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Abstract. We propose a novel approach in which module extraction
is reduced to a reasoning problem in datalog. Our approach generalises
existing approaches and can be tailored to preserve only specific kinds
of entailments, which allows us to extract significantly smaller modules.
An evaluation on widely-used ontologies shows very encouraging results.

1 Introduction

Module extraction is the task of computing, given an ontology 7 and a signature
of interest X, a (preferably small) subset M of T (a module) that preserves all
relevant entailments in 7 over the set of symbols Y. Such an M is indistinguish-
able from 7 w.r.t. X, and T can be safely replaced with M in applications of T
that use only the symbols in Y.

Module extraction has received a lot of attention in recent years [27, 6,25, 17,
10,9, 23], and modules have found a wide range of applications, including ontol-
ogy reuse [6,13], matching [12], debugging [29,19] and classification [1, 30, 4].

Preservation of relevant entailments is formalised via inseparability relations.
The strongest notion is model inseparability, which requires that it must be pos-
sible to turn any model of M into a model of T by (re-)interpreting only the
symbols outside Y; such an M preserves all second-order entailments of 7 w.r.t.
XY [15]. A weaker and more flexible notion is deductive inseparability, which re-
quires only that 7 and M entail the same X-formulas in a given query language.
Unfortunately, the decision problems associated with module extraction are in-
variably of high complexity, and often undecidable. For model inseparability,
checking whether M is a X-module in 7T is undecidable even if T is restricted to
be in the description logic (DL) £L£, for which standard reasoning is tractable.
For deductive inseparability, the problem is typically decidable for lightweight
DLs and “reasonable” query languages, albeit of high worst-case complexity;
e.g., the problem is already ExPTIME-hard for £L if we consider concept inclu-
sions as the query language [20]. Practical algorithms that ensure minimality of
the extracted modules are known only for acyclic ££Z [15] and DL-Lite [17].

Practical module extraction techniques are typically based on sound approxi-
mations: they ensure that the extracted fragment M is a module (i.e., inseparable
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from T w.r.t. X), but they give no minimality guarantee. The most popular such
techniques are based on a family of polynomially checkable conditions called syn-
tactic locality [5,6,24]; in particular, L-locality and T1*-locality. Each locality-
based module M enjoys a number of desirable properties for applications: (7) it
is model inseparable from T (ii) it is depleting, i.e., T \ M is inseparable from
the empty ontology w.r.t. X; (iii) it contains all justifications (a.k.a. explana-
tions) in T of every X-formula entailed by 7; and (iv) last but not least, it can
be computed efficiently, even for very expressive ontology languages.
Locality-based techniques are easy to implement, and surprisingly effective in
practice. However, the extracted modules can be rather large, which limits their
usefulness in some applications [8]. One way to address this is to develop tech-
niques that produce smaller modules while still preserving properties (i) (%ii).
Efforts in this direction have confirmed that locality-based modules can be far
from optimal in practice [10]; however, these techniques only apply to rather
restricted languages and utilise algorithms with high worst-case complexity.
Another approach to computing smaller modules is to weaken properties
(i) (i), which are stronger than required for many applications. In particular,
model inseparability (property (7)) is a very strong condition, and deductive in-
separability would usually suffice, with the query language determining which
kinds of consequence are preserved; in modular classification, for example, only
atomic concept inclusions need to be preserved. However, practical module ex-
traction techniques for expressive ontology languages yield modules that satisfy
all three properties, and hence are potentially much larger than they need to be.
In this paper, we propose a technique that reduces module extraction to a
reasoning problem in datalog. The connection between module extraction and
datalog was first observed in [28], where it was shown that locality L-module
extraction for £L ontologies could be reduced to propositional datalog reasoning.
Our approach takes this connection much farther by generalising both locality-
based and reachability-based [23] modules for expressive ontology languages in
an elegant way. A key distinguishing feature of our technique is that it can
extract deductively inseparable modules, with the query language tailored to
the requirements of the application at hand, which allows us to relax Property
(i) and extract significantly smaller modules. In all cases our modules preserve
the nice features of locality: they are widely applicable (even beyond DLs), they
can be efficiently computed, they are depleting (Property (7)) and they preserve
all justifications of relevant entailments (Property (iii)). We have implemented
our approach using the RDFox datalog engine [22]. Our evaluation shows that
module size consistently decreases as we consider weaker inseparability relations,
which could significantly improve the usefulness of modules in applications.

2 Preliminaries

Ontologies and Queries We use standard first-order logic and assume fa-
miliarity with description logics, ontology languages and theorem proving. A
signature X' is a set of predicates and Sig(F') denotes the signature of a set of



formulas F. To capture a wide range of KR languages, we formalise ontology ax-
ioms as rules: function-free sentences of the form Vx.[p(x) — Jy [V, ¥i(x,¥)]],
where ¢, 1; are conjunctions of distinct atoms. Formula ¢ is the rule body and
Jy.[Vi_, ¥i(x,y)] is the head. Universal quantification is omitted for brevity.
Rules are required to be safe (all variables in the head occur in the body). A
TBox T is a finite set of rules; TBoxes mentioning equality (=) are extended
with its standard axiomatisation. A fact 7 is a function-free ground atom. An
ABox A is a finite set of facts. A positive existential query (PEQ) is a formula
q(x) = Jy.p(x,y), where @ is built from function-free atoms using only A and V.

Datalog A rule is datalog if its head has exactly one atom (which could be L, the
nullary falsehood predicate) and all variables are universally quantified. A datalog
program P is a set of datalog rules. Given P and an ABox A, their materialisation
is the set of facts entailed by PU.A, which can be computed by means of forward-
chaining. A fact 7 is a consequence of a datalog rule r = A", v/ — ¢ and facts
V1,0 if ¥ = do with o a most-general unifier (MGU) of ~;,~! for each
1 < ¢ < n. A (forward-chaining) proof of v in PUA is a pair p = (T, \) where T’
is a tree, A is a mapping from nodes in T to facts such that for each node v the
following holds: 1. A(v) = « if v is the root of T; 2. if v is a leaf then A\(v) € A
or (— A(v)) € P; and 3. if v has children wy, ..., w, then A(v) is a consequence
of r and A(wy), ..., AM(w,). Forward-chaining is sound (if v has a proof in PU.A
then it is entailed by P U.A) and complete (if «y is entailed by P U A then either
~ has a proof in P U A or so does L). Finally, the support of 7 is the set of rules
occurring in some proof of v in P U A.

Inseparability Relations & Modules We next recapitulate the most common
inseparability relations studied in the literature. TBoxes 7 and 7' are
— X-model inseparable (T =% T'), if for every model Z of T there is a model
J of 77 with the same domain s.t. AZ = A7 for each A € X, and vice versa.
— Y-query inseparable (T =% T7) if for every Boolean PEQ ¢ and Y-ABox A
we have TUAEqit TTUA = q.
— Y-fact inseparable (T =% T') if for every fact v and ABox A over X we
have TUAE~ I T'UA .
— X-implication inseparable (T =y, T') if for each ¢ of the form A(x) — B(x)
with ABe X, T o iff T' |= .
These relations are naturally ordered from strongest to weakest: =7 C =%, C
=f. C =i for each non-trivial X.
Given an inseparability relation = for X, a subset M C T is a =-module of
T if T = M. Furthermore, M is minimal if no M’ C M is a =-module of T.

3 Module Extraction via Datalog Reasoning

In this section, we present our approach to module extraction by reduction into
a reasoning problem in datalog. Our approach builds on recent techniques that
exploit datalog engines for ontology reasoning [16,26,31]. In what follows, we
fix an arbitrary TBox 7 and signature X C Sig(7). Unless otherwise stated,



(r1) A(z) = Jy1.[R(z,y1) A B(y1)] AC3JR.B
(r2) A(z) = Jy2.[R(z, y2) A Cy2)] ALC 3R.C
(r3) B(z) AC(z) — D(z) BnCCD
(ra) D(x) — Jys.[S(z,y3) A E(ys3)] DC3S.E
(rs) D(z) AS(z,y) = F(y) DLCVS.F
(re) S(z,y) NE(y) AF(y) = G(z) IS(ENF)EG
(r7) G(z)AH(z) — L GNMHC L

Fig. 1. Example TBox 7°* with DL translation

our definitions and theorems are parameterised by such 7 and Y. We assume
w.l.o.g. that rules in 7 share no existentially quantified variables. For simplicity,
we also assume that 7 contains no constants (all results extend to constants [3]).

3.1 Overview and Main Intuitions

Our overall strategy to extract a module M of T for an inseparability relation
=%, with z € {m, q,f, i}, can be summarised by the following steps:
1. Pick a substitution 8 mapping all existentially quantified variables in T to
constants, and transform 7T into a datalog program P by (i) Skolemis-
ing all rules in 7 using 6 and (i) turning disjunctions into conjunctions
while splitting them into different rules, thus replacing each function-free
disjunctive rule of the form ¢(x) — \/I_; ¢;(x) with datalog rules ¢(x) —
B, s p(X) = G (x).
2. Pick a Y-ABox Ay and materialise P U Ag.
3. Pick a set A, of “relevant facts” in the materialisation and compute the
supporting rules in P for each such fact.
4. The module M consists of all rules in 7 that yield a supporting rule in P.
Thus, M is fully determined by the substitution # and the ABoxes Ag, A,
The main intuition behind our module extraction approach is that we can pick
0, Ag and A, (and hence M) such that each proof p of a X-consequence ¢ of T
to be preserved can be embedded in a forward chaining proof p’ in P U Aq of a
relevant fact in A,.. Such an embedding satisfies the key property that, for each
rule r involved in p, at least one corresponding datalog rule in P is involved in
p'. In this way we ensure that M contains the necessary rules to entail ¢. This
approach, however, does not ensure minimality of M: since P is a strengthening
of 7 there may be proofs of a relevant fact in P U Ay that do not correspond to
a X-consequence of T, which may lead to unnecessary rules in M.

To illustrate how our strategy might work in practice, consider 7" in Fig. 1,
Y ={B,(,D, G}, and that we want a module M that is X-implication insepara-
ble from 7¢*. This is a simple case since ¢ = D(z) — G(z) is the only non-trivial
Y-implication entailed by 7¢*; thus, for M to be a module we only need M |= .
Note that proving 7% = ¢ amounts to proving 7¢ U {D(a)} | G(a) (with a a
fresh constant). Figure 2(a) depicts a hyper-resolution tree p showing how G(a)
can be derived from the clauses corresponding to r4—r¢ and D(a), with rule 74



Fig. 2. Proofs of G(a) from D(a) in (a) 7°* and (b) the corresponding datalog program

transformed into clauses 7 = D(z) — S(z, f(z3)) and rj = D(x) — E(f(x3)).
Hence M = {ry—rg} is a X-implication inseparable module of 7¢*, and as G(a)
cannot be derived from any subset of {rs—rs}, M is also minimal.

We pick Ag to contain the initial fact D(a), A, to contain the fact to be
proved G(a), and we make 6 map variable y3 in r4 to a fresh constant ¢, in which
case rule r4 corresponds to the rules D(x) — S(z,¢) and D(z) — E(c) in P.

Figure 2(b) depicts a forward chaining proof p’ of G(a) in P U {D(a)}. As
shown, p can be embedded in p’ via 6 by mapping functional terms over f to the
fresh constant c. This way, the rules involved in p are mapped to the datalog rules
involved in p’ via 0. Hence, we will extract the (minimal) module M = {rs—rg}.

3.2 The Notion of Module Setting

The substitution # and the ABoxes Ay and A,., which determine the extracted
module, can be chosen in different ways to ensure the preservation of different
kinds of X-consequences. The following notion of a module setting captures in
a declarative way the main elements of our approach.

Definition 3.1. A module setting for T and X is a tuple X = (6, Ap, A,.) with
0 a substitution from existentially quantified variables in T to constants, Ay a
XY-ABoz, A, a (Sig(T)U{L})-ABoz, and s.t. no constant in X occurs in T.
The program of X is the smallest datalog program PX containing, for each
r = @(x) = Jy.[Vio, vi(x,y)] in T, the rule ¢ — L if n = 0 and all rules
@ — 0 for each 1 <1i < n and each atom ~ in ¢;. The support of X is the set
of rules r € PX that support a fact from A, in PXUAy. The module MX of X is
the set of rules in T that have a corresponding datalog rule in the support of X.

3.3 Modules for each Inseparability Relation

We next consider each inseparability relation =%, where z € {m,q,f,i}, and
formulate a specific setting X, which provably yields a =3,-module of 7.

Implication Inseparability The example in Sect. 3.1 suggests a natural set-
ting X; = (0, Ay, A,) that guarantees implication inseparability. As in our exam-
ple, we pick 6 to be as “general” as possible by Skolemising each existentially



quantified variable to a fresh constant. For A and B predicates of the same arity

n, proving that 7 entails a X-implication ¢ = A(x1,...,2,) = B(z1,...,z,),
amounts to showing that TU{A(a1,...,an)} = B(a1,...,a,) for fresh constants
ai,-..,a,. Thus, following the ideas of our example, we initialise Ay with a fact

A(ck, ..., cR) for each n-ary predicate A € X, and A, with a fact B(cj,...,c})
for each pair of n-ary predicates {B,A} C ¥ with B # A.

Definition 3.2. For each existentially quantified variable y; in T, let c,, be a
fresh constant. Furthermore, for each A € X of arity n, let cj,...,cx be also
fresh constants. The setting X; = (0, AL, A} is defined as follows:

— 0" ={y; — ¢y, | y; existentially quantified in T },

— Ay = {A(ch,...,cR) | A n-ary predicate in X}, and

— A ={B(ch,...,cR) |A#B n-ary predicates in X} U{L}.

The setting X; is reminiscent of the datalog encodings typically used to check
whether a concept A is subsumed by concept B w.r.t. a “lightweight” ontology
T [18,26]. There, variables in rules are Skolemised as fresh constants to produce
a datalog program P and it is then checked whether P U {A(a)} = B(a).

Theorem 3.3. MX =i, T.

Fact Inseparability The setting X; in Def. 3.2 cannot be used to ensure fact
inseparability. Consider again 7¢* and X = {B,C,D,G}, for which MX =
{rsa,rs,r6}. For A = {B(a),C(a)} we have T** UA |= G(a) but MX U A £ G(a),
and hence MX is not fact inseparable from 7.

More generally, MXi will only preserve X-fact entailments 7 U A |= v where
A is a singleton. However, for a module to be fact inseparable from 7 it must
preserve all Y-facts when coupled with any 3-ABox. We achieve this by choosing
Ao to be the critical ABox for X, which consists of all facts that can be con-
structed using X and a single fresh constant [21]. Since every X-ABox can be
homomorphically mapped into the critical X-ABox, we can show that all proofs
of a Y-fact in 7 U A are embeddable into a proof of a relevant fact in PX U Aj.

Definition 3.4. Let constants cy, be as in Def. 3.2, and let x be a fresh constant.
The setting X; = (0F, AL, ALY is defined as follows: (i) 6F = 0", (ii) Al =
{A(*,...,%) | A€ X}, and (iii) AT = Af U {1}

The datalog programs for X; and Xs coincide; hence, the only difference between
the two settings is in the definition of their corresponding ABoxes. In our exam-
ple, both Af), and Af. contain facts B(*), C(x), D(), and G(x). Clearly, PXUAq =
G(x) and the proof additionally involves rule rz. Thus MXf = {rs, r4, 75,76}

Theorem 3.5. MXf Efz T.

Query Inseparability Positive existential queries constitute a much richer
query language than facts as they allow for existentially quantified variables.
Thus, the query inseparability requirement invariably leads to larger modules.



For instance, let 7 = 7°* and X' = {A, B}. Given the X-ABox A = {A(a)}
and XY-query ¢ = Jy.B(y) we have T**UA |= g (due to rule 7). The module MXf
is, however, empty. Indeed, the materialisation of PXfU{A(*)} consists of the ad-
ditional facts R(x, ¢y, ) and B(cy, ) and hence contains no relevant fact mentioning
only *. Thus, MX* U A }£ g and MX' is not query inseparable from 7°%.

Our example suggests that, although the critical ABox is constrained enough
to embed every X-ABox, we need to consider additional relevant facts to capture
all proofs of a X-query. In particular, rule r; implies that B contains an instance
whenever A does: a dependency that is then checked by ¢. This can be captured
by considering fact B(cy, ) as relevant, in which case 7 would be in the module.

More generally, we consider a module setting X that differs from Xf only in
that all X-facts (and not just those over *) are considered as relevant.

Definition 3.6. Let constants c,, and x be as in Def. 3.4. The selting Xq =
(09, A3, A3) is as follows: (i) 09 =0, (ii) AY = Al and (iii) A% consists of L
and all X-facts A(a1, ... ,a,) with each a; either a constant c,, or .

Theorem 3.7. MXs =% T.

Model Inseparability The modules generated by x4, may not be model in-
separable from 7. To see this, let 7 = T and ¥ = {A,D,R}, in which
case MXe = {ry,m3}. The interpretation Z where AT = {a,b}, AT = {a},
BZ = €% = {b}, D* = 0 and R = {(a,b)} is a model of MXa. However, Z cannot
be extended to a model of 3 (and hence of T') without reinterpreting A, R or D.
To achieve model inseparability, it suffices to ensure that each model of the
module can be extended to a model of T in a uniform way. Thus, M = {ry,rs, 73}
is a =R-module of 7°* since all its models can be extended by interpreting E, F
and G as the domain, H as empty, and S as the Cartesian product of the domain.
We can capture this idea in our framework by means of the following setting.

Definition 3.8. The setting X, = (0™, A, AM) is as follows: 0™ maps each
existentially quantified y; to the fresh constant x, AF = Af, and A™ = AFU{L}.

In our example, PX U AT entails the relevant facts A(x), R(x,*) and D(x), and
hence MXm = {ry rq,13}.

Theorem 3.9. MXr =TT

3.4 Modules for Ontology Classification

Module extraction has been exploited for optimising ontology classification [1, 30,
4]. In this case, it is not only required that modules are implication inseparable
from T, but also that they preserve all implications A(x) — B(x) with A € ¥
but B ¢ X'. This requirement can be captured as given next.

Definition 3.10. TBozes T and T' are X-classification inseparable (T =5, T")
if for each ¢ of the form A(x) — ¢ where A € X and either ¢ = L or ¢ = B(x)
for B e Sig(TUT), we have T E ¢ iff T' £ .



Classification inseparability is a stronger requirement than implication insepara-
bility. For T = {A(x) — B(z)} and X = {A}, M = () is implication inseparable
from 7, whereas classification inseparability requires that M = T.

Modular reasoners such as MORe [1] and Chainsaw [30] rely on locality L-
modules, which satisfy this requirement. Each model of a |-module M can be
extended to a model of T by interpreting all additional predicates as empty,
which is not possible if A € X and T entails A(x) — B(z) but M does not. We
can cast |-modules in our framework with the following setting, which extends
Xm in Def. 3.8 by also considering as relevant facts involving predicates not in 3.

Definition 3.11. The setting X, = (6°, A5, A°) is as follows: 6° = 6™, A5 =
AR, and A, consists of L and all facts A(x, ..., *) where A € Sig(T).

The use of L-modules is, however, stricter than is needed for ontology classifi-
cation. For instance, if we consider 7 = 7°* and X = {A} we have that MX®
contains all rules r1—rg, but since A does not have any subsumers in 7°* the
empty TBox is already classification inseparable from 7T ¢*.

The following module setting extends X; in Def. 3.2 to ensure classification
inseparability. As in the case of xp in Def. 3.11, the only required modification
is to also consider as relevant facts involving predicates outside /.

Definition 3.12. Setting X = (6%, A5, AS) is as follows: ¢ = 6, A5 = A},
and AS consists of L and all facts B(cy, . ..,cR) s.t. A # B are n-ary predicates,
A€ X and B € Sig(T).

Indeed, given T = 7" and X' = {A}, the module for X. is empty, as desired.

Theorem 3.13. MXc =% 7.

3.5 Additional Properties of Modules

Although the essential property of a module M is that it captures all relevant
J-consequences of T, in some applications modules are expected to satisfy addi-
tional requirements. For ontology reuse, it is sometimes desirable that a module
M does not “leave any relevant information behind” in the sense that 7\ M does
not entail any relevant X-consequence—a property known as depletingness [17].

Definition 3.14. Let =5, be an inseparability relation. A =%,-module M of T
is depleting if T\ M =% 0.

Note that not all modules are depleting: for some relevant X-entailment ¢ we
may have M = ¢ (as required by the definition of module), but also (T\M) [= ¢,
in which case M is not depleting. The following theorem establishes that all
modules defined in Sect. 3.3 are depleting.

Theorem 3.15. MX= is depleting for each z € {m,q,f,i,c}.

Another application of modules is to optimise the computation of justifica-
tions: minimal subsets of a TBox that suffice to entail a given formula [14, 29].



Definition 3.16. Let T = ¢. A justification for ¢ in T is a minimal subset
T CT such that T' |E .

Justifications are displayed in ontology development platforms as explanations
of why an entailment holds, and tools typically compute all of them. Extracting
justifications is a computationally intensive task, and locality-based modules
have been used to reduce the size of the problem: if 77 is a justification of ¢ in
T, then 77 is contained in a locality module of T for X' = Sig(y). Our modules
are also justification-preserving, and we can adjust our modules depending on
what kind of first-order sentence ¢ is.

Theorem 3.17. Let T’ be a justification for a first-order sentence @ in T and
let Sig(p) C X. Then, T' C MX~. Additionally, the following properties hold:
(i) if ¢ is a rule, then T' C MXa; (ii) if ¢ is datalog, then T' C MX'; and
(1i3) if ¢ is of the form A(x) — B(x) or A(x) — L, then T' C MX; finally, if ¢
satisfies A € X, B € Sig(T), then T' C MX-.

3.6 Complexity of Module Extraction

We conclude this section by showing that our modules can be efficiently com-
puted in most practically relevant cases.

Theorem 3.18. Let m be a non-negative integer and L a class of TBoxes s.t.
each rule in a TBox from L has at most m distinct universally quantified vari-
ables. The following problem is tractable: given z € {q,f,i,c}, T € L, andr € T,
decide whether r € MX=. The problem is tractable for arbitrary L if z = m.

We now provide a proof sketch for this result. Checking whether a datalog
program P and an ABox A entail a fact is feasible in O(|P| - n?), with n the
number of constants in P U A and v the maximum number of variables in a rule
from P [7]. Thus, although datalog reasoning is exponential in the size of v (and
hence of P), it is tractable if v is bounded by a constant.

Given arbitrary 7 and X, and for z € {m, q,f,i,c}, the datalog program PX=
can be computed in linear time in the size of |7|. The number of constants n in X,
(and hence in PX=UAZ) is linearly bounded in |7 |, whereas the maximum number
of variables v coincides with the maximum number of universally quantified
variables in a rule from 7. As shown in [31], computing the support of a fact in a
datalog program is no harder than fact entailment, and thus module extraction in
our approach is feasible in O(|T|-n"), i.e., tractable for ontology languages where
rules have a bounded number of variables (as is the case for most DLs). Finally,
for z = m the setting X,,, involves a single constant * and module extraction boils
down to propositional datalog reasoning (a tractable problem regardless of 7).

3.7 Module Containment and Optimality

Intuitively, the more expressive the language for which preservation of conse-
quences is required the larger modules need to be. The following proposition
shows that our modules are consistent with this intuition.



Proposition 3.19. MXi C MXt C MXa C MXm C MXe . MXi C MXe C MXb,

Finally, we ask ourselves whether each X, with z € {q,f,i, m,c} is optimal for
its inseparability relation in the sense that there is no setting producing smaller
modules. To make such statements precise we need to consider families of module
settings, i.e., functions that assign a module setting to each pair of 7 and X.

Definition 3.20. A setting family is a function ¥ that maps a TBox T and
signature X' to a module setting for T and X. Family ¥ is uniform if (i) for
every X and pair T, T with the same number of existentially quantified variables,
U(T,X) and (T, %) are isomorphic; (ii) for every T and X C X', (T, X)
is a restriction of W(T,X") to X. Let z € {i,f,q,m,c}; then ¥ is z-admissible
if, for each T and X, MY (T2 js q =%-module of T. Finally, ¥ is z-optimal if
MEYTE) € MPT-2) for every T, X and every uniform W' that is z-admissible.

Uniformity ensures that settings do not depend on the specific shape of rules in
T, but rather only on X' and the number of existentially quantified variables in 7.
In turn, admissibility ensures that each setting yields a module. The (uniform
and admissible) family ¥# for each setting X* in Sects. 3.3 and 3.4 is defined in
the obvious way: for each T and X', W*(T,Y) is the setting X* for 7 and X.

Theorem 3.21. ¥* is z-optimal for z € {i,m,c}.

In contrast, ¥9 and ¥f are not optimal. To see this, let 7 = {A(z) —
B(z),B(z) — A(z)} and X' = {A}. The empty TBox is fact inseparable from
T since the only X-consequence of T is the tautology A(z) — A(xz). However,
MXt = T since fact A(a) is in Af and its support is included in the module.
One can provide a family of settings that distinguishes tautological from non-
tautological inferences; however, this family yields settings of exponential size in
| 7|, which is undesirable in practice.

4 Evaluation

We have implemented a prototype system for module extraction, called PrisM,
that uses RDFox [22] for datalog materialisation and exploits some code from
PAGOdA [31] for computing the support of an entailed fact. We have evaluated
PrisM on a set of ontologies identified by Glimm et al. [11] as non-trivial for
reasoning. We have normalised all ontologies to make axioms equivalent to rules.!

We compared the size of our modules with the locality-based modules com-
puted using the OWL API. We have followed the experimental methodology
from [8] where two kinds of signatures are considered: genuine signatures corre-
sponding to the signature of individual axioms, and random signatures. Unlike
in [8], we extracted random signatures using a randomised graph sampling algo-
rithm provided by RDFox. The advantage of this approach is that the resulting

! The ontologies used in our experiments are available for download at
https://krr-nas.cs.ox.ac.uk/2015/jair/PrisM/testOntologies.zip.



GALEN-no-F1T|Fly-anat.-Xp| Fwma-lite Gazetteer Molecule-role | SNOMED |Nc1-12.04e
ALEH ALERIT | ALEHT ALET ALET SH SH(D)
rules 66191 42107 168828 382158 153020 191891 193453
gen rnd gen | rnd | gen | rnd gen rnd gen rnd |gen| rnd | gen | rnd
1 [14253| 27771[22348| 23139(|47192(49345(214820(215886(143399(143448|433[11766(1140(16820
X | 9799| 17879| 112 595 12| 402 <1 38 6 28(426|11342| 390| 7974
TLF[13749] 27184 221 982 20( 1658 9| 1050 2 16(427(11762|1138|16817
Xm [13686| 27175| 217 973 12| 1450 8| 1049 1 14]426(11651|1138|16817
Xq | 9448| 18315 107| 757 12| 1450 8| 1049 1 14|426|11644| 385| 8969
X¢ | 5962| 18225 80| 664 1 74 <1 16 <1 5(426(11342| 371| 8415
X; | 3279| 17646 12 333 1 74 <1 16 <1 5(397|11342| 120| 6228
| 2] 3 107 3 28 2| 154 3 312 3 19| 3] 202 3| 326

Table 1. Results for genuine and random signatures X

signatures are “semantically connected”, which is likely to be the case in prac-
tical applications. For each type of signature and ontology, we took a sample
of 400 runs and averaged module sizes. Random signatures were obtained from
samples of size 1/1000 the size of the original ontology. We present results for
the 7 largest ontologies from [11] in terms of signature (this selection is repre-
sentative for the behaviour on the smaller ontologies; see [3]). All experiments
were performed on a server with 2 Intel Xeon E5-2670 processors and 90GB of
allocated RAM, running RDFox on 16 threads.

Table 1 summarises our results. We compared L-modules with the modules
for X (Sect. 3.4) and T1*-modules with those for X, Xq, Xf, and X; (Sect. 3.3).
We can see that module size consistently decreases as we consider weaker in-
separability relations. In some cases, the modules for X. are over 3 orders of
magnitude smaller than |-modules. The difference between T1*-modules and
X; modules can also be considerable, reaching 2 orders of magnitude. In fact,
Xc, X5, and X; modules are sometimes empty, meaning that no two predicates
in X are in an implication relationship (which can happen for large ontologies
and small X). Also note that our modules for model inseparability slightly im-
prove on T1*-modules. Finally, recall that our modules may not be minimal for
their inseparability relation. Since techniques for extracting minimal modules are
available only for model inseparability, and for restricted languages, we could not
assess how close our modules are to minimal ones.

Computation times were generally higher for X. than for the other settings
due to the larger signature involved in computing modules for X.. For random
signatures, average times (over all settings) were 54s for GALEN, 2s for FLY, 5s
for FMA, 13s for Gazetteer, 7s for Molecule, 32s for SNOMED, and 44s for NCI,
which is considerably higher than for locality-based modules, but still acceptable
for some applications. For genuine signatures, the times were accordingly lower.

It should be noted that PrisM currently relies on RDFox, which is not opti-
mised for module extraction and is used in a black-box fashion. We conjecture
that the performance of our approach can be considerably improved by ded-
icated systems. Another interesting task would be integrating our techniques
in existing modular reasoners as well as in systems for justification extraction.
Finally, the issue of optimality of our approach requires further investigation.
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