
Ontology Patterns with DOWL:
The Case of Blending?

Oliver Kutz1, Fabian Neuhaus2, Maria M. Hedblom1,2,
Till Mossakowski2, and Mihai Codescu1

1 KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

2 Institute for Intelligent Cooperative Systems
Otto-von-Guericke University of Magdeburg, Germany

Abstract. The Distributed Ontology, Model, and Specification Lan-
guage DOL provides logic-independent structuring, linking, and modu-
larity constructs. Its homogeneous OWL fragment, DOWL, we argue, can
be seen as an ideal language for formalising ontology patterns in descrip-
tion logics. It naturally consumes earlier formalisms such as C-OWL or
DDL, and extends these with various expressive means useful for the
modelling of patterns. To substantiate this, we illustrate DOWL’s ex-
pressive power with a number of examples, including ontology design
patterns, networks of ontologies, and ontology combinations. The latter
are used to formalise conceptual blending, based on DOWL features such
as renaming, filtering, forgetting, interpretation, and colimit computa-
tion.

Keywords: OWL; DOL; DOWL; conceptual blending; ontology engineering;
ontology design patterns;

1 Introduction

While the use of ontologies varies considerably, there are two recurring chal-
lenges: reusability and interoperability.

Reusability is an issue because the development of ontologies is typically done
manually by experts and, thus, an expensive process. Hence, it is desirable to be
able to reuse existing ontologies during the development of new ontologies. This
presupposes a framework that allows to build structured ontologies by identifying
modules and their relationships to each other. For example, it requires the ability
to combine two existing ontologies in a way that handles the namespaces of the
ontologies in an appropriate way. Further, the reuse of an existing ontology
often requires that the ontology is adapted for its new purpose. For example,
the adaption may require the extension of the ontology by new axioms, or the
extraction of a subset of the ontology, or the change of its semantics from open
world to closed world.

? This paper draws heavily on material from [21] (for the outline of DOL) and [13] (for
the basics of conceptual blending).

The interoperability challenge is closely related to the reusability challenge.
Since the development of ontologies is not an exact science and is usually driven
by project specific requirements, two ontologies that have been developed in-
dependently will represent the same domain in different and, often, conflicting
ways. Thus, in a situation where two independently developed ontologies are
supposed to be reused as modules of a larger ontology, the differences between
these ontologies will typically prevent them from working together properly.
Overcoming this lack of interoperability may require an alignment or even an
integration of these ontologies. This typically involves the identification of syn-
onyms, homonyms, and the development of bridge axioms, which connect the
two ontologies appropriately.

Addressing these two challenges, there is a diversity of notions providing de-
sign patterns for and interrelations among ontologies. The Distributed Ontology,
Model and Specification Language (DOL) aims at providing a unified metalan-
guage for handling this diversity. In particular, DOL enjoys the following distinc-
tive features:

– structuring constructs for building ontologies from existing ontologies, like
imports, union, forgetting, interpolation, filtering, and open-world versus
closed-world semantics;

– module extraction;
– mappings between ontologies, like interpretation of theories, conservative

extensions etc.;
– alignments, interpretations, and networks of ontologies;
– combination of networks.

DOL has been partially approved as a standard of the Object Management
Group (OMG), and its finalisation is planned for late 2016 [23].

DOL and its structuring language are designed as a multi-logic meta-language,
already supporting all of the mainstream ontology languages in use today. In this
paper, we outline the purely homogeneous DL-based OWL fragment of DOL,
called DOWL. We illustrate that it provides substantial modelling support for the
OWL user, and, moreover, encompasses and extends several well-known mod-
elling approaches, namely in particular C-OWL and DDL, standard alignment
techniques, as well as module extraction.

We illustrate some of these features here with two main use-cases that go
beyond standard description logic or OWL modelling, namely (1) instantiable
schematic ontology patterns, and (2) networks of ontologies and their combi-
nation, here applied to the computation of conceptual blends. We close with a
discussion of reasoning and tool support, and an outline of future work.

2 DOWL in a nutshell

2.1 Structured DOWL ontologies

Structured DOWL ontologies are generated by the following grammar, where O
is a basic OWL ontology, Σ is a signature (i.e. a set of entities: concepts, roles
and individuals) and σ a signature morphism (i.e. a map between the entities of
two ontologies):

2

Onto ::= O
| IRI
| Onto and Onto | Onto then [Anno] Onto
| Onto with σ
| Onto reveal Σ | Onto hide Σ
| Onto keep Σ | Onto forget Σ
| Onto extract Σ | Onto remove Σ
| Onto select O | Onto reject O
| minimize Onto | maximize Onto
| combine Network | { Onto }

Anno ::= %def | %cons | %implied

A basic ontology O is written in some OWL serialisation, e.g. OWL Manch-
ester syntax:

Class: Woman EquivalentTo: Person and Female
ObjectProperty: hasParent

As shown in this example, O can be an ontology fragment, which means that
some of its entities are declared outside of O (e.g. in an imported ontology).

An IRI reference refers to an ontology existing on the Web, possibly abbre-
viated using prefixes, e.g.:

<http :// owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl >

or using prefixes:

%prefix(
co-ode: <http ://owl.cs.manchester.ac.uk/co-ode-files/ontologies/>)%

co-ode:pizza.owl

An extension of an ontology by new entities and axioms is written O1 then
O2, where O2 is an ontology (fragment). An extension can optionally be marked
as conservative (%cons after the “then”), stating that O2 does not introduce
any new constraints in terms of the language of O1. In case that O2 does not
introduce any new entities, the keyword %implied can be used instead of %cons;
the extension then merely states intended logical consequences. The keyword
%def stands for definitional extensions, expressing that the interpretation of the
new entities in O2 is uniquely determined by the axioms for a given interpretation
of O1. The following OWL ontology is an example for the latter:1

Class Person
Class Female

then %def
Class: Woman EquivalentTo: Person and Female

Similar to extension is the union of two self-contained ontologies, written O1

and O2. Compared to extensions, O2 is restricted here, because it cannot be a
fragment. On the other hand, O2 can be an arbitrary structured ontology, and
not just a basic one, as for extensions.

A translation of an ontology to a different signature is written O with σ,
where σ is a signature morphism. This is particularly useful when disambiguating
homonyms that may accidentially get identified when uniting ontologies:

FinancialOnto with Bank |-> FinancialBank and GeoOnto with Bank |-> RiverBank

1 Annotations such as %cons, %then and %def, introduce so called ‘proof obligations’
on the meta-level. That is, what they claim to be the case may be true or false and
therefore requires verification by proof (or sometimes sufficient syntactic criteria).

3

DOL features four different forms of reduction of a large ontology to a smaller
signature. Assume that in some large medical ontology like SNOMED CT, we
are interested only in facts about hearts and heart attacks. Then we can write
one of:

SNOMED extract Heart , HeartAttack
SNOMED keep Heart , HeartAttack
SNOMED reveal Heart , HeartAttack
SNOMED select Heart , HeartAttack

With extract, we extract a SNOMED CT module2, which is a sub-ontology of
SNOMED CT capturing the same facts about hearts and heart as SNOMED
CT itself. The signature of the extracted module may be larger than just the
two specified entities (heart and heart attack). In extreme cases, we might get
the whole original ontology (which is of course not desirable, because then no
reduction has taken place). Using keep, we get a uniform interpolant, which
is not necessarily a sub-ontology, but rather an ontology that may involve new
axioms in order to capture the SNOMED CT facts about hearts and heart
attacks in an ontology featuring exactly the two specified entities, heart and
heart attack. However, such an ontology may be hard to compute, if it exists at
all. Then, we also can use reveal, which essentially keeps the whole of SNOMED
CT and provides some export interface consisting of heart and heart attack only.
This can be useful when interfacing SNOMED CT with other ontologies, e.g. in
an interpretation. Finally, the use of select simply removes all SNOMED CT
axioms that involve other symbols than heart and heart attack. While this can
be computed easily, it might leave the user with a poor ontology capturing only a
small fraction and only the basic facts of SNOMED CT’s knowledge about hearts
and heart attacks. DOWL also adds language constructs to OWL to express
(non-monotonic) minimisation (resp. maximisation) of concepts, borrowing from
circumscription [19, 3]. A minimisation of an ontology, written minimize { O },
imposes a closed-world assumption on part of the ontology. It forces the entities
declared in O to be interpreted in a minimal way. Entities declared before the
minimised part are considered to be fixed for the minimisation. Symbols declared
after the minimisation can be varied. For example, in the following OWL theory,
B2 is a block that is not abnormal, because it is not specified to be abnormal,
and hence it is also on the table.

Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

then minimize {
Class: Abnormal
Individual: B1 Types: Abnormal }

then
Class: OnTable
Class: BlockNotAbnormal EquivalentTo:

Block and not Abnormal SubClassOf: OnTable
then %implied

Individual: B2 Types: OnTable

2 DOL uses smallest depleting Σ-modules in the sense of [15] for the semantics of
extractions.

4

Alternatively, we can maximise some entities. Using this, the example can be
formulated in a more natural way, because now the concept of normal blocks is
maximised:

ontology Blocks_Alternative2 =
Class: Block
Class: Normal
Individual: B1 Types: Block , not Normal
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
%% B1 is abnormal

Class: Ontable
Class: NormalBlock

EquivalentTo: Block and Normal
SubClassOf: Ontable
%% Normally , a block is on the table

maximize Normal vars Ontable BlockNotAbnormal
then %implied

Individual: B2 Types: Ontable
%% B2 is on the table

end

2.2 Alignments, Networks and Combinations in DOL and DOWL

DOWL comprises a comprehensive meta-language layer to express different kinds
of ontology alignments, following the main established semantics, as well as
networks of alignments.

alignment A : O1 to O2 =

s11 REL1 s12,
. . .,
sn1 RELn sn2 ,
[assuming DOMAIN]

end

Fig. 1. Syntax of DOL Alignments

DOL represents the general alignment
format introduced by the Alignment API
[8] as in Fig. 1 where O1 and O2 are
the ontologies to be aligned, si1 and si2
are O1 and respectively O2 symbols, for
i = 1, . . . , n, and si1 RELi si2 is a corre-
spondence which identifies a relation be-
tween the ontology symbols, either using
a relation IRI or a symbol: > (subsumes), < (is subsumed), = (equivalent),
% (incompatible), ∈ (instance) or 3 (has instance). The user can specify the
assumption about the universe where the relations in the correspondences are
interpreted using the assuming clause, with possible values SingleDomain (all
ontologies are interpreted over the same universe, which is also the default),
GlobalDomain (the domains of the ontologies are reconciled w.r.t. a global
domain of interpretation) and ContextualisedDomain (the domains are con-
nected via relations). DOWL’s treatment of bridge axioms in the so-called con-
textualised semantics closely mirrors the syntax and semantics of C-OWL [5]
and DDL [4]. More details of DOL’s alignment approach can be found in [6].

We now illustrate how, using bridge ontologies, networks of alignments can
be transformed into networks of ontology interpretations (morphisms), making
them amenable to colimits. Let A be an alignment (using the notations above).
The formal relations between the contributing ontologies can be given as a di-
agram in the shape of a W-alignment (see [25]) where, for SingleDomain O′

1

and O′
2 contain, respectively, all the symbols O1:s1 and O2:s2 that appear in a

correspondence s1 REL s2 in A, σi : O′
i → Oi maps Oi:s to s for i = 1, 2. B is

a bridge ontology, whose signature ΣB is the union of the signatures of O′
1 and

5

O′
2 and whose set of sentences is determined by the union of all sentences that

translate the correspondences of A in the underlying logical language.

O1 O2

B

O1' O2'
Bridge

For OWL, this means that Class1 < Class2 is translated to O1:Class1 v
O2:Class2, Class1 = Class2, to O1:Class1 ≡ O2:Class2 and so on. The signa-
ture morphisms ι1 and ι2 are signature inclusions.

Example 1. The foundational ontology (FO) repository Repository of Ontologies
for MULtiple USes (ROMULUS)3 contains alignments between a number of
foundational ontologies. We present here the alignment of the FOs DOLCE4

and BFO5 using DOL syntax.

alignment DolceLite2BFO :
<http :// www.loa-cnr.it/ontologies/DOLCE-Lite.owl > to
<http :// www.ifomis.org/bfo/1.1> =

endurant = IndependentContinuant ,
physical-endurant = MaterialEntity ,
physical-object = Object ,
perdurant = Occurrent ,
process = Process ,
quality = Quality ,
spatio-temporal-region = SpatiotemporalRegion ,
temporal-region = TemporalRegion ,
space-region = SpatialRegion

The bridge ontology of this alignment will contain only equivalence axioms
between the matched symbols.

Another alignment, between Dolce and GFO [14], includes the correspon-
dence generic-dependent < necessary for. This introduces in the bridge on-
tology the axiom generic-dependent v necessary for.

While alignments capture relations between ontologies, interpretations (or
ontology morphisms) capture the notion that one ontology can be completely
mapped into another one. For example, mereology can be mapped into Eu-
clidean space by interpreting parthood as containment between regions in space.
See section 4.3 for further examples. The network construct itself is an essen-
tial ingredient for the idea of combination, which in turn is the fundamental
operation enabling a formalisation of conceptual blending.

Networks of OWL ontologies are introduced by the following grammar:

NetworkDefn := network NAME = Network
Network ::= NAME* [excluding NAME*]

3 See http://www.thezfiles.co.za/ROMULUS/home.html
4 See http://www.loa.istc.cnr.it/DOLCE.html
5 See http://www.ifomis.org/bfo/

6

Here, the NAMEs can name ontologies, alignments, interpretations or other net-
works. A network is specified as a list of network elements (ontologies, ontology
mappings and sub-networks), followed by an optional list of excluded network
elements.

base morphisms

O1 O2

C

Base Ontology

Combined Ontology (colimit)

Input 1 Input 2colimit morphisms

Fig. 2. Combined ontologies.

DOL also provides means for combin-
ing a network of ontologies into a new on-
tology, such that the symbols related in
the network are identified. The syntax of
combinations is combine N where N is a
network. The semantics of such a com-
bination is given in terms of a colimit.
We refrain from presenting the category-
theoretic definition here (which can be
found in [1]). The colimit of a network is
similar to a disjoint union of its ontologies,
with some identifications of shared parts
as specified by the morphisms in the net-
work.

Fig. 2 shows the colimit of a diagram
consisting of two morphisms with a common source. The colimit identifies the
symbols of O1 and O2 that have a common origin in the base ontology and keeps
distinct the symbols that do not share in the base. We can now put together the
alignments between DOLCE and BFO and respectively DOLCE and GFO into
one network:

network SpaceNetwork =
DolceLite2BFO , DolceLite2GFO

We then can combine DolceLite and BFO taking into account the semantic
relations specified in the alignment DolceLite2BFO given above:

ontology DOLCELiteAndBFO =
combine DolceLite , BFO , DolceLite2BFO

The ontology combining the network of DolceLite2GFO will contain the axioms
of DolceLite and BFO as well as the bridge axioms of the alignment between
them.

3 Use Case 1: Ontology Design Patterns in DOWL

Ontology Design Patterns (ODP) are solutions for reoccurring ontology mod-
elling situations. [10] While there is a broad range of ODPs, many of the pro-
posed ODPs are basically bits of OWL code. One challenge for their adoption
was that there is no easy way to combine ODPs, or to integrate them with
existing ontologies. DOWL provides solutions for these problems.

Let us consider an example of a popular ODP: the reification of relations as
events. Within Semantic Web research contexts, this strategy is often employed
because both RDF and OWL do not support n-ary relationships directly.6 One
use case is the representation of relationships that change over time.

6 http://www.w3.org/TR/swbp-n-aryRelations/

7

We present below a simplified version of an ODP for temporally changing
relationships.

Prefix: : <http ://ex.com/odp/basicEvent#>
Ontology: <http ://ex.com/odp/basicEvent >

Class: Occurrent
Class: Continuant DisjointWith: Occurrent
Class: Time

ObjectProperty: has_agent Domain: Occurrent Range: Continuant
ObjectProperty: has_patient Domain: Occurrent Range: Continuant
ObjectProperty: has_start_time Range: Time
ObjectProperty: has_end_time Range: Time

Class: DomainPTN SubClassOf: Continuant
Class: RangePTN SubClassOf: Continuant

Class: ReifiedRelationPTN
SubClassOf: has_agent exactly 1 DomainPTN
SubClassOf: has_patient exactly 1 RangePTN
SubClassOf: has_start_time exactly 1 Time
SubClassOf: has_end_time exactly 1 Time

This pattern involves a reified relationship (a class) and two additional classes
(DomainPTN, RangePTN), which correspond to the domain and the range of the
non-reified relationship. These three classes are basically schematic placeholders
within the ODP. The ODP is instantiated by replacing them with ‘real’ classes.

DOWL allows the reuse and modification of ODPs. For example, assuming
we wanted to instantiate it for the ‘loves’ relationship. The following DOWL code
defines the lovesOntology as an instantiation of the Basic-Event-ODP, where we
have ‘love events’, which involves two people:

ontology lovesOntology = <http ://ex.com/odp/basicEvent > with
ReifiedRelationPTN |-> Love , DomainPTN |-> Person , RangePTN |-> Person

The resulting ontology contains all the axioms of the original ontology except
that the generic pattern symbols have been replaced by Love and Person. Thus,
the lovesOntology contains axioms like:

Class: Person SubClassOf: Continuant
Class: Love SubClassOf: has_agent exactly 1 Person

SubClassOf: has_patient exactly 1 Person

The lovesOntology inherits the properties has_agent and has_patient from the
ODP. DOWL also allows the replacement of these generic properties by more
pertinent ones. E.g., we may define the lovesOntologyv2 as the ontology that is
the result of replacing

ontology lovesOntologyv2 = lovesOntology with
has_agent |-> has_lover , has_patient |-> has_lovee

As one would expect, the lovesOntologyv2 contains the proper declarations
of the object properties (with their domain and ranges) and the revised axioms:

Class: Love
SubClassOf: has_lover exactly 1 Person
SubClassOf: has_lovee exactly 1 Person

8

4 Use Case 2: Conceptual Blending in DOWL

4.1 Conceptual Blending

Fig. 3. The blending of mother ship

Conceptual Blending is a theory for the
cognitive process behind creative thinking
and generation of novelty [9, 24]. The idea
is that novel concepts are created when al-
ready known, and potentially conflicting,
mental spaces are merged into a blended
space, which, due to the unique combi-
nation of information, exhibits emergent
properties. For example, the input con-
cepts mother and ship may be blended
into a new concept mother ship (see Fig.
3). According to the theory of conceptual
blending, the blending process involves
some shared structure, which is identified
across the different input concepts (the so-
called base space). The blended concept inherits the shared features from the base
space and selected features from the input spaces.

As mental spaces can be rich in information, the blends can take as many
shapes as there are possible combinations. While humans can more or less au-
tomatically sort out the blends that make sense and are valuable, automatic
blending needs guidance to avoid blends with conflicting or useless information.

4.2 Formalised Blending of Ontologies

Conceptual blending has been formalised using an approach based on Goguen’s
work on algebraic semiotics [12]. In this approach, the formal blending process is
modelled by a colimit computation, a construction that abstracts the operation
of disjoint unions modulo the identification of certain parts specified by the base
and the interpretations, as discussed in detail in [11, 18, 17]. Algebraic semiotics
does not claim to provide a comprehensive formal theory of blending. Indeed,
Goguen and Harrell admit that many aspects of blending, in particular concern-
ing the meaning of the involved notions, as well as the optimality principles for
blending, cannot be captured formally. However, the structural aspects can be
formalised and provide insights into the space of possible blends.

In [17], an approach to computational conceptual blending was presented,
which is in the tradition of Goguen’s proposal. The inputs for a blending pro-
cess (input concepts, generic space, mappings between them) can be formally
specified in a blending network represented in DOWL.

As illustrated in Figure 3, the process of blending involves two input concepts
along some shared structure. The input concepts and the shared structure can all
be represented as OWL ontologies. Together with the ontology morphisms that
identify the shared structure, these ontologies form a DOWL network, which can
be combined (compare Figure 2 above). Because the combination usually yields

9

an ontology that contains too much information (often it is even inconsistent), it
usually needs to be weakened by removing axioms or by using more sophisticated
generalisation or debugging strategies [7].

Class: Dog SubClassOf: Mammal
SubClassOf: has_habitat some Home
SubClassOf: has_body_shape some QuadrupleShape
SubClassOf: has_part exactly 2 Hindlegs
SubClassOf: has_part exactly 2 Forelegs
SubClassOf: covered_by some Hair

Class: Owl SubClassOf: Bird
SubClassOf: has_habitat some Forest
SubClassOf: has_shape some BirdShape
SubClassOf: has_part exactly 2 Legs
SubClassOf: has_part exactly 2 Wings
SubClassOf: has_part exactly 1 Beak
SubClassOf: covered_by some Feathers

Fig. 4. The two input spaces, Dog and Owl, represented as OWL theories.

We now give an example of a conceptual blending network specified in DOWL,
and blending the Dog-Owl.

4.3 Blending the Dog-Owl

ontology base =
ObjectProperty: has_habitat ObjectProperty: has_body_shape
ObjectProperty: has_part ObjectProperty: covered_by
Class: BackLimb Class: ForeLimb
Class: Animal SubClassOf: has_part exactly 2 ForeLimb

SubClassOf: has_part exactly 2 BackLimb

interpretation base2dog: base to Dog =
Animal |-> Dog , ForeLimb |-> Foreleg , BackLimb |-> Hindleg

interpretation base2owl: base to Owl =
Animal |-> Owl , ForeLimb |-> Wing , BackLimb |-> Leg

ontology initialblend =
{combine base , Dog , Owl , base2dog , base2owl} with Animal |-> Dowl

ontology dowlblend = initialblend reject
{Class: Dowl

SubClassOf: Bird
SubClassOf: has_body_shape some QuadrupleShape
SubClassOf: has_habitat some Home
SubClassOf: covered_by some Feathers}

Fig. 5. Base and Interpretations of the Dowl blend

To demonstrate the idea, we illustrate how two animals, a dog and an owl,
can be merged into a monster of sorts, a ‘dowl’. The input spaces are represented
as simplified OWL ontologies in Figure 4. Naturally, the concepts are not fully
represented, but the formalisations capture some of the important features of
the animals. The base ontology contains information shared between the input
spaces. Two interpretations map the base ontology onto the input spaces. See
Fig. 5 for a formal representation of the base ontology and the interpretations
to the input spaces. The ontology initialblend consists of the disjoint union of
all the features from the input spaces modulo the shared features from the base
space. Thus, in initialblend the blended concept Dowl is an animal that has two

10

forelimbs and two backlimbs, which is covered by hair and feathers, lives both
in homes and in the forest and has both the shape of a bird and a quadruped.
To achieve a reasonable concept, we define a second ontology, dowlblend, where
we selectively weaken initialblend by rejecting certain axioms.

Class: Dowl SubClassOf: Mammal
SubClassOf: has_habitat some Forest
SubClassOf: has_body_shape some BirdShape
SubClassOf: has_part exactly 2 HindLeg
SubClassOf: has_part exactly 2 Wing
SubClassOf: covered_by some Hair

Fig. 6. The blended concept Dowl.

The resulting ontology contains a new concept: a birdlike mammal with hair
living in the forest (see Figure 6). Note that the resulting concept combines
aspects of the original concepts selectively, which is something that could not
be done in OWL. Naturally, we could choose a number of different combina-
tions. Here, evaluation of the blends is essential and needs to be connected not
only to logical consistency, but to a consideration of rich background knowledge
ontologies that can help ensure the quality of the blends.

5 Discussion and Outlook

The blending diagrams (or networks) can be analysed and computed by the
Heterogeneous Tool Set Hets, a proof management system. Hets is integrated
into Ontohub7, an ontology repository which allows users to manage and col-
laboratively work on ontologies. DOL, DOWL, Hets, and Ontohub provide a
powerful set of tools making it easy to specify and computationally execute con-
ceptual blends, as discussed in [16, 22]. Moreover, the structuring mechanisms
of DOWL allow a new systematic approach to designing and reusing ontology
design patterns in OWL, and to re-organise existing ontology patterns. An ex-
tensive introduction to the features and the formal semantics of the full DOL
language can be found in [21].

Reasoning about DOWL ontologies and networks in many cases can be re-
duced to reasoning in OWL DL by using Hets for a) flattening out the struc-
turing constructs, which means computing an equivalent basic ontology for any
structured ontology, and b) taking combinations (colimits) of networks, also re-
sulting in a flat OWL DL ontology. Concerning reasoning about the different
forms of reduction, the easiest one is select and reject, which again can be flat-
tened out. For extract and remove, module extraction methods already provide
flat ontologies. For hide and reveal, the hiding can be uncovered (using colimits),
also resulting in a flat OWL DL ontology.

Future work concerns reasoning about DOWL ontologies that cannot be flat-
tened. In the case of keep and forget, this is addressed in current research about
forgetting and uniform interpolation [20]. Likewise, minimize and maximize are
difficult as well; they are related to fixpoints [2].

Acknowledgments. The project COINVENT acknowledges the financial
support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission,
under FET-Open Grant number: 611553.

7 www.ontohub.org 11

References

1. J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley,
New York, 1990.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

3. Piero A. Bonatti, Carsten Lutz, and Frank Wolter. The complexity of circumscrip-
tion in DLs. J. Artif. Intell. Res. (JAIR), 35:717–773, 2009.

4. A. Borgida and L. Serafini. Distributed Description Logics: Assimilating Informa-
tion from Peer Sources. Journal of Data Semantics, 1:153–184, 2003.

5. Paolo Bouquet, Fausto Giunchiglia, Frank Van Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt. C-owl: Contextualizing ontologies. In The Semantic Web-
ISWC 2003, pages 164–179. Springer, 2003.

6. M. Codescu, T. Mossakowski, and O. Kutz. A Categorical Approach to Ontology
Alignment. In Proc. of the 9th International Workshop on Ontology Matching
(OM-2014), ISWC-2014, Riva del Garda, Trentino, Italy, 2014. CEUR-WS.

7. Roberto Confalonieri, Marco Schorlemmer, Enric Plaza, Manfred Eppe, Oliver
Kutz, and Rafael Peñaloza. Upward Refinement for Conceptual Blending in De-
scription Logic: An ASP-based Approach and Case Study in EL++. In Odile Pa-
pini, Salem Benferhat, Laurent Garcia, Marie-Laure Mugnier, Eduardo L. Ferm,
Thomas Meyer, Renata Wassermann, Torsten Hahmann, Ken Baclawski, Adila
Krisnadhi, Pavel Klinov, Stefano Borgo, Oliver Kutz, and Daniele Porello, editors,
JOWO@IJCAI, volume 1517 of CEUR Workshop Proceedings. CEUR-WS.org,
2015.

8. Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos.
The alignment API 4.0. Semantic Web, 2(1):3–10, 2011.

9. Gilles Fauconnier and Mark Turner. Conceptual integration networks. Cognitive
Science, 22(2):133–187, 1998.

10. Aldo Gangemi and Valentina Presutti. Ontology design patterns. In Handbook on
ontologies, pages 221–243. Springer, 2009.

11. Joseph Goguen. Semiotic morphisms, representations and blending for interface
design. In In Proceedings, AMAST Workshop on Algebraic Methods in Language
Processing, pages 1–15. AMAST Press, 2003.

12. Joseph A. Goguen. An Introduction to Algebraic Semiotics, with Applications
to User Interface Design. In Chrystopher L. Nehaniv, editor, Computation for
Metaphors, Analogy and Agents, number 1562 in Lecture Notes in Computer Sci-
ence, pages 242–291. Springer, 1999.

13. Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus. Image schemas in compu-
tational conceptual blending. Cognitive Systems Research, 2016. In print.

14. Heinrich Herre. General Formal Ontology (GFO) : A Foundational Ontology for
Conceptual Modelling. In Roberto Poli and Leo Obrst, editors, Theory and Appli-
cations of Ontology, volume 2. Springer, Berlin, 2010.

15. Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Logic-based on-
tology comparison and module extraction, with an application to dl-lite. Artif.
Intell., 174(15):1093–1141, 2010.

16. Oliver Kutz, John Bateman, Fabian Neuhaus, Till Mossakowski, and Mehul Bhatt.
E pluribus unum: Formalisation, Use-Cases, and Computational Support for Con-
ceptual Blending. In Tarek R. Besold, Marco Schorlemmer, and Alan Smaill,
editors, Computational Creativity Research: Towards Creative Machines, Thinking
Machines. Atlantis/Springer, 2014.

12

17. Oliver Kutz, Till Mossakowski, Joana Hois, Mehul Bhatt, and John Bateman. On-
tological Blending in DOL. In Tarek R. Besold, Kai-Uwe Kühnberger, Marco Schor-
lemmer, and Alan Smaill, editors, Computational Creativity, Concept Invention,
and General Intelligence, Proc. of the 1st International Workshop C3GI@ECAI,
volume 01, Montpellier, France, August 2012. Publications of the Institute of Cog-
nitive Science, Osnabrück.

18. Oliver Kutz, Till Mossakowski, and Dominik Lücke. Carnap, Goguen, and the
Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology
Design. Logica Universalis, 4(2):255–333, 2010. Special Issue on ‘Is Logic Univer-
sal?’.

19. V. Lifschitz. Circumscription. In Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 3, pages 297–352. Oxford University Press, 1994.

20. Carsten Lutz and Frank Wolter. Foundations for Uniform Interpolation and For-
getting in Expressive Description Logics. In Toby Walsh, editor, IJCAI, pages
989–995. IJCAI/AAAI, 2011.

21. Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The Road
to Universal Logic–Festschrift for 50th birthday of Jean-Yves Beziau, Volume II,
chapter The distributed ontology, modelling and specification language - DOL.
Studies in Universal Logic. Birkhäuser, 2015.

22. Fabian Neuhaus, Oliver Kutz, Mihai Codescu, and Till Mossakowski. Fabricating
Monsters is Hard - Towards the Automation of Conceptual Blending. In Proc. of
Computational Creativity, Concept Invention, and General Intelligence (C3GI-14),
volume 1-2014, pages 2–5, Prague, 2014. Publications of the Institute of Cognitive
Science, Osnabrück.

23. Object Management Group. The distributed ontology, modeling, and specification
language (DOL), 2015. Draft answer to RFP available at https://ontoiop.org.

24. Mark Turner. The Origin of Ideas: Blending, Creativity, and the Human Spark.
Oxford University Press, 2014.

25. Antoine Zimmermann, Markus Krötzsch, J. Euzenat, and Pascal Hitzler. Formal-
izing Ontology Alignment and its Operations with Category Theory. In Proc. of
FOIS-06, pages 277–288, 2006.

13

