
Towards a Graph Grammar-Based Approach to

Inter-Model Consistency Checks

with Traceability Support

Erhan Leblebici
Technische Universität Darmstadt, Germany

erhan.leblebici@es.tu-darmstadt.de

Abstract

Development of a complex system relies on different yet related models
each representing the system from a particular perspective. In this re-
spect, an important task is to check consistency between related mod-
els to guide subsequent decisions concerning consistency restoration.
Triple Graph Grammars (TGGs), a particular dialect of graph gram-
mars, are well-suited for describing consistency of two models together
with correspondences. The grammar-based description leads to a pre-
cise consistency notion which is prerequisite for reliable consistency
checks, and correspondences serve as explicit traceability information.
Consistency checks with TGGs, however, turn out to be more difficult
than consistency restoration in most cases and have not been addressed
sufficiently so far. We first discuss why consistency checks with TGGs
are worthwhile and identify backtracking issues making correct and effi-
cient consistency checks challenging. Finally, we present two strategies
to overcome these challenges, reflecting our work in progress towards a
formally-founded consistency check approach with viable tool support.

1 Introduction and Motivation

Models are used in engineering disciplines to represent a system from a particular perspective and to abstract
from irrelevant details. Depending on the variety of involved tools and domains in an engineering process, several
models can exist that contain related information of the same system and thus must be kept consistent to each
other. Bidirectional transformations (bx) address the challenge of consistency maintenance and play therefore
an important role in model-driven landscapes. An important bx task is to perform a consistency check between
related models to determine if (and to what extent) consistency restoration is necessary. We discuss consistency
checks with Triple Graph Grammars (TGGs) [Sch94], a prominent and graph grammar-based bx language.

A TGG is a grammar whose rules construct triples of graphs. Besides two graphs representing two related mod-
els MS and MT (referred to as source and target model, respectively), TGGs produce a third model connecting
these two, namely the correspondence model MC . The grammatical characteristic of TGGs leads to a construc-
tive, precise, and direction-agnostic notion of consistency: MS and MT are consistent to each other iff a triple
MS ←MC →MT can be constructed by the grammar. Hence, given MS and MT , the goal of a consistency check

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Anjorin, J. Gibbons (eds.): Proceedings of the Fifth International Workshop on Bidirectional Transformations (Bx 2016),
Eindhoven, The Netherlands, April 8, 2016, published at http://ceur-ws.org



is to find a valid MC if there exists one. In case of inconsistency, a partial triple MS ⊇M ′
S ←M ′

C →M ′
T ⊆MT

must be explored to indicate which parts of MS and MT correspond to each other and which parts do not.
Related work. QVT-R [OMG15] is currently the only available standard for consistency checks. The main
idea here is to specify a set of relations that must hold between MS and MT . The standard [OMG15] defines
the semantics of QVT-R by translating it to QVT Core. The major problem, however, is that no sufficient
formalization is provided for QVT-R and its translation to QVT Core. Consequently, scarce tool support can
be observed and seminal contributions to QVT-R address defining clear semantics in the first place: In [Ste09],
consistency checks with QVT-R are formalized as a game between a verifier and a refuter whose interest is to
satisfy or to contradict relations, respectively. In [GdL12], QVT-R is translated to graph constraints which
resort to similar formal techniques as TGGs (but without correspondences). In [MC13], QVT-R is translated
to predicates over models and a solver is employed for consistency checks. Considering these state-of-the-art
QVT-R approaches, the following three arguments motivate us to establish consistency checks with TGGs:
- Grammar-based consistency has a clear semantics (a model pair can either be constructed by the grammar or it

cannot). Thus, given MS , MT , and a TGG, the consistency check is precisely and fully defined without having
to translate the TGG to another formalism as done for QVT-R. Finding the correct answer efficiently is the
only obstacle between theory and tool support where all TGG tools can share a common formal foundation.

- In QVT-R, consistency must be understood and checked separately in two directions. A direction-agnostic
consistency notion as in TGGs, however, is arguably easier to manage for both bx tool developers and users.

- Correspondences in TGGs can be used for traceability purposes (e.g., change impact analysis). A partial corre-
spondence model between inconsistent models, moreover, indicates the extent of consistency violation. QVT-R
formalizations do not support traceability (with the exception of a trace-based but restrictive game variant
in [Ste09]) whereas [OMG15] uses implicit traces in the underlying QVT Core translation. As argued again
in [Ste09], however, these traces do not capture both directions as they are created in two directions separately.

The pioneer work concerning consistency checks with TGGs is [EEH08] where operational grammar rules that
create correspondences for two given models are derived from a TGG. How to apply these rules in a correct
order, however, remains an open issue and, if done naively, requires backtracking in many cases as we shall point
out in Section 2. In [HEO+15, EEGH15], furthermore, these operational grammar rules are extended such that
existing correspondences between two models are examined and only missing ones are created (backtracking is
still required for missing correspondences). In this regard, backtracking issues can actually be mitigated when
consistency checks (and correspondence creations) are performed frequently after every small modification on
models and exiting correspondences are used in each run to reduce backtracking points. However, consistency
checks between two large models that do not have any correspondences in between (as they are not necessarily
maintained in a TGG-based environment from the beginning) are not sufficiently addressed. We focus on this
case as consistency checks are typically not considered and performed in every intermediate step of a development
process but rather after models have reached an advanced state.

Arguably due to backtracking issues, TGG tools generally do not support consistency checks. The only
exception is HenshinTGG1 whose consistency checks, however, only work if no decision point to be backtracked
exists and fail otherwise as is already the case for simple TGGs we have experimented with. To improve the
situation, we present in Section 3 two viable strategies towards providing fully-fledged tool support.

2 Background, Example, and Wrong Choices of Correspondences

Our example2 deals with the consistency between UML operations with parameters and their Java counterparts.
The left part of Figure 1 shows a consistent model pair (ignore the correspondences in the middle for now). The
UML model as well as the Java model represent two operations, both named substring. Both operations have a
parameter beginIndex whereas one of the operations has an additional parameter length. In general, consistent
models in our example are simply isomorphic (this already suffices to reveal the complexity of consistency checks).

The right part of Figure 1 shows two TGG rules to create UML and Java models with correspondences in
between, constituting thus a grammar for consistent triples of models. TGG rules are monotonic, i.e., they
only create elements and never delete. Created elements in a rule are depicted green with a ++-markup where
black elements represent the context required to apply the rule. The first rule (OperationRule) creates a pair
of UML and Java operations with equal names and a correspondence in between. Similarly, the second rule
(ParameterRule) creates a pair of UML and Java parameters for an existing pair of operations.

1http://github.com/de-tu-berlin-tfs/Henshin-Editor/wiki/Manual-for-HenshinTGG-Editor
2Available in the bx example repository at http://bx-community.wikidot.com/examples:umloperationstojavaoperations



uo : 
UMLOperation

jo : 
JavaOperation

uojo

uo.name == jo.name

++ ++
++

up : 
UMLParameter

jp : 
JavaParameter

upjp

up.name == jp.name

++ ++
++

uo : 
UMLOperation

jo : 
JavaOperation

uojo

++ ++

ParameterRule:

OperationRule:
u1 : UMLOperation
name=“substring“

u3 : UMLOperation
name=“substring“

u2 : UMLParameter
name=“beginIndex“

u4 : UMLParameter
name=“beginIndex“

u5 : UMLParameter
name=“length“

j1 : JavaOperation
name=“substring“

j3 : JavaOperation
name=“substring“

j2 : JavaParameter
name=“beginIndex“

j4 : JavaParameter
name=“beginIndex“

j5 : JavaParameter
name=“length“

u1j1

u2j2

u3j3

u4j4

u5j5

Figure 1: A consistent model pair (left) and two TGG rules that construct consistent models (right)

☐→☑
uo : 

UMLOperation
jo : 

JavaOperation
uojo

uo.name == jo.name

up : 
UMLParameter

jp : 
JavaParameter

upjp

up.name == jp.name

++

uo : 
UMLOperation

jo : 
JavaOperation

uojo

ParameterRule_ConsistencyCheck:

OperationRule_ConsistencyCheck:

☐→☑

☐→☑ ☐→☑

++

☑☑

Figure 2: Consistency check rules

While TGG rules create models simultaneously, opera-
tional rules are automatically derived which do not create
all models but mark (i.e., process) existing ones and cre-
ate missing ones depending on the operational scenario. In
a forward transformation, for example, an existing source
model is marked while a correspondence and a target model
are created (backward analogously). In a consistency check,
an existing source and target model are marked pairwise
and a correspondence model is created. Consistency check
succeeds if both models are marked completely. Figure 2
depicts the consistency check rules derived for our TGG
according to the formalization in [EEH08]. Markings in
consistency check rules practically simulate creations in the
original TGG rules (depicted as 2 → 2� which simply re-
places the ++-markup). Applying these rules, the corre-
spondences shown to the left of Figure 1 can be created and
the model pair is then identified to be consistent. As shown
in [EEH08], moreover, an application sequence of consistency check rules always exists to mark consistent models
completely. How to find this sequence, however, remains an open issue and turns out to be challenging.

u1 : UMLOperation
name=“substring“

u3 : UMLOperation
name=“substring“

u2 : UMLParameter
name=“beginIndex“

u4 : UMLParameter
name=“beginIndex“

u5 : UMLParameter
name=“length“

j1 : JavaOperation
name=“substring“

j3 : JavaOperation
name=“substring“

j2 : JavaParameter
name=“beginIndex“

j4 : JavaParameter
name=“beginIndex“

j5 : JavaParameter
name=“length“

u1j1

u2j2

u3j3

u4j4

u5j5

u1 : UMLOperation
name=“substring“

u3 : UMLOperation
name=“substring“

u2 : UMLParameter
name=“beginIndex“

u4 : UMLParameter
name=“beginIndex“

u5 : UMLParameter
name=“length“

j1 : JavaOperation
name=“substring“

j3 : JavaOperation
name=“substring“

j2 : JavaParameter
name=“beginIndex“

j4 : JavaParameter
name=“beginIndex“

j5 : JavaParameter
name=“length“

u1j3

u2j4

u3j1

u4j2

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☐

☑

☑

☑

☑

☐

Figure 3: Undesired consistency check result

In Figure 3, an undesired outcome of apply-
ing the consistency check rules in Figure 2 to
our model pair is depicted. Consistency check
fails in this case although the models are actu-
ally consistent. The problem is that individual
consistency check rules can connect wrong pairs
of model elements. For example, a wrong pair
of substring operations is connected in Fig-
ure 3. As a consequence, the length parameters
on both sides remain unmarked without corre-
spondence (as their parents are mistakenly not
connected). Obviously, consistency checks with
TGGs require backtracking in general if no ap-
propriate control mechanism is used to govern
correspondence choices. Interestingly, most of
the wrong decisions are not relevant for forward (or backward) transformations but only for consistency checks.
That is, pairwise marking of model elements introduces new decision points other than those in one-sided marking
and leads a consistency check easily to an incorrect result.



3 Strategies for Reliable and Scalable Consistency Checks

We do not consider backtracking to be a satisfactory solution. Firstly, backtracking may repeatedly discard
and produce the same correspondences until a wrong decision in an arbitrary depth is corrected. Secondly,
and more critically, inconsistent models directly lead to exhaustive backtracking without success whereas one of
the discarded attempts may actually be of interest for a partial correspondence model. We instead discuss two
strategies for reliable and scalable consistency checks without backtracking.

u1 : UMLOperation
name=“substring“

u3 : UMLOperation
name=“substring“

u2 : UMLParameter
name=“beginIndex“

u4 : UMLParameter
name=“beginIndex“

u5 : UMLParameter
name=“length“

j1 : JavaOperation
name=“substring“

j3 : JavaOperation
name=“substring“

j2 : JavaParameter
name=“beginIndex“

j4 : JavaParameter
name=“beginIndex“

j5 : JavaParameter
name=“length“

u1j1

u1j3

u2j2

u2j4

u3j1

u3j3

u4j2

u4j4

u5j5

☑☑

☑☑

☑☑

☑☑

☑☑

☑☑

☑☑

☑☑

☑ ☑

Figure 4: All possible correspondences

Create all then filter. A viable strategy
against backtracking is to create all possible
correspondences (including undesired ones) be-
tween two models in a brute-force manner and
to determine a correct subset automatically in
retrospect. In this case, some source and target
elements are considered to be marked multiple
times as demonstrated in Figure 4 for our exam-
ple. A subset of correspondences must be then
determined such that each element is marked ex-
actly once for consistent models or at most once
for inconsistent models. Fortunately, dependen-
cies between correspondences can be used for an
automated decision: Some correspondences are
essential as they are the only ones marking their
connected elements, e.g., u5j5 in Figure 4. Some correspondences imply others, e.g., u5j5 implies u3j3 as it
can only be created under u3j3. Finally, some correspondences are mutually exclusive alternatives, e.g., u3j3
and u3j1 as they both mark u3. A Boolean formula consisting of three parts can describe these dependencies as
follows (⇒ denotes implication and ⊕ denotes xor):
Essentials: u5j5
Implications: (u2j2⇒ u1j1) ∧ (u4j4⇒ u3j3) ∧ (u5j5⇒ u3j3) ∧ (u2j4⇒ u1j3) ∧ (u4j2⇒ u3j1)
Alternatives: (u1j1⊕u1j3) ∧ (u1j1⊕u3j1) ∧ (u2j2⊕u2j4) ∧ (u2j2⊕u4j2) ∧ (u3j3⊕u3j1) ∧ (u3j3⊕u1j3)
∧ (u4j4⊕ u4j2) ∧ (u4j4⊕ u2j4)

Choosing the essential correspondence u5j5, from implications follows that u3j3 must also be in the set
of chosen correspondences. Consequently, u3j1 and u1j3 (alternatives of u3j3) as well as their implying
correspondences u2j4 and u4j2 are excluded. From further implications and alternatives follows that u1j1,
u2j2, and u4j4 must be chosen as well. In general, the satisfaction of such a formula can either be outsourced
to a solver or it can be implemented with a hand-crafted procedure optimized for the specific purpose of corre-
spondence analysis. Two main advantages against backtracking are: (i) all (wrong and correct) correspondences
are created only once in a progressive search and not repeatedly, and (ii) a partial correspondence model in case
of inconsistency is not discarded and can be determined from all possible correspondences in the same manner.
Nevertheless, the scalability of this strategy (in terms of runtime and memory consumption) strictly depends
on the number of alternative correspondences. Scalable consistency checks can be expected when alternative
correspondences only occur locally between two models and not in a combinatorial manner between all elements.

Heuristic-based or case-specific look-ahead. When the number of alternative correspondences grows
rapidly, it is more advantageous to make decisions among correspondences already at rule application time (and
not in retrospect after all possible correspondences are created). Collecting a set C of possible correspondence
candidates that would mark a particular model element e, a consistency check procedure must provide and
utilize a function choose(C,e) = c that takes C and e as input, looks ahead for upcoming elements, and
returns the best correspondence c ∈ C. Beginning with the UML operation u1 in our exemplary model pair,
choose({u1j1, u1j3},u1) = u1j1 already leads the consistency check procedure to a correct sequence of later
correspondence creations, i.e., no other undesired correspondence occurs in the process after connecting the
first UML operation to its correct counterpart in the Java model. In general, when choosing a correspondence
connecting two elements, the underlying look-ahead mechanism can be supported by heuristics such as the
conformance of (transitive) child elements on both sides, ideally grouped according to any relevant type and
attribute information. Case-specific behaviour of choose, nevertheless, must be allowed by a TGG tool that
supports consistency checks and implemented by the TGG designer who should be aware of the discussed



backtracking issues. An interactive implementation of choose where the ultimate user (who executes a con-
sistency check) is confronted with these choices should only be considered if there is no feasible automatic decision.

4 Conclusion and Future Work

Two particular strategies are presented to avoid backtracking in consistency checks: one brute-force strategy
with automated decisions and one look-ahead strategy relying on heuristics or case-specific expertise. It is also
worthwhile to consider a combination of both, i.e., eliminating some alternative correspondences via a look-
ahead and creating all others for an automated decision. Our next goal is to experiment with these strategies
and to come up with tool support which will then be evaluated in industrial consistency tasks. Finally, it is also
worthwhile to integrate these strategies into cases where consistency checks start with existing correspondences
by utilizing further operational rules of [HEO+15, EEGH15].

Acknowledgement
This work has been funded by the German Federal Ministry of Education and Research within the Software
Campus project GraTraM at TU Darmstadt, funding code 01IS12054.

References

[EEGH15] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and Model Transformation
- General Framework and Applications. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2015.

[EEH08] Hartmut Ehrig, Karsten Ehrig, and Frank Hermann. From Model Transformation to Model Integra-
tion based on the Algebraic Approach to Triple Graph Grammars. ECEASST, 10, 2008.

[GdL12] Esther Guerra and Juan de Lara. An Algebraic Semantics for QVT-Relations Check-only Transfor-
mations. Fundam. Inform., 114(1):73–101, 2012.

[HEO+15] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy Diskin, Yingfei Xiong,
Susann Gottmann, and Thomas Engel. Model synchronization based on triple graph grammars:
correctness, completeness and invertibility. Software and System Modeling, 14(1):241–269, 2015.

[MC13] Nuno Macedo and Alcino Cunha. Implementing QVT-R Bidirectional Model Transformations using
Alloy. In Vittorio Cortelessa and Daniel Varro, editors, FASE 2013, volume 7793 of LNCS, pages
297–311. Springer, 2013.

[OMG15] OMG. QVT Specification, V1.2, 2015.

[Sch94] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In Ernst W. Mayr,
Gunther Schmidt, and Gottfried Tinhofer, editors, WG 1994, volume 903 of LNCS, pages 151–163.
Springer, 1994.

[Ste09] Perdita Stevens. A Simple Game-Theoretic Approach to Checkonly QVT Relations. In Richard F
Paige, editor, ICMT 2009, volume 5563 of LNCS, pages 165–180. Springer, 2009.


