
Whack-A-Mole Security: Incentivising the Production,

Delivery and Installation of Security Updates

Alastair R. Beresford
Computer Laboratory, University of Cambridge

arb33@cam.ac.uk

Abstract

Writing vulnerability-free code is currently
impossible. The best we can hope for is whack-
a-mole security. In other words, fixing bugs
and updating Internet-enabled devices before
remote exploitation occurs. Unfortunately,
security updates do not always happen in a
timely fashion, or at all. The root cause of
this problem is the lack of incentives, some-
thing which we must fix.

Introduction

Many computers today, from servers to laptops, and
from tablets to smartphones are connected to the In-
ternet. Connectivity is an essential feature of these
platforms. Over the next few years, the rise of the In-
ternet of Things (IoT) will see many more embedded
computers connected to the Internet too. Everything
from heating controllers to lightbulbs will be online.

Unfortunately, connecting computers to the Inter-
net does not just provide essential functionality, but
also enables remote attack. Yet we rely on many
of our Internet-enabled devices to operate correctly.
This state of affairs occurs because we cannot write
vulnerability-free software. We cannot even provide
reasonable guarantees of software correctness when de-
veloping complex, feature-rich software for a reason-
able price. What, then, can we do? Current best
practice is whack-a-mole security : in other words, de-
vices are secured by patching latent vulnerabilities in
software after their discovery, but before exploitation.

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes. This volume is published and
copyrighted by its editors.

In: D. Aspinall, L. Cavallaro, M. N. Seghir, M. Volkamer
(eds.): Proceedings of the Workshop on Innovations in Mobile
Privacy and Security IMPS at ESSoS’16, London, UK, 06-April-
2016, published at http://ceur-ws.org

Whack-a-mole security works when vulnerabilities
are discovered by good netizens, such as penetration
testers, anti-virus vendors and academics, who report
the vulnerabilities to the appropriate software vendors.
Software vendors then produce an update and send
it to all affected devices before a potential attacker
discovers the vulnerability and uses it for malice.

Failures occur for two reasons: firstly, attackers ex-
ploit vulnerabilities before good netizens find them
(zero-day exploits); secondly, software updates from
vendors do not arrive before attackers exploit a vul-
nerability found by a good netizen.

There is good academic literature on exploits, both
on how they are found and how they work. There
is also excellent work looking at reducing the likeli-
hood of introducing vulnerabilities in the first place.
There is much less work on whether software vendors
actually patch vulnerabilities however. As a research
community we should do more in this space.

An example: the Android ecosystem

We have looked at the Android ecosystem in order
to determine if Android smartphones receive security
updates. What we found was worrying—from July
2011 until July 2015, 87.7% of Android devices were
vulnerable to at least one of 11 critical vulnerabili-
ties [TBR15]. In this case, the problem occurs be-
cause handset manufacturers are not producing secu-
rity updates. Analysis of the Android Open Source
Project, and Google Nexus devices reveals that Google
does regularly produce fixes for disclosed vulnerabili-
ties. When updates do appear for devices, data from
our Device Analyzer [WRB13] project shows that up-
dates are installed by users across many different mo-
bile network operators, suggesting that the network
operators are providing the updates, and users are in-
stalling them.

Note that in this analysis we have quantified the
proportion of devices which are at risk of attack. We
have not yet measured the harm which might follow

1
9



through exploitation.
For the Android ecosystem, the cost of producing

the fix is non-trivial and manufacturers are economi-
cally incentivised to spend valuable engineering time
on producing new models, not fixing older ones which
generate little or no future revenue. To address this,
we need to develop better measures of both risk and
harm. And we need to provide better incentives to
manufacturers through accreditation, through regula-
tion, and through awareness raising with consumers
and corporate buyers.

The anatomy of an update

It’s not just operating systems which require updates.
All layers of the stack, including apps themselves, re-
quire updates to fix vulnerabilities. For example, Fahl
et al. found that 8% of Android apps examined con-
tained SSL/TLS code which was vulnerable to man-
in-the-middle attacks [FHM+12]. As part of an under-
graduate project, we found the same vulnerabilities in
many apps on the Google Play store two years later.
Incentivising developers to fix apps is, in some ways,
harder than fixing operating systems because there are
many more app developers than smartphone handset
manufacturers, many of whom are individuals or small
companies with limited resources and less expertise.

The issue of managing updates extends beyond soft-
ware, since the security of Internet-connected devices
has a basis in cryptography, which in turn requires
managing updates to key material. Indeed, the in-
tegrity of updates to operating systems and apps is
protected by cryptography. At the extreme, in the
case of JavaScript running in a browser, an update to
the software may be performed on every page load.
Similarly, in the case of TLS, a server may present a
new certificate on every connection establishment, or
even during the lifetime of a single connection.

Since we are unable to write vulnerability-free soft-
ware, keys can, and are, compromised. Therefore de-
vices will need to securely update keys too.

The solution space

The rate at which security vulnerabilities are found
in a stable code base may reduce over time [OS06],
which offers some hope for IoT systems whose feature
set might be small and does not necessarily need to
change. This is unlikely to be a popular solution for
smartphones or laptops since a vibrant ecosystem de-
mands new apps, new hardware and new operating
system features regularly. (So called feature creep may
turn out to be a requirement in the IoT space too.)

Auditing of software by independent third-parties
is useful. Google Play and Apple’s App Store do this
for apps, although unfortunately they do not often

publish detailed results. This makes it hard for con-
sumers or regulators to make informed choices based
on data. In the cryptographic sphere, Certificate
Transparency [Lau14] shows great promise, because
it produces an auditable public log. Auditable pub-
lic logs can be applied to software updates too. This
would allow us to track the progress (or not) of updates
from software vendors, through network operators and
on towards installation by individuals. Note that there
is a potential privacy conflict here—the update status
of devices may implicitly leak some personal data.

It is also important to distinguish between risk and
harm. Estimating the potential future harm from risk
is a difficult process which deserves more attention.

Finally, quantifying the ability of software vendors
to whack their security moles is not enough. We need
to improve incentives. This can take a variety of forms,
including presenting appropriate data to the public,
as well as to corporations and governments. Better
regulation is also likely to be important.

Acknowledgements

Huge thanks to my collaborators Daniel R. Thomas
and Andrew Rice on Android vulnerabilities, and Gra-
ham Edgecombe for his work analysing Android apps.

References

[FHM+12] Sascha Fahl, Marian Harbach, Thomas
Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. Why Eve
and Mallory love Android: An analysis of
Android SSL (in) security. In Proceedings
of the ACM conference on Computer and
Communications Security, pages 50–61.
ACM, 2012.

[Lau14] Ben Laurie. Certificate Transparency.
Queue, 12(8):10, 2014.

[OS06] Andy Ozment and Stuart E. Schechter.
Milk or wine: does software security im-
prove with age? In Usenix Security, 2006.

[TBR15] Daniel R. Thomas, Alastair R. Beresford,
and Andrew Rice. Security metrics for the
android ecosystem. In Proceedings of the
ACM CCS Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices,
pages 87–98. ACM, 2015.

[WRB13] Daniel T. Wagner, Andrew Rice, and Alas-
tair R. Beresford. Device analyzer: Under-
standing smartphone usage. In Mobile and
Ubiquitous Systems: Computing, Network-
ing, and Services, pages 195–208. Springer,
2013.

2
10


