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Abstract

Various static and dynamic analysis tech-
niques are developed to detect and analyze
Android malware. Some advanced Android
malware can use Java reflection and JNI mech-
anisms to conceal their malicious behaviors
for static analysis. Furthermore, for dynamic
analysis, emulator detection and integrity self-
checking are used by Android malware to by-
pass all recent Android sandboxes. In this
paper, we propose ARTDroid, a framework
for hooking virtual-methods calls supporting
the latest Android runtime (ART). A virtual-
method is called by the ART runtime using a
dispatch table (vtable). ARTDroid can tam-
per the vtable without any modifications to
both Android framework and app’s code. The
ARTDroid hooking framework can be used to
build an efficient sandbox on real devices and
monitor sensitive methods called in both Java
reflection and JNI ways.

1 Introduction

The analysis of Android apps becomes more and more
difficult currently. Both benign and malicious de-
velopers use various protection techniques, such as
Java reflection, dynamic code loading and code ob-
fuscation [RCJ13], to prevent their apps from reverse-
engineering. Java reflection and dynamic code loading
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techniques can dynamically launch specific behaviors,
which can be only monitored in dynamic analysis en-
vironment instead of static analysis. Besides, in obfus-
cated apps, static analysis can only check the API-level
behaviors of apps rather than the fine-grained behav-
iors, such as the URL in network connections and the
phone number of sending SMS behavior.

Without above limitations of static analysis, the dy-
namic analysis approach is usually used for deeply an-
alyzing apps [SFE+13]. Currently, dynamic analysis
uses hooking techniques for monitoring behaviors of
apps. The hooking techniques can be divided into two
main types: 1) hooking Android framework APIs by
modifying Android system [ZAG+15][EGH+14], and
2) hooking APIs used in the app process by static in-
strumentation [BGH+13][DC13]. Both of them have
limitations to analyze trick samples. The first hook-
ing technique has a drawback that it cannot be used
on other vendors’ devices except for Google Nexus
devices or emulators. This gives a chance for mali-
cious apps, which uses the device fingerprint and anti-
emulator technique to evade the dynamic detection.
Even though the second hooking technique does not
have this drawback, but it becomes useless when apps
apply anti-repacking techniques. Apps can check the
integrity of themselves in runtime and enter the frozen
mode to prevent dynamic analysis if the integrity is
broken. Moreover, if malicious apps implement ma-
licious behaviors in native codes, the second hooking
technique still cannot detect them.

To build a better hooking framework for dynamic
analysis, we design ARTDroid, an framework for
hooking virtual-method calls under the latest Android
runtime (ART). The idea of hooking on ART is tam-
pering the virtual method table (vtable) for detour-
ing virtual-methods calls. The vtable is to support
the dynamic-dispatch mechanism. And, dynamic dis-
patch, i.e., the runtime selection of a target procedure
given a method reference and the receiver type, is a
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central feature of object-oriented languages to pro-
vide polymorphism. Since almost all Android sensi-
tive APIs are virtual methods, we can collect the apps
behavior by using ARTDroid to hook Android APIs
methods.

To summarize, this paper makes the following con-
tributions.

• We propose ARTDroid, a framework for hooking
virtual-method calls without any modifications to
both the Android system and the app’s code.

• We discuss how ARTDroid is made fully compat-
ible with any real devices running the ART run-
time with root privilege.

• We demostrate that the hooking technique used
by ARTDroid allows to intercept virtual-methods
called in both Java reflection and JNI ways.

• We discuss applications of ARTDroid on malware
analysis and policy enforcement in Android apps.

• We released ARTDroid as an open-source project
1.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background about Android and
the new Android runtime ART. The ARTDrod frame-
work is introduced in Sec. 3 and its implementation
is discussed in Sec. 4. Performance evaluation is pre-
sented in Sec. 5, and discussion and applications are
in Sec. 6. Section 7 discuss some related works, and
we conclude this paper in Sec. 8.

2 Background

Android apps are usually written in Java and com-
piled to Dalvik bytecode (DEX). To develop an An-
droid app, developers typically use a set of tools via
Android Software Development Kit (SDK). With An-
droid’s Native Development Kit (NDK), developers
can write native code and embed them into apps. The
common way of invoking native code on Android is
through Java Native Interface (JNI).

2.1 ART Runtime

ART, silently introduced in October 2013 at the An-
droid KitKat release, applies Ahead-of-Time (AoT)
compilation to convert Dalvik bytecode to native code.

At the installation time, ART compiles apps using
the on-device dex2oat tool to keep the compatibil-
ity. The dex2oat is used to compile Dalvik bytecode
and produce an OAT file, which replaces Dalvik’s odex
file. Even Android framework JARs are compiled by

1https://vaioco.github.io

the dex2oat tool to the boot.oat file. To allow pre-
loading of Java classes used in runtime, an image file
called boot.art is created by dex2oat. The image file
contains pre-initialized classes and objects from the
Android framework JARs. Through linking to this
image, OAT files can call methods in Android frame-
work or access pre-initialized objects. We are going to
briefly analyze the ART internals, using as codebase
the Android version 6.0.1 r10.

1 // C++ mirror of java.lang.Class
2 class MANAGED Class FINAL : public Object {
3
4 [...]
5 HeapReference <IfTable > iftable_;
6 HeapReference <String > name_;
7 HeapReference <Class > super_class_;
8 HeapReference <PointerArray > vtable_;
9 uint32_t access_flags_;

10 uint64_t direct_methods_;
11 uint64_t virtual_methods_;
12 uint32_t num_virtual_methods_;
13 [...]
14 }

Figure 1: ART Class type

The ART runtime uses specific C++ classes to mir-
ror Java classes and methods. Java classes are inter-
nally mirrored by using Class2. In Figure 1, virtual-
methods defined in Class are stored in an array of
ArtMethod* elements, called virtual methods (line
11). The vtable field (line 8) is the virtual method
table. During the linking, the vtable from the super-
class is copied, and the virtual methods from that class
either override or are appended inside it. Basically, the
vtable is an array of ArtMethod* type. Direct meth-
ods are stored in the direct methods array (line
10) and the iftable array (line 5) contains pointers
to the interface methods. We leave interface-methods
hooking for future work. The Figure 2 shows the defi-
nition of ArtMethod class3. The main functionality
of ArtMethod class is to represent a Java method.

1 class ArtMethod FINAL {
2 [...]
3 GcRoot <mirror ::Class > declaring_class_;
4 uint32_t access_flags_;
5 uint32_t method_index_;
6 [...]
7 struct PACKED (4) PtrSizedFields {
8 void* entry_point_from_interpreter_;
9 void* entry_point_from_jni_;

10 void* entry_point_from_quick_compiled_code_;
11 } ptr_sized_fields_;
12 }

Figure 2: ART ArtMethod type

By definition, a method is declared within a class,
pointed by the declaring class field (line 3). The
method’s index value is stored in the method index

2art/runtime/mirror/class.h
3art/runtime/art method.h
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field (line 5). This value is the method’s index
in the concrete method dispatch table stored within
method’s class. The access flags field (line 4)
stores the method’s modifiers (i.e., public, private,
static, protected, etc. . . ) and the PtrSizedFields

struct, (line 7), contains pointers to the ArtMethod’s
entry points. Pointers stored within this struct are as-
signed by the ART compiler driver at the compilation
time.

2.2 Virtual-methods Invocation in ART

In this paragraph we describe how ART runtime
invokes virtual-methods by choosing the virtual-
method android.telephony.TelephonyManager’s
getDeviceId as an example. Figure 3 shows that the
getDeviceId method is invoked on TelephonyManager
object’s class (line 4). Figure 4 shows dumped
compiled codes for arm architecture by oatdump tool.

1 package org.sid.example;
2 public class MyClass {
3 public String callGetDeviceId(TelephonyManager tm){

4 String imei = tm.getDeviceId ();
5 return imei;
6 }
7 }

Figure 3: Call to method getDeviceId

1 CODE: (code_offset =0 x002d93b5 size_offset =0 x002d93b0
size =60) ...

2 0x002d93b4: f5bd5c00 subs r12 , sp, #8192
3 0x002d93b8: f8dcc000 ldr.w r12 , [r12 , #0]
4 suspend point dex PC: 0x0000
5 GC map objects: v1 ([sp + #36]), v2 (r6)
6 0x002d93bc: e92d40e0 push {r5 , r6, r7, lr}
7 0x002d93c0: b084 sub sp, sp, #16
8 0x002d93c2: 1c07 mov r7, r0
9 0x002d93c4: 9000 str r0, [sp, #0]

10 0x002d93c6: 9109 str r1, [sp, #36]
11 0x002d93c8: 1c16 mov r6, r2
12 0x002d93ca: 1c31 mov r1, r6
13 0x002d93cc: 6808 ldr r0, [r1, #0]
14 suspend point dex PC: 0x0000
15 GC map objects: v1 ([sp + #36]), v2 (r6)
16 0x002d93ce: f8d00234 ldr.w r0, [r0 , #564]
17 0x002d93d2: f8d0e02c ldr.w lr, [r0 , #44]
18 0x002d93d6: 47f0 blx lr

Figure 4: Compiled native code of callGetDeviceId

Before discussions on native code, in Fig. 4, we
briefly introduce the devirtualization. To speedup run-
time execution, during the on-device compilation time,
virtual-methods calls are devirtualized. Devirtualiza-
tion process uses method’s index to point to the rel-
ative element inside the vtable within receiver in-
stance’s class. As result, compiled code contains static
memory offset used to get the called ArtMethod’s
memory reference.

Now, we discuss the native code generated for the
method callGetDeviceId. The line 4 in Figure 3 is com-

piled in lines 11-18 in Figure 4. The TelephonyMan-
ager instance (an Object4 type) is stored in the register
r2. Then, the instance’s class is retrived from address
in r2 and stored in the register r0 (line 13). The
method getDeviceId (an ArtMethod type) is directly
retrived (line 16) from memory using a static offset
from address stored in r0. Finally, the getMethodId’s
entrypoint is called using the ARM branch instruction
blx (line 18). The entrypoint’s address is also retrived
by using a static memory offset from the ArtMethod
reference (line 17).

In Java, it is allowed to invoke a method dy-
namically specified using Java Reflection. Re-
flection calls managed by ART runtime use the
function InvokeMethod5. This function calls
FindVirtualMethodForVirtualOrInterface which
returns a pointer to the searched method by looking
in the vtable array of receiver’s class.

A Java method can also be invoked by na-
tive code using the Call<type>Method family
functions, exposed by JNI. For instance, function
CallObjectMethod(JNIEnv* env, jobject obj,

jmethodID mid, ...) 6 is used to call a virtual-
method which returns an Object type. When a Java
method is invoked from native code using a function
from Call<type>Method family, the ART runtime
will go through the vtable array to find a matched
method matching.

There are two different ways to get a Java virtual-
method’s reference. One is through the reflection
APIs exposed by java.lang.Class. For instance,
the method getMethod returns a reference which rep-
resents the public method with a matched method
signature. All java.lang.Class’ methods, which per-
mits to get a virtual-method reference, can use the
virtual methods array to lookup the requested
method. The other way is offered by the JNI func-
tion FindMethodID. It searches for a method matching
both the requested name and signature by looking in
the virtual methods array within the class refer-
ence passed as argument.

3 Framework Design

The goal of ARTDroid is to avoid both app’s and
Android system code modifications. So, the design
of ARTDroid is oriented towards directly modify the
app’s virtual-memory tampering with ART internals
representation of Java classes and methods. ART-
Droid consists of two components. The first compo-
nent is the core engine written in C and the other
one is the Java side that is a bridge for calling from

4art/runtime/mirror/object.h
5art/runtime/reflection.cc
6art/runtime/jni internal.cc
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user-defined Java code to ARTDroid’s core. The core
engine aims to: find target methods’ reference in vir-
tual memory, load user-supplied DEX files, hijack the
vtable and set native hooks. Moreover, it registers the
native methods callable from the Java side. ARTDroid
is configured by reading a user-supplied JSON format-
ted configuration file containing the target methods
list.

Suppose that you want to intercept calls to a
virtual-method. You have to define your own Java
method and override the target method by using ART-
Droid API. All calls to the target method will be in-
tercepted and then go to your Java method (we call
it patch code). ARTDroid further supports loading
patch code from DEX file. This allows the patch code
to be written in Java and thus simplifies interacting
with the target app and the Android framework (Con-
text, etc).

ARTDroid is based on library injection and uses An-
droid Dynamic Binary Instrumentation toolkit[ADB]
released by Samsung. The ABDI tool is used by ART-
Droid to insert trace points dynamically into the pro-
cess address space.

ARTDroid requires the root privilege in order to
inject the hooking library in the app’s virtual memory,
and the hooking library can be injected either in a
running app or in the Zygote[LLW+14] master process.

Now, we explain the framework design in figures.
Figure 5a shows the app’s memory layout without
ARTDroid. The class TelephonyManager is loaded
within the boot image (boot.art). This Class contains
both the vtable and virtual methods arrays where
the pointer to method getDeviceId is stored. Instead,
Figure 5b represent the app’s memory layout while
ARTDroid hooking library is enabled. First, the
hooking library is loaded inside the app’s virtual
memory (step 1), and then ARTDroid loads the
user-defined patch code by DexClassLoader’s methods
(step 2). After this, ARTDroid uses its internal
functions to retrive target methods reference. So,
it can hook these methods by both vtable and
virtual methods hijacking (step 3).

As discussed in 2.2, the vtable array is used by
the ART runtime to invoke a virtual-method. Instead,
the virtual methods array is accessed to return a
virtual-methods reference from memory. ARTDroid
exploits these mechanisms to hooking virtual-methods
by both vtable and virtual methods hijacking
means.

4 Implementation

To get the target method’s reference, ARTDroid uses
the JNI function FindMethodID.

(a) ARTDroid not enabled

(b) ARTDroid enabled

Figure 5: App virtual memory layout

ARTDroid overwrites the target method’s entry
within both the vtable and virtual methods ar-
ray by writing the address of the method’s patch code.
The original method’s reference is not modified by
ARTDroid and its address is stored inside the ART-
Droid’s internal data structures. This address will be
used to call the original method implementation.

When ARTDroid hooks a target method, all calls
to that method will be intercepted and they will
go to the patch code. Then, the patch code re-
ceives the this object and the target method’s ar-
guments as its parameters. To call the original
implementation of target method, ARTDroid ex-
ports the function callOriginalMethod to the Java
patch code. Internally, ARTDroid’s core engine
calls the original method implementation using the
JNI CallNonVirtual<type>Method family of routines.
These functions can invoke a Java instance method
(non-static) on a Java object, according to specified
class and methodID. The original method implemen-
tation is invoked by ARTDroid using its address inter-
nally stored before the hooking phase. To guarantee
a reliable hooking, ARTDroid uses ADBI features to
hook the functions of CallNonVirtual<type>Method
family. By doing this, all calls to these functions are
checked by ARTDroid to block calls to an hooked
virtual-method only if these calls do not come from
ARTDroid’s core engine.
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5 Evaluation

5.1 Performance Test

To measure the effectiveness of virtual-methods hook-
ing, we firstly need a test set of sensitive methods.
SuSi[RAB14] provides sensitive methods in Android
4.2. To verify how many of these methods are declared
as virtual, we firstly test them in Android emulator in
version 4.2. We use Java reflection to call these meth-
ods at runtime. The result of our experiment shows
that a remarkable number of virtual-methods could be
used to threaten user privacy. The following list de-
scribes our experiment results:

• 65.1% of these methods are declared as virtual

• 6.6% are non-virtual

• 28.3% methods not found

Unfortunately, the only methods list available from
SuSi is from Android version 4.2. To overcome this
limitation, we analyze the sensitive methods list of-
fered by PScout[AZHL12]. The methods of PScout
are available from version 2.2 to version 5.1.1. Our
another test is on Android 5.1.1 codebase and it is
carried on a Nexus 6 running Android 5.1.1. After an-
alyzing them, we know that only 1.0% of methods are
non-virtual.

• 59.2% of these methods are declared as virtual

• 1.0% are non-virtual

• 39.8% methods not found

However, some methods cannot be found via Java
reflection because corresponding classes or methods
are not visible to normal apps. They belong to the
Android system apps. So, we can conclude that most
of sensitive methods are virtual from our test results.
ARTDroid can cover all sensitive methods except 1.0%
methods on Android 5.1.1.

The overhead introduced by ARTDroid depends
much on the behavior of the patch code. To measure
the overhead, we developed a test app, which repeat-
edly calls sensitive methods or APIs. In particular,
this applciation attempts to perform the following op-
erations by calling Android APIs (both via Java reflec-
tion and JNI) : initiate several network connections,
access sensitive files on the SD card (such as the user’s
photos), send text message to premium numbers, ac-
cess the user’s contact list and retrive the device’s
IMEI. We used the profiling facilities offered by An-
droid calling the android.os.Debug ’s startMethodTrac-
ing/stopMethodTracing. Then, the produced traces

can be analyzed using either traceview or dmtrace-
dump. To measure the effective overhead due to ART-
Droid, we call the methods using both Java reflection
and JNI in addition to the normal invocation. We
ran the test 10,000 times for each method, once with
ARTdroid disabled and then with ARTDroid enabled
mode. The average running time for each call to an
hooked method is showed in the following Table 1.

The most of overhead in ARTDroid is caused by
the JNI call, which is internally used to invoke the
original method implementation. We registered a
worst case overhead of 25% for each hooked method.
Therefore, the total overhead of a call to an hooked
method is around 0.25 seconds. This overhead could
be decreased by adding an internal cache to store
methods’ reference called by ARTDroid, instead of
using JNI function FindMethodID at each call. We
leave these improvements as future work.

Table 1: Performances

ARTDroid Invoke type

enabled? Normal Reflection JNI

Yes 1.12 s 1.39 s 1.19 s
No 0.88 s 1.14 s 0.94 s

overhead 0.24 s 0.25 s 0.25 s

5.2 Case Study

Now, we show a case study by hooking TelephonyMan-
ager ’s getDeviceId in ARTDroid.

1 {"config": {
2 "debug": 1,
3 "dex": [{"path": "/data/local/tmp/dex/target.dex

"}]
4 "hooks": [
5 {
6 "class -name": "android/telephony/

TelephonyManager",
7 "method -name": "getDeviceId",
8 "method -sig": "()Ljava/lang/String;",
9 "hook -cls -name": "org/sid/example/HookCls"

10 }]
11 }}

Figure 6: ARTDroid configuration file

Figure 6 shows the configuration file which contains
the definition of methods to hook. This file is used to
define the information requested by ARTDroid, which
are: method’s name and signature and the class’ name
where the patch code is defined in. The patch code
called instead of method getDeviceId is showed inFig-
ure 7.
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1 public String getDeviceId () {
2 String key = "android/telephony/

TelephonyManagergetDeviceId ()Ljava/lang/
String;";

3 Object [] args = {};
4 return (String) callOriginalMethod(key , this ,

args) + " IMPS2016 !!";
5 }

Figure 7: Patch code for method getDeviceId

To restore the original call-flow, ARTDroid ex-
poses to Java patch-code the native function
callOriginalMethod. This function receivers as first
argument the string key to identify the target method
in the dictionary of hooked methods, internally man-
aged by ARTDroid. Second argument represents the
this object and the last argument is the array of
method’s arguments. All future calls to method get-
DeviceId will be redirected to the patch code, inde-
pendently if these calls are made using Java reflection
mechanisms or JNI.

6 Discussion

We note that the main goal of our work is to
propose a novel technique to hook Java virtual-
methods, our approach can be used to enforce fine-
grained user-defined security policies either on real-
world devices or emulators as well. Previous re-
search has shown that even benign apps often con-
tain vulnerable components that expose the users to
a variety of threaths: common examples are com-
ponent hijacking vulnerabilities[LLW+12], permission
leaking [GZWJ12],[Jia13] and remote code execution
vulnerabilities[PFB+14].

Suppose the target app is implementing the follow-
ing features:

1. dynamic code loading

2. code obfuscation (Java reflection, code encryp-
tion, etc. . . )

3. integrity checks (i.e, due to copyright issue)

4. invoke of security-sensitive Java methods via JNI

5. detection/evasion of emulated environments (i.e,
due to copyright issue)

An approach based only on static analysis cannot
properly extract security relevant information due to
the use of 1, 2 and 4. Moreover, all existing approaches
based on bytecode rewriting techniques cannot analyze
that app mainly for the use of integrity checks. Note
that since the use of 5, in contrast to ARTDroid, all
the existing approaches based on emulated environ-
ments can not properly analyze the behavior of that

app. Instead, ARTDroid is still able to analyze that
app. Obviously, ARTDroid has its limitations and cor-
ner cases. The main limitations is due to the running
of the hooking library inside the same process space of
the target app. In a scenario where an attacker want
to bypass our approach, it can directly invoke a syscall
through inline assembly code to gets sensitive results
bypassing ARTDroid. We note that the direct system
call is not a common technique used by current daily
Android malware. Nevertheless, we envise that ART-
Droid can be used in conjunction with existing works
like [TKFC15],[ZAG+15], [XSA12] to provide an addi-
tional layer of analysis.

Even though Java direct methods are almost not
used for both malicious and security-sensitive behav-
iors, our future work will support both interface-
methods and direct-methods hooking. A possible solu-
tion is that we can statically instrument the dex2oat

and replace the system original one once we get root
privilege. The instrumented dex2oat can intercept all
interface-methods and direct-methods.

Since ARTDroid hooking library can be injected di-
rectly either in Zygote or when the target app is going
to be spawned. Even if the app under testing can
tamper with the vtable , it can not get the original
method’s address. In fact, after ARTDroid is enabled,
the original method is no more pointed by both the
vtable and virtual methods arrays.

In section 5, we have presented an evaluation about
the effectiveness of virtual-methods hooking in the An-
droid system by analyzing results obtained from both
SuSi[SuS] and PScout[AZHL12] projects. Research re-
sults indicate that there is a considerable percentage of
sensitive methods which are virtual. Since, ARTDroid
can hook virtual-methods and tamper with their ar-
guments, it could be used to define security policies
to verifiy apps’ behaviors at runtime. For instance,
ARTDroid can be used to automatically identify apps
which are sending SMS to premium numbers.

Since the main downside of dynamic analysis tech-
niques is the code-coverage issue, we envise that ART-
Droid can be integrated with automatic exploration
system like Smartdroid[ZZD+12], proposed by Cong
et al.

In the following, we show some applications of ART-
Droid:

• Collect apps behavior at runtime. Analysis of An-
droid API function calls permits the extraction of
information about the behavior of apps.

• Verify security policies at runtime. When users
install an app, they can enforce some policies in
ARTDroid, so that the new app’s sensitive be-
haviors, such as sending SMS, can be restricted
by ARTDroid.
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• Android malware analysis. Some trick malware
use a lot of dynamic analysis evading techniques.
But in ARTDroid enforced sandbox, our hooking
technique cannot be bypassed by current evading
techniques. Also, we can easily build our ART-
Droid sandbox either on Android emulator or on
real devices.

7 Related Work

Several approaches have been proposed to provide
methods hooking on Android. A family of approaches
is based on bytecode rewriting technique. The app
can be instrumented offline by modifying the app
bytecode. AppGuard[BGH+13] proposed by Baches
et ak, uses this approach to automatically repack-
age target apps to attach user-level sandboxing and
policy enforcement code. Zhou et al. proposed
AppCage[ZPW+15], a system to confine the runtime
behavior of the thid-party Android apps. Davis et
al. proposed Retroskeleton[DC13], an Android app
rewriting framework for customizing apps, which is
based on their previous work, I-ARM-Droid[DSKC12].

While these approaches are valuable and each of
them has its own advantages as well as disadvantages,
they have different significant down sides. This ap-
proach is not feasible against apps that verify their
integrity at runtime. This kind of defense (anti-
tampering) is also used in benign apps as well. To
be able to replace API-level calls with a secure wrap-
per, bytecode rewriters need to identify desidered API
call-site within the target app. As mentioned in
[HSD13],[ZAG+15], apps that use either Java reflec-
tion or dynamically code loading can bypass the app
rewriting technique. Moreover, apps which are using
JNI to call Java methods can bypass this techniques
as well.

A different approach to implement methods trac-
ing can be achieved by using a custom Android sys-
tem or by using an emulated environment (e.g., a
modified QEMU emulator). Enck et al. proposed
TaintDroid[EGH+14], an Android modified system to
detect privacy leak. StayDynA[ZAG+15] a system
for analyzing security of dynamic code loading in An-
droid, uses a custom system image which can be used
only on Nexus like devices. Tam et al. presented
CopperDroid[TKFC15], a framework built on top of
QEMU to automatically perform dynamic analysis of
Android malware. These families of approaches, which
are based on emulators, can be bypassed by emulation
detection techniques [PVA+14] [VC14]. A comparison
on Android sanbox has been published by Neuren et
al. in [NVdVL+14].

Mulliner et al. proposed PatchDroid[MORK13], a
system to distribute and apply third-party securities

patches for Android. This system uses the DDI[DDI]
framework. DDI allows to replace arbitrary methods
in Dalvik code with native function call using JNI.
In [MRK14], Mulliner et. al. shown an automated
attack against in-app billing using the DDI capabilities
to control the in-app billing purchase flow. Note that
the methods used to achieve in-app billing are defined
as virtual.

Frida[Fri], a dynamic code instrumentation toolkit,
Xposed framework [Xpo] and Cydia substrate for An-
droid [Cyd] share similarity with the DDI intrumenta-
tion approach. These projects were created for device
modding and, in contrast with DDI, require replac-
ing of system components suck as zygote. Currently,
Xposed compatibility with ART runtime is actually in
beta stage7 and the framework installation condition is
to flash the device by a custom recovery image. While
these approaches are very suitable under the Dalvik
VM, they are totally limited for using under the ART
runtime. In fact, both DDI, Frida and Cydia substrate
are not able to work under the ART runtime.

Aurasium [XSA12] builds a reference monitor into
application binaries. The Dalvik code is not patched,
but new classes and native code are added to ensure
that the instrumentation code is run first. Clearly,
such approaches are not effective if the code is obfus-
cated and protected against static analysis and disas-
sembly. Also note that the package signature of the
instrumented applications are broken when they are
patched statically. In comparison, our approach does
not need to repack the app, our modifications are in-
memory only and thus we do not break code signing.

Recent works proposed novel approaches that aim
to sandbox unmodified apps in non-rooted devices run-
ning stock Android. Boxify[BBH+15] presented an
approach that aims to sandbox apps by means of
syscall interposition (using the ptrace mechanism) and
it works by loading and executing the code of the orig-
inal app within the context of another, monitoring,
app. A similar work, [BFKV15] uses the same ap-
proach to sandbox arbitrary Android apps. The ap-
proach presented in both of these recent works, repre-
sent one of the most promising and interesing future
work direction.

8 Conclusion

In this paper, we present ARTDroid, a framework for
hooking virtual-methods under ART runtime. ART-
Droid supports the virtual-method hooking without
any modifications to both Android system and app’s
code. ARTDroid allows to analyze apps even if
they employ anti-tampering techniques or they use ei-

7http://forum.xda-developers.com/showthread.php?t=

3034811
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ther Java reflection or JNI to invoke virtual-methods.
Moreover, ARTDroid can be used on any real devices
with ART runtime once getting the root privilege. The
applications of ARTDroid include dynamic analysis of
Android malware on real devices or security policies
enforcement.
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