with large uncertainty,
which indicates a high risk of making wrong decisions. Be-
tween the 33rd and 37th cycles the aircraft move away from
each other and the probability of conflict decreases. How-
ever, between the 38th and 40th cycles they move closer
again and we can observe that the uncertainty intervals be-
come larger. This example demonstrates the ability of the
proposed technology to provide essential information about
risks of making wrong decisions.

6 CONCLUSION

The MCMC technique proposed for Bayesian averaging
over DT models was applied to the STCA problem. In
this work we aimed at modelling the STCA system within

a Bayesian framework. The use of DT models was intro-
duced in order to provide a possible interpretation of fac-
tors that can affect the reliability of STCA decisions. In
these experiments, no prior information about possible DT
structures was available.

A single DT model was selected from the ensemble of DT
models that were collected during MCMC approximation.
A DT model can be selected as one providing the Max-
imum a Posteriori probability. However, we have shown
that such a DT model tends to be over-sized and so can
underperform. A new technique that is based on estimat-
ing the consistency of DT models included in an ensemble
was implemented and tested on the STCA data. The ex-
periments show that this approach outperforms the existing
techniques in terms of predictive accuracy.

Thus we can conclude that the proposed Bayesian technol-
ogy can be used to find possible ways of improving accu-
racy of STCA detection. In a more general context, the
proposed technology is capable of providing experts with
the full probabilistic information that is required for inter-
pretation of decision making where safety is of crucial im-
portance.
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