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SUMMARY 

Large, multi-agency projects such as the Foundational Spatial Data Framework are interested in 
capturing the provenance of their spatial datasets as they are processed and combined to form 
products. Additionally, work is underway at the CRC for Spatial Information and elsewhere to track the 
provenance of the production of individual elements (features) within spatial datasets.  
 
How can we reconcile these provenance situations, given the different levels of granularity? Can we 
relate the provenance from lower-level systems to higher levels? Can we use common tools and 
methodologies? This paper and talk present provenance modelling work that has taken place at 
Geoscience Australia and CSIRO to solve these issues. The differing levels of granularity can be 
related however, for interoperability, a standard must be used and we’ve used PROV.  
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INTRODUCTION  
Transparency of process and some measure of reproducibility are requirements for information hoping 
to engender a high degree of trust in its users. A system-independent, international, standard known as 
PROV [1], now exists to generically represent the provenance of things (i.e. anything that was 
produced) and can be used to describe the production of national spatial datasets. The use of such 
standards ensures the interoperability of provenance description across systems and the longevity of 
the understanding of such descriptions.  

A presentation at a previous Locate conference by this author [2] demonstrated the standardised 
provenance representation of a single map’s production, down to the ‘layers’ level using a formulation 
of PROV, PROV-O. More recent work by the Cooperative Research Centre for Spatial Information 
(CRC-SI) has represented individual geoprocessing toolkit actions undertaken to produce elements 
within spatial datasets using an extension to the PROV-O that they made, called GeoPROV [3]. 
Additionally, the Foundational Spatial Data Framework (FSDF) project1 intends to use PROV to 
represent the overall information flow from base data to FSDF data products. 

 Figure 1. A: The basic PROV-O classes and their relationships. B: A simple implementation of 
PROV-O describing the clipping of a raster image using ArcGIS2. 

                                                           
1 http://www.anzlic.gov.au/foundation_spatial_data_framework  
2 https://esriaustralia.com.au/products-arcgis-software  
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These three bodies of work are all use PROV at different granularities and for slightly different 
purposes, however all three intend to enhance the transparency of the production of spatial products.  

In this paper we will demonstrate how standardized provenance information recorded by different 
processes at different levels of granularity can be conceptually combined. Such combination is 
necessary in order to provide point-of-truth provenance information for data products. 

USING THE PROV DATA MODEL 
PROV-O provenance depiction 
The PROV Data Model [1] consists of 3 main classes of concepts: Entities (things), Activities (events 
that act on Entities) and Agents (people or systems that trigger Activities). A diagram of these classes 
and their basic relationships is given in Figure 1A. An implementation of PROV-O for a simple 
geoprocessing task exhibiting a granularity similar to the examples in [2] is given in Figure 1B. 

PROV-O representations of provenance are graph-based in structure. Graphs3 by their nature, 
unlike relational databases, contain their schema within the data [4]. This allows for infinitely detailed 
and infinitely large representations of systems’ provenance with the schema of the graph not limiting 
extensions of the information stored about items in it, or the links between items. Real limits on the 
information stored are only imposed by the ability of users to capture provenance information and for 
storage systems to physically cater for its management. 

Additions to provenance graphs can be made by inserting new data into the graph, joining on 
appropriate prov:Activity 4 , prov:Entity or prov:Agent nodes. Since PROV-O uses a Resource 
Description Framework (RDF)5-based graph, each node’s identity is given as a URI6, thus one just 
needs to discover the URI for a node and graph additions can be made. 

 
Figure 2. A: A high-level dataset provenance graph. B: Two datasets from A with intermediate 
datasets shown. C: A ‘black box’ Activity consuming 3 datasets and producing 1, D: The same 

datasets as C with the ‘black box’ broken down into two parts and an intermediate dataset shown. 

PROV-O used at different levels of granularity 
 

Detail insertion 
If a system records the provenance of a dataset at a high level – perhaps just recording which datasets 
are a target dataset’s ancestors (see Figure 2A) – and this information is stored, additions to that can 

                                                           
3 https://en.wikipedia.org/wiki/Graph_(abstract_data_type)  
4 PROV-O objects are denoted prov:{CLASS_NAME}, e.g. a PROV Agent is denoted prov:Agent 
5 https://en.wikipedia.org/wiki/Resource_Description_Framework  
6 https://en.wikipedia.org/wiki/Uniform_Resource_Identifier  
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be made later that fill in intermediate steps (see Figure 2B). Additionally, if a process records high-
level provenance noting an activity that has taken place and that consumes (prov:used) and produces 
(prov:generated) datasets (see Figure 2C) which is then stored, that too can be added to later by 
recording activities at a finer granularity and any intermediate datasets (these don’t necessarily have to 
be persisted: their existence may only be represented) (Figure 2D). 

As well as increasing the granularity of provenance graphs by filling in details, detailed provenance 
graphs can have their granularity decreased by querying. The SPARQL query protocol7 is for RDF-
based graph databases what SQL is for relational databases. It is able to skip over nodes in provenance 
graphs by using path-based, transitive queries. This skipping of intermediate nodes allows one to, for 
example, discover the ultimate ancestor of a dataset, despite there being any number of intermediate 
ancestors. For the scenario shown in Figure 2B, a path-based SPARQL query can tell the user that 
“Ancestor Dataset 1” is the ancestor of “Target Dataset”. 
 
Dataset Subsetting 
Representing dataset subsetting is important for linking provenance at different granularities as 
subsetting can be the tie-in points for systems’ reporting provenance at different scales. 

There are a range of options regarding the recording of provenance for datasets that are subsets of 
other datasets. The PROV data model doesn’t directly prescribe how one should represent subsetting 
of datasets or how a part of a dataset is related to the larger whole: such instructions require far more 
detail than the generic PROV data model can deliver. One method of representing detailed dataset 
subsetting is shown in Figure 3A. As per that diagram, a dataset subset is created via a prov:Activity 
subsetting procedure with instructions as to how the sub-setting was undertaken recorded in a 
prov:Plan class object which is a specialised prov:Entity used to denote methodology. The prov:Plan 
object could hold computer code, detailed manual methodology or other instructions.  

Another method for representing subsetting is shown in Figure 3B. In this formulation, instructions 
for performing the subsetting are not given with additional input data but are described by typing the 
subsetting prov:Activity. An example could be a prov:Activity of a hypothetical class such as 
“TemporalExtentSubsetting” where the instances of such always subset the Large Dataset with some 
selection of a temporal extent. Sufficient metadata for the types subsetting activity, such as actual 
temporal extents, would need to be provided elsewhere (i.e. not in the provenance graph) in order to 
remove ambiguity from the action. One location for such metadata could be a register of typed 
activities maintained for use by a certain set of workflows. Figure 3C presents a combined 
formulation in which the typed prov:Activity demands that certain inputs to the subsetting action, in 
addition to the dataset from which a subset was taken, be represented in the provenance graph. 
 

 

Figure 3. PROV-O Representations of subsetting actions. A: Using a prov:Plan object to hold 
subsetting instructions. B: By classifying the subsetting prov:Activity instance. C: Formulation 

combining A & B where required inputs are specified by the typed subsetting prov:Activity. 

                                                           
7 https://en.wikipedia.org/wiki/SPARQL  
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Dataset Merging & Splitting 
Dataset merging and splitting can be modelled like dataset subsetting with either prov:Plan objects or 
typed prov:Activities, or a combination of the two, providing the instructions the action. It follows 
that the representations of dataset merging & splitting are akin to that of dataset subsetting shown in 
Figure 3 but with multiple input (merging) or multiple output (splitting) datasets. 

REPRESENTING FEATURE AND DATASET PROVENANCE   
Limited sets of typed actions for features 
Where the provenance of features manipulated via a limited set of actions is to be represented, the 
representation shown in Figure 3A or B may be used and then aggregated to dataset-level provenance. 
Figure 4 shows a representation of a hypothetical set of feature manipulation actions using the 
formulation given in Figure 3B: “selected”, “not-selected”, “merged”, “split” and the generic “alter” 
typed prov:Activities are shown. These actions may have been carried out against features in one or 
more datasets and the results stored in a resultant dataset. They may be the result of specialized spatial 
tools, such as ArcGIS, certain actions of which are modelled using PROV-O in [3]. 

For a scenario in which features from one dataset (perhaps classes of vectors in a cadastral dataset) 
may be manipulated to form features in another dataset, such actions and their associated features may 
be represented as in Figure 4. Figure 4A shows feature-level manipulation and parts B, C & D dataset-
level integration of feature-level provenance. 
 

 
Figure 4. A: Feature manipulation actions as per Figure 3B. B: Aggregation of features manipulated 

into datasets with feature/action mappings preserved as prov:Activity inputs and outputs, C: 
Aggregation of features manipulated into datasets with feature/feature mappings preserved as a 
prov:Activity, prov:Plan input and, D: Aggregation of features manipulated into datasets with 

feature/feature mappings preserved by annotating output features with links to actions performed and 
features within the input dataset. 

 
Identifier handling 
The three feature-level provenance integration strategies presented in Figure 4B, C & D all rely on 
feature identification in order to link input and output features to their manipulation actions and each 
other. All three strategies are therefore dependent on either a mechanism for minting IDs for features 
that, although they are part of a dataset, are referenceable from outside that dataset or a feature register 
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that records feature identity independently from any particular dataset. The first case is implementable 
by URI patterns in accordance with Linked Data8 principles where the feature-level URIs are mapped 
to a higher level dataset-level URI via a relative, logical path. The second case requires a master 
feature register that can mint identifiers for features which can be referred to by any dataset containing 
them. Such a register may provide access to authoritative copies of their data, but this is not necessary. 

In addition to the requirements listed above, the part B scenario also relies on the identification of, 
and storage of, the instance of each typed prov:Activity in order to preserve feature-level provenance 
since the feature linking is not directly coupled – it is in two parts: input feature(s) Æ action then 
action Æ output feature(s). The part C scenario conceptualizes the input and output feature mapping 
as a prov:Plan object for such a mapping if it contains feature-to-action-to-feature mappings that act as 
the entire instructions for the “Feature Manipulation” prov:Activity. 

The part D scenario annotates each feature in the output dataset with the identity of its relevant 
manipulation actions instance as well as the input features manipulated. Such a formulation is also 
dependent on the identification and storage of the instance of each typed prov:Activity, as per part B, 
but it also has a shortcoming not present in parts B & C: actions that result in no output feature, such 
as feature non-selection, will not be identifiable in the annotated output dataset. 
  
FSDF DATASET PRODUCTION CASE STUDY 
Detail insertion, dataset subsetting, aggregating and splitting actions, as described two sections above, 
can easily be used in specific spatial data scenarios. Feature-level action recording and feature/action 
mapping as outlined in the section above can be applied to spatial datasets if the feature manipulation 
systems are able to record it and if the dependencies, also outlined above, are met.  

Figure 5 shows the processing of two hypothetical FSDF source datasets (A & B) into an FSDF 
product. Part A shows simple dataset-level provenance, part B shows dataset-level provenance but 
with more details PROV-O formulation, as per Figure 3A. 5C implements many of the techniques 
described above, specifically: 
x The whole of 5C shows detail insertion (Figure 2D); 
x The path from Source Dataset A to Intermediate X shows detail addition (3A) and either 4B or 

4C formulation, depending on whether feature-action + action-feature mapping (4B) or feature-
action-feature mapping (4C) is used; 

x The Intermediate X to Intermediate Y path shows typed prov:Activity formulation (3B) and 
could use annotated output dataset (4D) mapping; 

x Intermediate Y plus Source Dataset B fusing to form the FSDF product could be a 3C-type 
exercise where the types prov:Activity, “Merging” specifies two input datasets and an feature 
mapping prov:Plan which preserves feature origin knowledge. This formulation is also a feature-
action-feature mapping (4C). 

 

 
Figure 5. A hypothetical FSDF product generation scenario modelled with different amounts of 

detail and at different levels of granularity. 
                                                           
8 http://www.w3.org/TR/ld-bp/  
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PROVENANCE DATA MANAGEMENT 
It’s also not possible to write in generalities about provenance data collection or generation – in-depth 
knowledge of specific systems is required in order to make sensible descriptions – and collecting 
provenance data in standardised formats is far harder than managing and storing it [5, see Discussion]. 
Once collected however, there are a range of generic tools available to manage and manipulate it. The 
PROMS family of tools and their associated methodology [6]9 allow any number of systems to report 
PROV-O-based provenance information and have it stored in a graph database. The system will 
automatically join provenance graphs where the same node URIs are used, thus detail insertion, as per 
Figure 2, can easily be achieved. Similarly, the joining of small provenance graphs into larger super-
graphs can be achieved which allows independent systems to assemble continuous graphs across their 
individual processes, as long as they can share dataset or feature identifiers in order to report against 
them. Most RDF-based graph database allow querying via SPARQL thus the abstraction of detailed 
graphs into simpler ones can take place when detail insertion or multi-process reporting has taken 
place. Installations of PROMS Server make the SPARQL endpoint of its underlying RDF graph 
database available for such use thus allowing fine to coarse granularity translation out of the box. 

CONCLUSIONS 
We have presented a range of PROV-O-based modelling formulations (ontology design patterns) to 
help provenance data managers meld provenance information at varying levels of granularity. We 
focused on dataset and feature level provenance, as these are the two obvious granularities for spatial 
data products, but the principles could apply to information at other granularities. We have presented 
alternative methods for the integration of provenance information of different granularities and 
pointed out some of the logical and system dependencies that certain patterns require. We have given 
a very brief FSDF case study implementing many of the techniques and also finally described several 
aspects of provenance data management referencing a particular tool. 
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