
 

 

Application of CUDA technology for calculation of ground states 

of few-body nuclei by Feynman’s continual integrals method* 
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The possibility of application of modern parallel computing solutions to speed up the calcu-

lations of ground states of few-body nuclei by Feynman’s continual integrals method has 

been investigated. These calculations may sometimes require large computational time, par-

ticularly in the case of systems with many degrees of freedom. This paper presents the re-

sults of application of general-purpose computing on graphics processing units (GPGPU). 

The energy and the square modulus of the wave function of the ground states of several 

few-body nuclei have been calculated using NVIDIA CUDA technology. The results show 

that the use of GPGPU significantly increases the speed of calculations. 
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1. Introduction 

Low-energy reactions involving few-body nuclei [1] constitute a significant part of the studied 

nuclear reactions. Investigation of their collisions with other nuclei provides valuable information on 

the mechanisms of fusion and nucleon transfer reactions (e.g., [2]). Knowledge of the properties and 

the ground state wave functions of these nuclei is necessary for the theoretical description of reactions 

with their participation. 

The few-body problem in nuclear physics has been studied for a long time. For instance, calcula-

tions of 3H and 3He nuclei were performed in [3] based on the Faddeev equations. The expansion in 

hyperspherical functions (K-harmonics) [4] was used for calculations of 3H nucleus in [5] and 4He nu-

cleus in [6]. In [7] the wave function of the three-body system was obtained using Gaussian basis and 

the numerical solution of the Hill-Wheeler integral equations. 

Feynman’s continual integrals method [8, 9] provides a more simple possibility for calculating the 

energy and the probability density for the ground state of the few-body system, because it does not 

require expansion of the wave function in a system of functions. The possibility of application of this 

method for calculation of energies of ground states of light nuclei up to 4He was declared in [10], but 

the power of computers available at that time did not allow to obtain reliable results since the statistics 

was very low. In [11] calculations were performed on the CPU with the statistics 105. 

In this work an attempt is made to use modern parallel computing solutions to speed up the calcu-

lations of ground states of few-body nuclei by Feynman’s continual integrals method. The algorithm 

allowing to perform calculations directly on GPU was developed and implemented in C++ program-

ming language. The energy and the square modulus of the wave function of the ground states of sever-

al few-body nuclei have been calculated using NVIDIA CUDA technology [12−14] the results show 

that the use of GPU is very effective for these calculations. 

2. Theory 

The energy 0E  and the square modulus of the wave function 
2

0 of the ground state of a system 

of few particles may be calculated using continual (path) integrals introduced by Feynman [8, 9]. 

Feynman’s integral 

    0 0
ˆ, ; ,0 ( )exp ( ) exp

i i
K q t q Dq t S q t q Ht q

   
     

   
  (1) 
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is a propagator − the probability amplitude for the particle of mass m  to travel from the point 0q  to 

the point q  in time t . Here [ ( )]S q t  and Ĥ  are the action and the Hamiltonian of the system, respec-

tively, ( )Dq t  is the integration measure [8, 9]. For the time-independent potential energy the transition 

to the imaginary (Euclidean) time t i    gives the propagator  0, ; ,0EK q q  

    0

1
, ; ,0 ( )exp ( )E E EK q q D q S q

 
     

 
  (2) 

with the Euclidean action 

  
2

0

( ) ( )
2

E

m dq
S q d V q

d

   
         

 . (3) 

Integration over q  with the periodic boundary condition 0q q  allows to find the energy 0E  of the 

ground state in the limit   [10] 

  
0

ˆ
, ; ,0 Sp exp exp exp ( )n

E

n

EH E
K q q dq g E dE

 



       
                  

  , (4) 

   0, ; ,0 exp ,  E

E
K q q dq





 
    

 
 , (5) 

  
cont

2 2
, ; ,0 ( ) exp ( ) exp ( )n

E n E

n E

E E
K q q q q g E dE


    

        
  

  . (6) 

Here ( )g E  is the density of states with the continuous spectrum contE E . For the system with a dis-

crete spectrum and finite motion of particles the square modulus of the wave function of the ground 

state may also be found in the limit   [10] together with the energy 0E  

  
2 0

0, ; ,0 ( ) exp ,  E

E
K q q q

 
     

 
. (7) 

Outside of the classically allowed region the square modulus of the wave function 
2

0( )q  of the 

ground state with contE E  may be significantly less than 
2

( )E q  for the states with the continuous 

spectrum contE E . The ground state term in the formula (6) will not dominate despite the much more 

rapid decrease of the exponential factors 0
0exp exp ,  

EE
E E

   
      
   

. Therefore, in this case 

the formula (7) is in general applicable only for the region not far beyond the classically allowed 

ground state region. 

Such situation may occur in the description of bound states of few-particle systems (for example, 

two protons and a neutron) when the existence of bound states of some of them (e.g., proton plus neu-

tron) is possible. 

The contribution of states with the continuum spectrum may be eliminated by introducing infinite-

ly high walls in the potential energy located about the range of the nuclear forces beyond the classical-

ly allowed region. Introduction of the boundary condition 0 ( ) 0q   at these walls will not have a 

significant effect on the energy 0E  and 
2

0( )q  far away from the walls. 

Feynman’s continual integral (2) may be represented as the limit of the multiple integral 

  
 

 
2

1

0 1 2 1

1

1
, ; ,0 lim exp ,

2

N
k k N

k N
N

kN

m q q
K q q V q C dq dq dq
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where 

 

1 2

( ),  ,  0, ,  ,  
2

k k k N

m
q q k k N q q C

 
         

  
. (9) 

Here  1N  -fold integral corresponds to averaging over the “path” of the particle as a broken line in 

the plane  ,q   with the vertices  , ,  1, 1k kq k N   . For the approximate calculation of the continu-

al integral (8) the continuous axis   is replaced by the grid ,  0,k ka k N      with the step a  and 

the Euclidean propagator of a free particle  (0)

0, ; ,0EK q q  is separated 

    (0)

0 0

1 0,

, ; ,0 , ; ,0 exp ( )
N

E E k

k N

a
K q q K q q V q



 
    

 
 , (10) 

  
 

21 2

0(0)

0, ; ,0 exp
2 2

E

m q qm
K q q

  
    

      

. (11) 

The denoted by angle brackets averaging over  1N  -dimensional vectors  1 1, , NQ q q   with the 

distribution law  0 1 1; , , ;N NW q q q q  

  
 

2

1

0 1 1

1

; , , ; exp
2

N
k kN

N N

k

q qm
W q q q q C

a







 
  

  
  (12) 

may be calculated using the Monte Carlo method [15]. The standard algorithm for simulation of the 

random vector consists in a sequential choice of the values of its components from the conditional dis-

tributions  1 1W q ,  2 2 1|W q q ,  3 3 1 2| ,W q q q , …,  1 1 1 2 2| , , ,N N NW q q q q   . Here 

 1 2 1| , , ,k k kW q q q q   is the probability density for the values of the quantity kq  given the values of 

quantities 1 2 1, , , kq q q  . In this case the quantity kq  is normally distributed with the mean value Mq , 

variance kD  and standard deviation k kD   [11] 

 1 1 2M k k Nq C q C q  , (13) 

 2kD C a m , (14) 

  
1 2

2k C a m  , (15) 

where 

    
1

2 1 21 ,  C N k C N k C


     . (16) 

The next trajectory in the simulation is calculated by the formula 

 =M , 1, 1k k k kq q k N     , (17) 

where k  is a normally distributed random variable with zero mean and unity variance. Sample one-

dimensional random trajectories for low and large numbers of time steps are shown in Figs. 1a and 1b, 

respectively. 

For large values of   random trajectories may reach the region where the probability density for 

the states with continuum spectrum is substantially larger than the probability density for the ground 

state, which may lead to a deviation from the asymptotic behavior (7) and the growth of the error. 

Therefore, the formula (7) is only applicable for the not very large values of  . 
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Fig. 1. Sample one-dimensional random trajectories for low (a) and large (b) numbers of time steps. 

For convenience of calculations in the scale of nuclear forces the expressions (6), (10) − (15) are 

represented using dimensionless variables 0q q x , 
0( )V V q E , 0m m m , 0t   , 0a a t , 

where 0 1x   fm, 0 1E   MeV, 0m  is the nucleon mass, 2 23

0 0 0 1.57 10t m x     sec, 

0 0 0 0 02412b t E .  . Then 

  
1 2

1

0 0 0 0

1 0,

, ; ,0 exp ( )
2

N

E k

k N

m
K q q x ab V q



  
        

 , (18) 

  
1 22

0 2,  =M , k k k k k k kD q q x C a m     , (19) 

  
 

2

1

0 1 1

1

; , , ; exp
2

N
k kN

N N

k

q q
W q q q q C

a







 
  

  
 , (20) 

  
2

0 0

0 0

1 1
ln , ; ,0 ln ( ) ,  EK q q q E

b b
      . (21) 

Formulas (2)−(16) are naturally generalized to a larger number of degrees of freedom and few 

particles including identical ones. The nucleon identity requires symmetrization of trajectories [9], 

therefore the configurations symmetric with respect to the positions of two neutrons and/or protons 

will be considered below. The nuclei 3H, 3He and 4He contain only two identical fermions (protons 

and/or neutrons with opposite spins) and the calculation of their ground states may be carried out 

without taking into account the Pauli principle by selecting pairs of identical fermions. 

It should be noted that the calculation of multiple integrals required to find the multidimensional 

probability density  
2

0 1, , nr r   by Feynman’s continual integrals method continues to be a chal-

lenging task. However, the analysis of the properties of  
2

0 1, , nr r   allows to choose analytical 

approximations of  0 1, , nr r   and the application of the formula (7) in a single point in the multi-

dimensional space allows to find the approximate value of the energy of the ground state. 

To reduce the multiplicity of integrals in the formula (10) the calculation should be performed in 

the center of mass system using the Jacobi coordinates [4, 9]. 

For a system of two particles (2H nucleus) 

 2 1R r r  , (22) 

where 1r  and 2r  are the radius vectors of a proton and a neutron, respectively. 

For a system of three particles, two of which are identical (2 neutrons or 2 protons in 3H and 3He 

nuclei, respectively) 
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  2 1 3 1 2

1
,  

2
R r r r r r r     . (23) 

In the case of 3H nucleus 3r  is the radius vector of a proton, 1r  and 2r  are the radius vectors of neu-

trons. In the case of 3He nucleus 3r  is the radius vector of a neutron, 1r  and 2r  are the radius vectors of 

protons. 

For a system of four particles consisting of two pairs of identical particles (2 protons and 2 neu-

trons in 4He nucleus) 

    1 2 1 2 4 3 3 4 1 2

1 1
,  ,  

2 2
R r r R r r r r r r r        , (24) 

where 1r  and 2r  are the radius vectors of protons, 3r  and 4r  are the radius vectors of neutrons. 

In the calculation of the propagator  0, ; ,0K q q  for the nuclei 2H, 3H, 3He, 4He neutron-proton 

( )n pV r , neutron-neutron ( )n nV r  and proton-proton ( )p pV r  two-body strong interaction potentials 

have been used. The dependence of the nucleon-nucleon interaction with a hard core on the distance r  

was approximated by a combination of Gaussian type exponentials similar to the M3Y potential 

[16, 17] 

  
3

2 2

1

( ) ( ) expn n p p k k

k

V r V r u r b 



   , (25) 

 ( ) ( )n p n nV r V r   . (26) 

The values of the parameters 1 500u   MeV, 2 102u    MeV, 3 2u   MeV, 1 0.59b   fm, 2 1.40b   

fm, 3 2.94b   fm and 1.2  MeV were determined from the condition of the absence of bound states 

of two identical nucleons as well as the approximate equality of the energy 0E  found from (5) and (7) 

to the experimental values of the binding energies for the nuclei 2H, 3H, 3He, 4He (e.g., [18]). The plots 

of the potentials (25) and (26) are shown in Fig. 2. 
 

 
 

Fig. 2. The neutron-proton (solid line), neutron-neutron (dashed line), and proton-proton (dotted line) interaction 

potentials. 

3. Implementation 

For numerical calculations the Monte Carlo method was used. The algorithm was developed and 

implemented in C++ programming language using NVIDIA CUDA technology. 

The principal scheme of the calculation of the ground state energy for the one-dimensional case is 

shown in Fig. 3. The calculation of the propagator (18) is performed using L sequential launches of the 

kernel. Each kernel launch simulates n random trajectories in the space evolving from the Euclidean 
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time 0   to 0 /j jt a  , where 1,j L  (see Fig. 1). All trajectories start at the same point 0q  in the 

space and in the moment j  return back to the same point 0q  according to the probability distribution 

described above. The choice of the initial point 0q  is arbitrary. In the case of the multidimensional 

space 0q  must be replaced with the set of coordinates in the multidimensional space. All threads in a 

given kernel launch finish at approximately the same time, which makes the scheme quite effective in 

spite of the possible delays associated with the kernel launch overhead. Besides, the typical number of 

kernel launches L required for the calculation of the ground state energy usually does not exceed 100. 
 

 
 

Fig. 3. The scheme of calculation of the ground state energy for the one-dimensional case. 

Starting from the certain time 0 /lin linL t a  , where 1 linL L  , the obtained values of the loga-

rithm of the propagator 1

0 ln Eb K  (21) tend to lie on the straight line, the slope of which gives the val-

ue of the ground state energy. The time lin  is then used in the calculation of the square modulus of the 

wave function. 

The principal scheme of the calculation of the square modulus of the wave function for the one-

dimensional case is shown in Fig. 4. Similarly, the calculation is performed using M sequential 

launches of the kernel. Each kernel launch simulates n random trajectories in the space from the Eu-

clidean time 0   to the time lin  determined in the calculation of the ground state energy. All trajec-

tories start at the same point iq  in the space and in the moment lin  return back to the same point iq  

according to the probability distribution described above. Here 1,i M , where M is the total number 

of points in the space in which the square modulus of the wave function must be calculated. In the case 

of the multidimensional space iq  must be replaced with the set of coordinates in the multidimensional 

space. One of the benefits of the approach is that the calculation may be easily resumed at a later time. 
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For example, initially the square modulus of the wave function may be calculated with a large space 

step to obtain the general features of the probability distribution, and later new intermediate points are 

calculated and combined with those calculated previously. This may be very useful because the calcu-

lation of the square modulus of the wave function is generally much more time-consuming since it 

requires calculation in many points in the multidimensional space. 

An important feature of the algorithm allowing to effectively use graphic processors is low con-

sumption of memory during the calculation because it is not necessary to prepare a grid of values and 

store it in the memory. 

To obtain normally distributed random numbers the cuRAND random number generator was 

used. According to the recommendations of the cuRAND developers each experiment was assigned a 

unique seed. Within the experiment, each thread of computation was assigned a unique sequence 

number. All threads between kernel launches were given the same seed, and the sequence numbers 

were assigned in a monotonically increasing way. 
 

 
 

Fig. 4. The scheme of calculation of the square modulus of the wave function for the one-dimensional case. 

4. Results and discussion 

Calculations were performed on the NVIDIA Tesla K40s accelerator installed within the hetero-

geneous cluster [19] of the Laboratory of Information Technologies, Joint Institute for Nuclear Re-

search, Dubna. The code was compiled with CUDA version 7.5 for architecture version 3.5. Calcula-

tions were performed with single precision. The Euclidean time step 0.01a   was used. Additionally, 

NVIDIA GeForce 9800 GT accelerator was used for debugging and testing purposes. 

The dependence of logarithm of the propagator 1

0 ln Eb K  on the Euclidean time   is shown in 

Fig. 5 for nuclei 2H (a), 3H (b), 3He (c) and 4He (d). Different symbols correspond to different statistics 

n: empty circles (105), filled circles (106, 5·106, 107). 
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The behavior of the curves may be easily explained if we note that in all these cases only the en-

ergy of the ground state is negative and therefore only the first term in (4) increases with the increase 

of  , whereas the energies of the excited states are positive and hence the other terms in (4) decrease 

with the increase of  . 
 

 
 

Fig. 5. The dependence of the logarithm of the propagator 1

0 ln Eb K on the Euclidean time   for 2H (a), 3H (b), 
3He (c) and 4He (d). Lines are the results of linear fitting of the data lying on the straight parts of the curves for 

2H (e), 3H (f), 3He (g) and 4He (h). Different symbols correspond to different statistics n: empty circles (105), 

filled circles (106, 5·106, 107). 
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The results of linear fitting of the straight parts of the curves are shown in Fig. 5eh. According to 

the formula (21) the angular coefficient of the linear regression equals the binding energy. The ob-

tained theoretical binding energies are listed in Tab. 1 together with the experimental values taken 

from [18]. It is clear that the theoretical values are close enough to the experimental ones, though ob-

taining good agreement was not the goal. As can be seen from Fig. 2, the difference between neutron-

neutron ( )n nV r  and proton-proton ( )p pV r  potentials is very small. Nevertheless, the difference be-

tween the calculated binding energies of 3H and 3He is observed in agreement with the experimental 

values. 

The comparison of the square modulus of the wave function for 2H calculated on GPU using 

NVIDIA CUDA technology within Feynman’s continual integrals method and the square modulus of 

the wave function calculated on CPU within the shell model is shown in Fig. 6a. The same potentials 

(25), (26) were used. Good agreement between the curves confirms that the code based on Feynman’s 

continual integrals method using CUDA technology provides correct results. 

Table 1. Comparison of theoretical and experimental energies of ground states. 

Atomic nucleus Theoretical value, MeV Experimental value, MeV 
2H 1.17 ± 1 2.225 
3H 9.29 ± 1 8.482 

3He 6.86 ± 1 7.718 
4He 26.95 ± 1 28.296 

 

 
 

Fig. 6. (a) The square modulus of the wave function for 2H calculated on GPU using NVIDIA CUDA technolo-

gy within Feynman’s continual integrals method (circles) compared with the square modulus of the wave func-

tion calculated on CPU within the shell model (line); r is the distance between the proton and the neutron. (b) 

The theoretical charge distribution for 3He (circles) compared with experimental data taken from [18] (lines). 

It should be mentioned that the wave function cannot be measured directly, though the charge ra-

dii and charge distributions obtained from experiments may provide some information on its behavior. 

To compare the results of calculations with the experimental charge radii and charge distributions the 

wave function must be integrated. 

The probability density distribution  
2

0 ;R r  for the three-body configurations of 3He 

(p + p + n) with 0   , 45 , 90  is shown in logarithmic scale in Fig. 7a,b,c, respectively, together 

with the potential energy surface (linear scale, lines). The vectors in Jacobi coordinates are shown in 

Fig. 7d. 

The theoretical charge distribution for 3He obtained by integration of the wave function is com-

pared with experimental data taken from [18] in Fig 6b. As can be seen, the agreement is very good. 

The obtained theoretical charge radius 
1/2

2 1.94chR   fm is also very close to the experimental value 

1.9664 0.0023  fm. 
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The probability density distribution    
2 2

0 1 2 0 1 2 1; ; ,0,0;0,0, ;0, ,0x z y xR r R R r R R     for the 

symmetric tetrahedral configuration of four nucleons in the nucleus 4He 

      1 2 1 2 1 1 2 2 1,  ,  ,0,0 ,  0,0, ,  0, ,0x z y xR r R R R R R r r R R R         (27) 

is shown in logarithmic scale in Fig. 7e together with the potential energy surface (linear scale, lines). 

The vectors in Jacobi coordinates are shown in Fig. 7f. 

Note also that the presence of the repulsive core in the nucleon-nucleon interaction reduces the 

probability of finding nucleons in the center of mass of the system for the considered symmetric con-

figurations. This should lead to a smoother increase in the concentration of nucleons and the density of 

electric charge when approaching the center of the nucleus. 
 

 
 

Fig. 7. The probability density for the configurations of 3He with 0    (a), 45  (b), 90  (c) and the vectors in 

Jacobi coordinates (d). The probability density for the configuration of 4He symmetric with respect to the posi-

tions of protons and neutrons (e) and the vectors in Jacobi coordinates (f). 
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The analysis of the properties of  
2

0 1, , nr r   allows to choose analytical approximations for it, 

e.g., as the product of the Gaussian type exponentials. The obtained approximations may be used in 

dynamic calculations. 

The code implementing Feynman’s continual integrals method was initially written for CPU. The 

comparison of the calculation time of the ground state energy for 3He using Intel Core i5 3470 and 

NVIDIA Tesla K40s with different statistics is shown in Tab. 2. Even taking into account that the code 

for CPU used only 1 thread and a different random number generator, the time difference is impres-

sive. This fact allows to increase the statistics and the accuracy of calculations in the case of using 

CUDA technology. 

Table 2. Comparison of the calculation time of the ground state energy for 3He nucleus. 

Statistics, 

n 

Intel Core i5 3470 

(1 thread), sec 

Tesla K40s, 

sec 

Performance gain, 

times 

105 ~ 1854 ~ 8 ~ 232 

106 ~ 18377 ~ 47 ~ 391 

5·106 − ~ 221 − 

107 − ~ 439 − 

 

The comparison of the calculation time of the square modulus of the wave function for the ground 

state of 3He using Intel Core i5 3470 and NVIDIA Tesla K40s with the statistics 106 and the number of 

points in the space 60·60·12 is shown in Tab. 3. The value ~ 177 days for CPU is an estimation based 

on the performance gain in the calculation of the ground state energy. It is evident that beside the per-

formance gain the use of CUDA technology may allow to reduce the space step in the calculation of 

the wave functions, as well as greatly simplify the process of debugging and testing, and in certain 

cases it may even enable calculations impossible before. 

Table 3. Comparison of the calculation time of the square modulus of the wave function for the ground state of 
3He nucleus. 

Statistics, 

n 

Intel Core i5 3470 

(1 thread), estimation 

Tesla K40s 

106 ~ 177 days ~ 11 hours 

5. Conclusion 

In this work an attempt is made to use modern parallel computing solutions to speed up the calcu-

lations of ground states of few-body nuclei by Feynman’s continual integrals method. The algorithm 

allowing to perform calculations directly on GPU was developed and implemented in C++ program-

ming language. The method was applied to the nuclei consisting of nucleons, but it may also be ap-

plied to the calculation of cluster nuclei. The energy and the square modulus of the wave function of 

the ground states of several few-body nuclei have been calculated by Feynman’s continual integrals 

method using NVIDIA CUDA technology. The comparison with the square modulus of the wave 

function for 2H calculated on CPU within the shell model was performed to confirm the correctness of 

the calculations. The obtained values of the theoretical binding energies are close enough to the exper-

imental values. The theoretical charge radius and charge distribution for 3He nucleus are also in good 

agreement with the experimental data. The results show that the use of GPGPU significantly increases 

the speed of calculations. This allows to increase the statistics and the accuracy of calculations as well 

as reduce the space step in calculations of wave functions. It also greatly simplifies the process of de-

bugging and testing. In certain cases the use of CUDA enables calculations impossible before. 
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