
Spatially Efficient Tree Layout for GPU Ray-tracing of

Constructive Solid Geometry Scenes

D.Y. Ulyanov1,2, D.K. Bogolepov2, V.E. Turlapov1

University of Nizhniy Novgorod1, OpenCASCADE2

A novel GPU-optimized CSG ray-tracing approach is presented that is fast and accurate,

and allows achieving real-time frame rates at full-screen resolutions. It has no limitations

on the maximum number of primitives, and produces final image in a single pass. We pro-

pose an efficient procedure to transform an input CSG tree into equivalent spatially coher-

ent and well-balanced form. Through various experiments, we show that our solution al-

lows interactive rendering of CSG models consisting of more than a million CSG primi-

tives on consumer graphics cards.

Keywords: Constructive solid geometry, rendering, ray-tracing, GPU, optimization.

1. Introduction

Constructive Solid Geometry (CSG) is the geometric method that forms complicated shapes from

simpler 3D primitives using the Boolean operations union (), intersection (), and subtraction (\).

The (sets of) primitives involved in each operation and the sequence of operations create a so-called

CSG tree. Thus, CSG tree is a binary tree with leaf nodes as primitives and interior nodes as Boolean

operations. CSG is often used as a fundamental modeling approach in CAD/CAM/CAE applications.

However, computation of the geometry corresponding to the CSG expression can be a slow process,

which is often unacceptable for interactive scene editing. In some cases, a near real-time rendering of a

CSG shape can be achieved by using multi-pass image-based techniques taking advantage of hardware

depth and stencil buffers. But these algorithms impose limitations on the maximum depth complexity

and, in general, are bounded by memory bandwidth. The main contribution of this paper is a novel

GPU-optimized CSG ray-tracing algorithm, as well as an efficient procedure for conversion of input

CSG tree into spatially coherent and well-balanced form. The proposed solution is relatively fast, can

be easily integrated into existing ray-tracing systems and, as we show in our experiments, outperforms

previously available algorithms.

2. Previous Work

In general, there are two basic approaches to render a CSG model. The first one is based on pre-

computing of the boundary of a CSG shape which can be tessellated into a triangular mesh and then

rendered using conventional graphics methods. Since evaluation of CSG boundary is computationally

expensive, these algorithms are mainly limited to static models and do not allow interactive editing.

The second approach involves so-called image-based algorithms which generate just the image of a

CSG model without expensive computation of the full shape geometry. Most of these algorithms are

designed for graphics hardware and based on multi-pass, view-specific techniques making extensive

use of depth and stencil buffers. The typical algorithms in this class are Goldfeather algorithm [1, 2]

and the Sequenced Convex Subtraction (SCS) algorithm [3]. The first one allows handling all types of

CSG primitives, while the second one is optimized for models consisting of convex primitives only.

However, none of these algorithms is capable of rendering arbitrary CSG trees directly. Instead, an

input tree is transformed into a sum-of-products (normal) form that can lead to exponential growth of

the number of CSG operations and significantly reduces the performance for complex CSG shapes.

An alternative approach has been proposed in the later work [4]. The so-called Blister algorithm

does not require a conversion to the sum-of-products form. Instead, it converts an arbitrary Boolean

combination of primitives into the Blist form [5] containing each input primitive only once. To render

a CSG shape, Blister uses peeling technique to produce layers of the entire primitive set in depth order

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

388

(each layer is the Z-buffer representation of a 3D scene that allows only one fragment stored at each

pixel). Each peel is classified according to its CSG expression and then combined.

The above algorithms can achieve interactivity for relatively complex CSG shapes (thousands of

primitives). However, all these techniques use many rendering passes, and thus are bandwidth limited.

For many years, GPU memory bandwidth grows slower than computing performance, resulting in a

data transfer bottleneck for many GPU-accelerated applications. A completely different approach was

adopted in [6]. In this work, an attempt has been made to distribute the workload between a CPU and a

GPU, by performing spatial decomposition of input CSG tree on a CPU and ray-tracing of its simple

parts on a GPU. The algorithm has proven to be effective for relatively simple CSG shapes (hundreds

of primitives). Whereas more complex models require subdivision into a larger number of parts that

leads to a huge number of draw calls and performance decrease.

Ray-tracing of the entire CSG tree is possible and used quite widely. However, most approaches

to render CSG scenes require computing all intersections of a ray with a primitive. The ray is broken

into intervals corresponding to the intersected primitives. After that the Boolean operations are applied

to find out the first interval that is actually inside a CSG object. Due to a large amount of computation

and significant memory consumption this approach can be extremely expensive. Moreover, it is poorly

suited for a GPU, the effective use of which requires tens of thousands of threads running in parallel.

Since GPU hardware resources are divided among threads, low resource usage is crucial to support a

plurality of simultaneously-active threads. However, the implementation of interval CSG ray-tracer on

the GPU is still possible as shown in [7]. Unfortunately, this approach tends to be limited by the num-

ber of primitives and maximum depth complexity due to the necessity of storing interval representa-

tion of the whole scene in GPU memory.

function INTERSECT(node, min)

 minL ← min

 minR ← min

 (tL,NL) ← INTERSECT(L(node), minL)

 (tR,NR) ← INTERSECT(R(node), minR)

 stateL ← CLASSIFY(tL, NL)

 stateR ← CLASSIFY(tR, NR)

 while true do

 actions ← table[stateL, stateR]

 if Miss ∈ actions then
 return miss

 if RetL ∈ actions or (RetLIfCloser ∈ actions and tL ≤ tR) then
 return (tL, NL)

 if RetR ∈ actions or (RetRIfCloser ∈ actions and tR ≤ tL) then

 if FlipR ∈ actions then
 NR ← −NR

 return (tR, NR)

 else

 if LoopL ∈ actions or (LoopLIfCloser ∈ actions and tL ≤ tR) then
 minL ← tL

 (tL, NL) ← INTERSECT(L(node), minL)

 stateL ← CLASSIFY(tL, NL)

 else

 if LoopR ∈ actions or (LoopRIfCloser ∈ actions and tR ≤ tL) then
 minR ← tR

 (tR, NR) ← INTERSECT(R(node), minR)

 stateR ← CLASSIFY(tR, NR)

 else

 return miss

Fig. 1. Recursive CSG intersection

A quite different approach based on single-hit ray-tracing (finding only nearest intersection) has

been proposed in [8]. The algorithm uses a concept of state machine to calculate the intersection with a

CSG model. The only limitation is that the basic CSG primitives should be closed (can be relaxed to

handle orientable surfaces), non-self-intersecting and have consistently oriented normals. This elegant

idea makes it quite easy to integrate CSG rendering into existing ray-tracing systems. Although the

paper does not contain any characteristics of the algorithm, it looks suitable for the GPU and inspired

our work. In the remainder of this section, we outline the main steps of this algorithm and point out

some inaccuracies in the original state tables.

Let T be a CSG tree, and let L(T) and R(T) be the left and right sub-tree of T. To find the nearest

intersection of ray R and tree T the ray is shot at sub-trees L(T) and R(T), and then the intersection with

the each sub-tree is classified as one of entering, exiting or missing it. Based upon the combination of

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

389

these two classifications, one of several actions is taken: (a) returning a hit; (b) returning a miss; (c)

changing the starting point of ray R for one of sub-trees and then shooting this ray again, classifying

next intersection. In latter case, the state machine enters a new loop (see Figure 1). Kensler proposed 3

state tables (one for each Boolean operation) needed to ray-trace a CSG shape. Unfortunately, these

state tables are not complete and lead to incorrect visualization. In this paper we provide refined state

tables allowing correct visualization in all cases (see Table 1). Kensler’s algorithm is recursive and

poorly suited for a GPU. While recursion is supported on CUDA-enabled GPUs, the iterative version

with a manually-managed state stack provides a much better performance, and can be implemented in

the environment without recursion support (e.g., OpenGL, OpenCL). However, transforming of the

algorithm into iterative form is not trivial due to a large number of parameters and local variables.

Table 1. State tables for Boolean operations

 Enter R(T) Exit R(T) Miss R(T)  Enter R(T) Exit R(T) Miss R(T) \ Enter R(T) Exit R(T) Miss R(T)

Enter

L(T)
RetLIfCloser
RetRIfCloser

RetRIfCloser
LoopL

RetL
Enter

L(T)
LoopLIfCloser
LoopRIfCloser

RetLIfCloser
LoopR

Miss
Enter

L(T)
RetLIfCloser

LoopR
LoopLIfCloser
LoopRIfCloser

RetL

Exit
L(T)

RetLIfCloser
LoopR

LoopLIfCloser
LoopRIfCloser

RetL
Exit
L(T)

RetRIfCloser
LoopL

RetLIfCloser
RetRIfCloser

Miss
Exit
L(T)

RetLIfCloser
RetRIfCloser

FlipR

RetRIfCloser
FlipR
LoopL

RetL

Miss

L(T)
RetR RetR Miss

Miss

L(T)
Miss Miss Miss

Miss

L(T)
Miss Miss Miss

2. GPU-Optimized CSG Ray-tracing

2.1 Stack-based CSG traverse

As our main contribution, we propose the iterative CSG ray-tracing algorithm that uses minimal

state and is optimized for massively parallel architectures with limited (per thread) memory resources

like GPUs. For that purpose we define a high-level state machine that manages the execution of the

original algorithm in the iterative manner (see Figure 2).

Fig. 2. High-level state machine

The use of state tables for each Boolean operation (let us call them CSG tables) is based on pre-

computed intersections with child objects of the current CSG node. Thus, all of the states of high-level

pushdown automata are divided into two categories: (a) calculation of intersections with child objects,

and (b) applying CSG tables for classification of the processed CSG node. The first category includes

the states GotoLft (finding the intersection with the left sub-tree), GotoRgh (finding the intersection

with the right sub-tree), and SaveLft (storing the intersection parameters with the left sub-tree and

then execution of GotoRgh). The last state is needed since the processing of the right sub-tree leads

to trashing local variables. The second category includes the following states: Compute (applying

CSG tables), LoadLft (loading intersection data for the left sub-tree and then execution of Compute),

LoadRgh (loading intersection data for the right sub-tree and then execution of Compute). General

scheme of transition between the states is shown in Figure 3. Here the GoTo() function (see Figure 4)

calculates intersection points with left and right sub-trees, while the Compute() function (see Figure

4) classifies these points in order to detect the first intersection of a ray with the actual boundary of

CSG shape. Note that GoTo() function enables the use of bounding boxes to improve the performance

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

390

of intersection function. Such bounds are calculated for each node of CSG tree to obtain a bounding

volume hierarchy [9].

tmin ← 0

node ← V // virtual root whose left subtree is the real root

(tL, NL) ← invalid

(tR, NR) ← invalid

PUSHACTION(Compute)

action ← GotoLft

while true do

 if action ≡ SaveLft then

 tmin ← POPTIME()

 PUSHPRIMITIVE(tL, NL)

 action ← GotoRgh

 if action ∈ {GotoLft, GotoRgh} then
 GOTO()

 if action ∈ {LoadLft, LoadRgh, Compute} then
 COMPUTE()

Fig. 3. Iterative CSG traversal

function GOTO()

 if action ≡ GotoLft then

 node ← L(node)

 else

 node ← R(node)

 if node is Operation then

 gotoL ← INTERSECTBOX(L(node))

 gotoR ← INTERSECTBOX(R(node))

 if gotoL and L(node) is Primitive then

 (tL, NL) ← INTERSECT(L(node), tmin)

 gotoL ← false

 if gotoR and R(node) is Primitive then

 (tR, NR) ← INTERSECT(R(node), tmin)

 gotoR ← false

 if gotoL or gotoR then

 if gotoL then

 PUSHPRIMITIVE(L(node), tL)

 PUSHACTION(LoadLft)

 else if gotoR then

 PUSHPRIMITIVE(R(node), tR)

 PUSHACTION(LoadRgh)

 else

 PUSHTIME(tmin)

 PUSHACTION(LoadLft)

 PUSHACTION(SaveLft)

 if gotoL then

 action ← GotoLft

 else

 action ← GotoRgh

 else

 action ← Compute

else

 // node is a Primitive

 if action ≡ GotoLft then

 (tL, NL) = Intersect(node, tmin)

 else

 (tR, NR) = Intersect(node, tmin)

 action ← Compute

 GOTOPARENT(node)

 function COMPUTE()

 if action ∈ {LoadLft, LoadRgh} then
 if action ≡ LoadLft then

 (tL, NL) ← POPPRIMITIVE()

 else

 (tR, NR) ← POPPRIMITIVE()

 stateL ← CLASSIFY(tL, NL)

 stateR ← CLASSIFY(tR, NR)

 actions ← table[stateL, stateR]

 if RetL ∈ actions or
 (RetLIfCloser ∈ actions and tL ≤ tR) then
 (tR, NR) ← (tL, NL)

 action ← POPACTION()

 GOTOPARENT(node)

 if RetR ∈ actions or

 (RetRIfCloser ∈ actions and tR < tL) then

 if FlipNormR ∈ actions then
 NR ← −NR

 (tL, NL) ← (tR, NR)

 action ← POPACTION()

 GOTOPARENT(node)

 else if LoopL ∈ actions or

 (LoopLIfCloser ∈ actions and tL ≤ tR) then
 tmin ← tL

 PUSHPRIMITIVE(tR, NR)

 PUSHACTION(LoadRgh)

 action ← GotoLft

 else if LoopR ∈ actions or

 (LoopRIfCloser ∈ actions and tR < tL) then
 tmin ← tR

 PUSHPRIMITIVE(tL, NL)

 PUSHACTION(LoadLft)

 action ← GotoRgh

 else

 tR ← invalid

 action ← POPACTION()

Fig. 4. GOTO stage (left) and COMPUTE stage (right)

2.3 Optimizing CSG Trees

It is obvious that the performance of our algorithm greatly depends on the topology of CSG tree

that affects spatial coherence of primitives and height of the tree. However, the creation of a balanced,

unbalanced, or a perfect CSG tree depends generally on the user. Thus, it is necessary to transform an

input tree T into an equivalent well-balanced tree T of roughly the same size as T.

We propose an efficient pipeline for optimizing CSG trees that runs in four phases: (a) converting

the input tree T to a positive form; (b) spatial optimization of tree topology; (c) minimizing height of

the tree; (d) reverse converting to a general form giving the output tree T.

2.3.1 Converting to positive form

A CSG tree T is represented in the positive form using only  and  operations and negation of

leaf nodes. This conversion can be easily done using the following transformations:

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

391

𝑥 ∪ 𝑦 = 𝑥 ∩ 𝑦, 𝑥 ∩ 𝑦 = 𝑥 ∪ 𝑦, 𝑥 − 𝑦 = 𝑥 ∩ 𝑦

The above transformations are applied to the tree in a pre-order traversal, and thus all complements are

propagated to the leaf nodes. The reverse conversion to general form can be performed using a post-

order traversal (in this case all negations are first removed from the children of each node).

2.3.2 Spatial optimization

For optimal performance, the tightness bounds of CSG tree nodes should be used which minimize

the probability of ray intersection. For this purpose, we propose the spatial optimization procedure

allowing minimizing the bounds of CSG nodes. Let us define treelet as the collection of immediate

descendants of the given CSG tree node. Our optimization procedure is based on repeatedly selecting

of treelets consisting of nodes with the same Boolean operation and their subsequent restructuring (in

positive form, we are free to change the order of treelet nodes). Treelets are constructed during a pre-

order traversal of CSG tree by expanding child nodes that have the same Boolean operation as the

treelet root. The resulting treelet is reorganized by means of surface area heuristic (SAH), widely used

for construction of accelerating structures such as k-d tree or Bounding Volume Hierarchy (BVH).

Thereafter, the traversal of CSG tree continues with the outer treelet nodes.

The restructuring of treelet is based on the same binned technique as is used for construction of

BVH [10]. Binned BVH is constructed over all treelet leaves bounded by axis-aligned boxes pre-

computed for the input tree T given in general form. Because of this, for treelet leaves corresponding

to negative CSG primitives we use their original (non-complemented) bounds. This strategy produces

slightly better trees, because infinite bounding boxes do not provide any useful information related to

primitive positions.

2.3.3 Minimizing tree height

Our algorithm evaluates intersection point in iterative manner by maintaining a stack. However,

on massively parallel architectures like GPUs managing full per-ray stacks leads to significant storage

and bandwidth costs. To reduce the traversal state size we desire a well-balanced CSG tree. Our next

optimization stage is aimed to address this problem by minimizing the height of CSG tree using local

transformations. At this stage, two types of treelets are considered. For brevity, let us call the child

node with a greater height (in the whole tree T) the heavy child. The first type is formed of treelets

which have the same Boolean operation ( or ) in root node N1 and its heavy child N2 (see Figure

5a). Let T3 be a heavy child of the node N2. Obviously if h(T3) > h(T1) + 1 it is beneficial to transpose

these subtrees. As with the rotations for binary search trees these result in elevating subtree T3 and

demoting subtree T1. Thus, the height of the treelet, rooted at N1, is decreased by one.

Fig. 5. Optimizations of first (left) and second (right) type

The second type of treelets corresponds to the case where the operations in the root node N1, its

heavy child N2 and heavy grandchild N3 are interleaved (i.e. −− or −−). Let us consider the

−− sequence (see Figure 5b). In this case, the treelet rooted at N1 can be described by expression:

T1  (T2  T3  T4) = (T1  T2)  (T1  T3  T4). Let T4 be a heavy child of the node N3. Therefore, if

h(T4) > h(T1) + 2, then the normalization of the given treelet allows reducing its height by one. Please

note that this normalization is localized, and thus has no effect on other tree nodes. However, even this

optimization is undesirable because it results in duplication of the subtree T1. For this reason we use

such transformations only when optimizations of the first type have been exhausted. We use the multi-

pass scheme, where at each pass a CSG tree is traversed in post-order, and appropriate restructuring

patterns are applied.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

392

4. Results and Discussion

For this study, all results have been measured using an NVIDIA GeForce GTX 680, AMD Rade-

on HD 7870 and Intel HD 4000 GPUs. All timings correspond to rendering in a 1280 × 720 window.

The first test scene shows a CSG model of the city at different scales (see Figure 6). In all below cases

the whole City scene is modeled as a single CSG tree. In a simple configuration (a), the model con-

tains 3385 primitives. More complex configurations (b and c) contain 343K and 987K CSG primitives

correspondingly. Scene b from upper row shows the case with extreme number of depth layers that is

rather challenging for other approaches. Therefore, this test allows analyzing the performance depend-

ing on the complexity of the CSG model. For each GPU results are represented by two columns (see

Table 2): left one corresponds to measured FPS without spatial optimization (−), and the right one was

obtained with enabled spatial optimization (+). N/A markers shown were performance clearly cannot

be considered to be interactive.

 a) b) c)

 g) h) i)

Fig. 6. City scene and Cheese scene

The second test scene represents a procedural Swiss cheese CSG model with the holes of varying

radius (see Figure 6). Number of holes increases from 1000 (left) to 8000 (middle), and then to 32000

(right) resulting in a larger number of overlapped primitives and greater depth complexity. Thus, un-

like the City model, the performance of the Swiss cheese model is affected greatly by spatial optimiza-

tion.

The third test scene demonstrates a large number of satellites orbiting a planet (see Figure 8). In

this case, each satellite is represented by a separate CSG tree. A plurality of independent satellites are

placed into the scene as outer nodes of high-level BVH. Since we are able to interactively rebuild ac-

celerating structure each frame (at least for tens of thousands of objects), we can arbitrarily modify

transformations of particular CSG trees. As a result, it becomes possible to edit the scene or to animate

arbitrary shapes. In our test case, the satellites move across the planet along randomly selected orbital

tracks.

Table 2. Measured performance

Scene Primitives Tree Depth
Intel 4000 Radeon HD 7870 GeForce GTX 680

− + − + − +

City (a) 3385 14 7 7.5 50 60 51 57

City (b) 343589 22 1.8 4.5 6.5 17 8 22

City (c) 987218 24 2.3 7 6.7 18 8.3 21

Cheese (a) 1002 11 0.4 17 4.6 110 5.8 128

Cheese (b) 8002 14 N/A 6.5 0.5 28 0.5 32

Cheese (c) 32002 17 N/A 0.5 N/A 3.7 N/A 4

Satellites (a) 87565 7 5 9 26 67 29 65

Satellites (b) 1120065 7 2.8 4.5 8 18 7 15

Satellites (c) 1120065 7 2.5 4.5 4.2 9 5.6 12

We found that our implementation scales well with increasing the GPU clock speed (Figure 7

shows linear dependence on clock speed). Therefore, we can expect further performance increase on

later generations of GPUs. In contrast, the memory clock does not affect performance, which confirms

the assumption that the algorithm is not memory-bound.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

393

From practical point of view, there are several factors which can affect the rendering perfor-

mance. The first one is screen resolution as for over ray-tracing methods. The frame rate decreases

almost linearly increasing the total number of processed pixels. The second important factor is the

number of primitives, but however, it does not affect performance directly. Experiments show that we

can easily render City scene containing more than 1 million CSG primitives while having trouble with

32K Swiss cheese model. This is due to extensive overlaps between the primitives in cheese model

which force the algorithm to iterate over the CSG sub-trees intensively in order to classify intersection

points. Moreover, the efficiency of spatial optimizer also suffers from a large number of overlapped

primitives. However, even in this stress scenario, we can show near linear performance degradation

depending on the number of primitives.

Fig. 7. Rendering performance on Cheese 8K scene depending on GPU clock speed (GF GTX 680).

Given that our solution is based on ray-tracing, it can be naturally extended to produce various

visual effects such as transparency, shadows, reflections, refractions, etc. Using OpenGL/GLSL as the

main API for GPU computations allows seamless interoperability between CSG rendering engine and

standard OpenGL pipeline. For that purpose we calculate the depth value for each processed fragment,

based on the intersection time and camera projection matrix. For example, the rendering can be ex-

tended with text annotations, axes, or generic triangulated objects drawn by OpenGL. Finally, our

solution allows implementing the hardware-accelerated selection mechanism. To this end, we write

unique IDs of intersected objects into a separate texture allowing to identify a CSG primitive, or even

its particular face, which lies under the given pixel.

 a) b) c)

Fig. 8. Satellites scene

4. Conclusion

We proposed a GPU-optimized CSG rendering approach, which is fast and accurate, and allows

achieving real-time frame rates at full-screen resolutions. Unlike alternative image-based CSG algo-

rithms, our solution is more compute-bound than bandwidth-bound, and does not impose restrictions

on the maximum number of CSG primitives being limited only by available GPU memory. We also

proposed the efficient pre-processing stage to convert an input CSG tree into equivalent spatially co-

herent and well-balanced form. As a result, our CSG rendering system provides interactive or even

real-time performance for CSG models consisting of more than a million CSG primitives on consumer

graphics cards.

15

20

25

30

35

500 700 900 1100

FP
S

GPU Core Clock (MHz)

GF680

20

25

30

35

40

2400 2600 2800 3000 3200

FP
S

GPU Memory Clock (MHz)

GF680

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

394

References

1. Goldfeather, J., Monar, S., Turk, G., Fuchs, H. Near real-time CSG rendering using tree normali-

zation and geometric pruning // IEEE Symposium on Computer Graphics and Applications. 1989.

P. 20-28.

2. Kirsch, F., Döllner, J. Rendering techniques for hardware-accelerated image-based CSG // Journal

of WSCG. 2004. Vol. 12, No. 1-3, P. 269-276.

3. Stewart, N., Leach, G., Sabu J. Linear-time CSG rendering of intersected convex objects // Journal

of WSCG. 2002. Vol. 10, No. 1-2, P. 437-444.

4. Hable, J., Rossignac, J. Blister: GPU-based rendering of Boolean combinations of free-form trian-

gulated shapes // ACM Transactions on Graphics. 2005. Vol. 24, No. 3, P. 1024-1031.

5. Rossignac, J. BLIST: A Boolean list formulation of CSG trees // Technical Report GIT-GVU-99-

04 available from the GVU Center at Georgia Tech. http://www.cc.gatech.edu/gvu/reports/1999/

1999.

6. Romeiro, F., Velho, L., De Figueiredo L. H. Hardware-assisted rendering of csg models // SIB-

GRAPI'06. 19th Brazilian Symposium. 2006. P. 139-146.

7. Lefebvre, S., Grand-Est, L. I. N. IceSL: A GPU accelerated CSG modeller and slicer // AEFA'13,

18th European Forum on Additive Manufacturing. 2013.

8. Kensler A. Ray tracing CSG objects using single hit intersections URL:

http://xrt.wdfiles.com/local--files/doc%3Acsg/CSG.pdf.

9. Cameron, S. Efficient bounds in constructive solid geometry // IEEE Computer Graphics and Ap-

plications. 1991. P. 68-74.

10. Wald, I. On fast construction of SAH-based bounding volume hierarchies // IEEE Symposium on

Interactive Ray Tracing. 2007. P. 33-40).

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

395

