
Weaving Ontology Aspects Using a Catalog of
Structural Ontology Design Patterns

Ralph Schäfermeier and Adrian Paschke

Corporate Semantic Web Group, Institute of Computer Science,
Freie Universität Berlin, Germany

{schaef,paschke}@inf.fu-berlin.de
http://www.csw.inf.fu-berlin.de

Abstract. Modular development of ontologies proves beneficial at dif-
ferent stages of the ontology lifecycle. In our previous work, we proposed
aspect-oriented ontology development as a flexible approach to modular
ontology development and a-posteriori modularization of existing mono-
lithic ontologies, inspired by aspect-oriented programming and based on
so called cross-cutting concerns. Similar to other formalisms for mod-
ular ontologies (e.g. E-Connections), aspect-oriented ontologies rely on
an extension of the used ontology language. This derivation from the
standard in turn requires specially adapted tools in order to use these
ontologies in applications. In this paper, we present an approach to the
recombination of aspect-oriented ontology modules to standard OWL 2
ontologies by using an aspect-weaving service. The weaving service relies
on a preconfigured catalog of structural ontology design patterns. We
show that the use of the weaving service yields syntactically correct and
semantically complete ontologies while still allowing ontology developers
to fully benefit from modular ontology development.

Keywords: Aspect-Oriented Ontology Development, Aspect-Oriented
Programming, Ontology Modularization, Ontology Design Patterns

1 Introduction

Modular ontology development has proved beneficial when it comes to improve-
ment of reasoning and query result retrieval performance, scalability for ontol-
ogy evolution and maintenance, complexity management, amelioration of un-
derstandability, reuse, context-awareness, and personalization [17]. A significant
amount of research work has been dedicated in the field of ontology modular-
ization, and various kinds of approaches tackle the problem from different per-
spectives. One kind of approaches provides algorithmic solutions for the problem
of modularizing existing large and monolithic ontologies, while others provide
methodological and formal means for contsructing ontologies in a modular fash-
ion from scratch.

Aspect-Oriented Ontology Development (AOOD) [18, 19] is an approach to
modular ontology development inspired by the Aspect-Oriented Programming

paradigm (AOP) [12]. As its counterpart from the programming domain, AOOD
is based on cross-cutting concerns. Aspect-Oriented Ontology Development makes
use of meta-modeling in order to combine a main ontology module with other
modules each of which provides additional knowledge about a particular concern.
To this end, an additional syntactic category had to be added to the OWL 2
language1, requiring specialized tools for processing aspect-oriented ontologies
that make use of this syntactic extension.

In Aspect-Oriented Programming, which also requires an extension of the
programming language at hand for the representation of software aspects, a
special software utility named aspect weaver is responsible for recombining the
modules using the extra information contained in the aspect extension and gen-
erating executable code that conforms to the standards of the programming
language.

In this paper, we present an aspect weaver for aspect-oriented ontologies,
which, in a manner analogous to that of a software aspect weaver, combines
ontology modules represented as ontology aspects to a valid OWL 2 ontology.
The weaver uses a catalog of structural ontology design patterns (ODPs) [8, 9]2,
and a mapping from what we consider typical aspect constructs to ODP patterns.
The rest of the paper is structured as follows: Section 2 provides an introduction
to Aspect-Oriented Ontology Development. Section 3 presents the approach for
recombining aspect-orientation-based ontology modules using structured ODPs,
which constitutes the core contribution of this paper. Section 4 summarizes the
relevant related work in the field of modular ontology development and use of
ontology modules. Section 5 provides the conclusion and an outlook on future
work.

2 Aspect-Oriented Ontology Development

As mentioned in the introduction, the approach of Aspect-Oriented Ontology
Development has drawn inspiration from the Aspect-Oriented Programming
paradigm [7] (also referred to as Aspect-Oriented Software Development). The
following section provides a brief introduction to the essential concepts of Aspect-
Oriented Programming and then explains how the principle has been adopted
for modular ontology development.

2.1 Aspect-Oriented Programming

The main goal of Aspect-Oriented Programming is the decomposition of soft-
ware systems into concerns which cross-cut the system. A code module covering
a particular concern is referred to as an aspect. Concerns may be functional
concerns, which are directly related to the systems’s domain of interest and
business logic and non-functional concerns, such as security, logging/auditing
and performance.
1 http://www.w3.org/TR/owl2-overview/
2 http://ontologydesignpatterns.org/

The decomposition is accomplished by introducing extensions to existing pro-
gramming languages (such as AspectJ3 for Java) that allow the decomposition of
code into modules, each of them dealing with a concern, as well as a mechanism
for recombining the modules at compile or runtime into a complete and coherent
system. Programming languages without aspect-orientation have no means for
separating those concerns, which leads to undesired code tangling and hinders
system decomposition.

Quantification and Obliviousness Two fundamental properties of Aspect-
Oriented Programming are quantification and obliviousness [7]. Obliviousness
refers to the fact that all information necessary to determine the execution points
where the application should make a call into an aspect module are contained
within the aspect itself rather than in the application code. A developer of one
module does not, and need not, have knowledge about other modules that might
potentially be called.

This information may be provided in the form of an exhaustive list of sig-
natures or in terms of quantified statements over signatures, called a pointcut.
Each single matching signature is called a join point.

Formally, Aspect-Oriented Programming uses quantified statements of the
following form [22]:

∀m(p1, . . . , pn) ∈ M : s(sig(m(p1, . . . , pn)))
→ (m(p1, . . . , pn) → a(p1, . . . , pn)) , (1)

where M is the set of all methods defined in the software system, s a predicate
specifying a matching criterion, m(p1, . . . , pn) ∈ M a method matching the
signature sig(m(p1, . . . , pn)), and a(p1, . . . , pn) the execution of the aspect with
all the parameters of each method, respectively. The code in the aspect, which
is executed at each joint point, is referred to as advice. In APO terminology, an
aspect advices the main code.

The idea behind Aspect-Oriented Ontology Development is to use pointcuts
in order to describe ontology modules and aspects in order to attach additional
knowledge (advice) to each of these modules.

2.2 Aspect-Oriented Ontologies

As in software, cross-cutting concerns can be observed in ontologies. Consider
for example Abox facts that are constrained to be valid only during a certain
period of time. Figure 1 shows a concrete example of a time-constrained fact,
namely the recognition of the Kosovo as a self-governing entitiy, using concepts
from the geopolitical ontology of the Food and Agriculture Organization of the
United Nations4. The time period is modeled using the W3C time ontology5.
3 https://eclipse.org/aspectj/
4 http://www.fao.org/countryprofiles/geoinfo/en/
5 www.w3.org/TR/owl-time/

The intention is to reify the first fact recognizedBy(Kosovo, United_Kingdom)
with the open time interval individual Interval_1 using a validDuring relation-
ship. This, however, is not permissible due to limitations in the expressivity of
OWL and the underlying Description Logics. What is instead recommended by
the W3C is to introduce a surrogate individual to represent the ternary rela-
tionship between Kosovo, the UK and the time interval6. The right hand side of
Figure 1 shows the combined facts with the new introduced Recognition_1 sur-
rogate individual. In addition to the individual, two new object properties need
to be introduced. The existing recognizedBy property now has the new surrogate
individual in its range instead of the recognizing country. The two new proper-
ties connect the surrogate with the recognizing country and the time interval,
respectively.

"2008-02-18T00:00:00"
^^xsd:dateTime

hasBeginning

Interval_1 United_Kingdom

recognizedBy

Kosovo

Recognition_1

self_governing

rdf:type

DateTimeInterval

rdf:type

Recognition

rdf:type

recognizingEntity validity

Interval_1

"2008-02-18T00:00:00"
^^xsd:dateTime

hasBeginning

United_Kingdom

recognizedBy

Kosovo

self_governing

rdf:type

DateTimeInterval

rdf:type

Fig. 1. Axioms from the FAO and the W3C time ontology (left) and necessary refac-
toring of the reused ontology in order to allow for the extension, following the W3C
n-ary relations pattern (right)

The recommended pattern for n-ary relationships leads to a high degree of
entanglement of different concerns (in this case different domains, namely the
domain of self-governing political entities and the domain of time), which brings
the following disadvantage: After the introduction of the surrogate individual,
the representation of the fact recognizedBy(Kosovo, United_Kingdom) as a simple
binary relation is lost. An ontology engineer, however, might be interested in
reusing knowledge about self-governing entities from this ontology but without
the temporal information. Due to the entanglement it is not trivial anymore to
separate these parts from each other and reuse them individually.

Therefore, we introduce new syntactic category Aspect, which is used in order
to establish a relationship between OWL 2 classes and axioms. Figure 2 depicts
the representation of the ternary relationship from the above example using an
aspect. Note that the figure contains two ternary relationships: The one from
6 http://www.w3.org/TR/swbp-n-aryRelations/

the example and the class assertion axiom Kosovo rdf:type self_governing which
is also supposed to be valid only during the given time interval.

It might appear awkward to represent aspects as classes. In the following
subsection where we describe the semantics of aspects, we provide a justification
of that choice.

Interval_1

"2008-02-18T00:00:00"
^^xsd:dateTime

hasBeginning

United_Kingdom

recognizedBy

Kosovo

self_governing

rdf:type

DateTimeInterval

rdf:type

aspect
Temporal
Aspect_1

rdf:
type

Aspect

subclassOf

Fig. 2. Representation of the ternary relationships using an aspect. Note that the
pointcut relation points to axioms, not individuals.

As can be seen, this way of representing the above relationships keeps the
original structure of the ontology intact. In particular, it allows to connect ad-
ditional (time) knowledge to an existing binary relation (about countries) while
keeping both domains separated from each other, allowing partial reuse and
independent maintenance and evolution.

Syntax As mentioned above, we extend the OWL 2 language by a syntactic
category Aspect which is used to represent a relationship between classes and
axioms.

The definition of the abstract syntax in OWL functional-style syntax is as
follows:
A s p e c t A s s e r t i o n : := ’ A s p e c t A s s e r t i o n ’ ’ (’ Ax iomAnnotat ionSet J o i n P o i n t Adv ice ’) ’
AxiomAspectSet : := Aspect∗
J o i n P o i n t : := I R I | Anonymous Ind i v i dua l
Adv ice : := C l a s s E x p r e s s i o n
P o i n t c u t : := SPARQLPointcut | Modu lePo intcut | DLQueryPointcut
SPARQLPointcut : := ’ SPARQLPointcut ’ ’ (’ Ax iomAnnotat ionSet Aspect

’ " ’ Cons t ruc tQuery ’ " ’ ’) ’
Modu lePo intcut : := ’ ModulePointcut ’ ’ (’ Ax iomAnnotat ionSet Aspect S i g n a t u r e ’) ’
DLQueryPointcut : := ’ DLQueryPointcut ’ ’ (’ Ax iomAnnotat ionSet Aspect

C l a s s E x p r e s s i o n ’) ’
S i g n a t u r e : := E n t i t y I R I ∗

The definitions of the categoriesAnnotation, AxiomAnnotationSet, IRI, Anony-
mousIndividual, ClassExpression and Axiom are provided in the OWL 2 Struc-
tural Specification7. The defintion of ConstructQuery is provided in the SPARQL 1.1
Query Language Specification8.

An AxiomAspectSet can be added to each axiom that can contain an Ax-
iomAnnotationSet, for example:
7 http://www.w3.org/TR/owl2-syntax/
8 http://www.w3.org/TR/sparql11-query/#rConstructQuery

E q u i v a l e n t C l a s s e s : := ’ E q u i v a l e n t C l a s s e s ’ ’ (’ Ax iomAnnotat ionSet
AxiomAspectSet C l a s s E x p r e s s i o n S e t ’) ’

Semantics We define the semantics of ontology aspects in correspondence with
the possible-world semantics of multi-modal logics:

– Aspects correspond to sets of axioms or facts that are true in certain possible
worlds.

– Aspects are modeled as classes.
– Possible worlds are modeled as individuals.
– Accessibility relations are modeled as object properties.
– The semantics of aspects depend on the choice of conditions on frames (ax-

ioms on accessibility properties).

The rationales behind that choice are:

– (Multi-)modal logics are a syntactic variant of and thereby semantically
equivalent to Description Logics [20, 1].

– Aspects are a sort of modality in that there is a function that determines
in which situations an aspect is active and in which it is not. That corre-
sponds to possible worlds in modal logics where a truth-functional valuation
determines whether a fact is valid in a possible world or not.

– The kind of modal logic is determined by conditions on Kripke frames, which
(to a certain extent) may be controlled by fixing the characteristics of the
accessibility relations. This allows the representation of e.g., temporal logic
(as in our running example), simple views, agent beliefs, etc.

– Using classes as aspects allows to use abstract class definitions using con-
straints with quantifiers.

Figure 3 depicts a more complex example using a temporal aspect on an
Abox fact capitalOf(Bonn, Germany), which was true between 1949 and 1990.
We used the W3C time ontology again to model time instances. We interpret
each time instance as a possible world, and after (and before) are accessibility
relations, which are reflexive and transitive. We thereby obtain the conditions
on the Kripke frames for a temporal logic:
– (M) : �A → A
– (4) : �A → ��A

The temporal aspect is then the class expression
after value 1949 and before value 1990,
which includes the values 1949 and 1990 due to the reflexivity of the before and
after relations.

Likewise, we can obtain a simple Logic K by just setting the accessibility re-
lation reflexive. We can use this logic to model simple views, which are manually
assigned to axioms.

As a third example, we can use multi standard deontic logic for modelling
access permissions over axioms for different agents by having a serial accessibility
relation ai for each agent i in order to obtain the axiom

capitalOf(Bonn,
Germany)

after value 1949 and
before value 1990

≡

PostWW2
WestGermany

before

after

aspect

rdf:typerdf:type

1945 1949 1969 1989 1990 2015

Fig. 3. A more complex temporal aspect using temporal logic

– (D) : �iA → ♦iA

The intuition behind this is that an aspect describes a (syntactic) module
in an ontology (which technically consists of a set of axioms) and adds second-
order information to it (as for example a temporal validity restriction, as in the
above example). The purpose of this approach is to permit to extract modules
depending on the outcome of some reasoning process. We could, for example,
extract a module with axioms that are valid only during the 1950s (which would
include the fact that Bonn is capital of Germany) and at the same time are
accessible to some agent.

3 Use of Structural Ontology Design Patterns for Aspect
Weaving

The Aspect-Oriented Ontology Development approach outlined in Section 2 has
the advantage of keeping concerns separated from each other, so that individual
development, evolution, and maintenance of each concern is easier. One obvious
disadvantage, however, is the fact that a non-standard (syntactic and semantic)
extension to the ontology language at hand is necessary in order to represent
aspects in an ontology. This requires adapted tools that can read, represent, and
perform reasoning with ontologies that use this extension.

As mentioned in the introduction, Aspect-Oriented Programming makes use
of aspect weavers, which collect and combine all relevant aspects in a software
project and generate standard-conformant code that contains all the necessary
modules and calls to them.

In what follows, we introduce a weaving facility for ontologies, which converts
aspect-oriented ontologies into standard-conformant OWL 2 ontologies, preserv-
ing the information conveyed by the aspects. We use ontology design patterns
(ODPs) in order to automate the conversion process. ODPs are structural (e.g.,
logical or architectural), conceptual, or lexico-syntactic templates that abstract
from typical ontology modeling problems and serve as a recipe for ontology de-
velopers to solve the corresponding problem.

3.1 Approach

We used the collection of categorized ODPs mentioned in Section 1 as the source
of potentially suitable ODPs for the aspect weaver. As a first step, we selected the
appropriate ODPs from the collection. The criteria we applied for the selection
follow from the nature of ontology aspects: Since aspects are a way of metamod-
eling in order to convey contextual information to existing parts of an ontology,
we selected all patterns related to metamodeling and contextual knowledge. The
selection process resulted in the ODPs View Inheritance, Context Slices, and
N-ary Relation Pattern.

We used an extended version of the Ontology Pre-Processor Language (OPPL)9

for formulating the patterns and the necessary refactoring operations. We ex-
tended OPPL by syntactical features for aspects, in correspondence to the aspect-
oriented extensions of OWL 2 described in Section 2.

The View Inheritance ODP10 is an architectural pattern that provides a way
for modeling multifacted classification schemes or multiple class inheritance hi-
erarchies. It does this by introducing intermediate classes which represent the
different classifiers, referred to as criteria. The actual target domain concepts are
made subclasses of the classes representing the classification criteria. The pattern
has two disadvantages, a semantic and a structural one. The semantic disadvan-
tage consists in the fact that the classifier classes are directly introduced into
the inheritance hierarchy. Subclasses are now subclasses of the classifier, which is
not the intended meaning but merely a way to circumvent the expressive restric-
tions of DL which do not allow object relations between classes. The structural
disadvantage is similar to the one discussed in Section 2: Once introduced, the
classifier cannot easily be eliminated from the hierarchy. A typical use case for
multifaceted classification is to specify a classifier and hide the other hierarchies
with different classifiers. Since the classifier is now part of the ontology, this is
not easily possible. In an aspect-oriented ontology, this kind of classifier is rep-
resented as an aspect class which is attached to the owl:SubClassOf axioms that
correspond to this specific classifier. Since it expresses simple views, Logic K is
the appropriate type of modal logic, and therefore, this aspect has a reflexive
accessibility relation.

Figure 4 shows how the weaver transforms the aspects into an ontology by
applying the pattern.

The context slices pattern11 may be used for the expression of agents’ beliefs
about Abox facts, or, more precisely, object property assertions. Each agent’s
conception of a part of the universe (i.e., the axioms valid in the part of the uni-
verse accessible to the agent) is referred to as a context. A context is represented
by an individual of type Context, and the subject and object of a contextual-
ized object property assertion are connected to this context via additional object
9 http://oppl2.sourceforge.net

10 http://ontologydesignpatterns.org/wiki/Submissions:View_
Inheritance

11 http://ontologydesignpatterns.org/wiki/Submissions:Context_
Slices

TargetDomainConcept1

Criterion2Criterion_1

C2_Class1C1_Class1

C1_C2_Class1

TargetDomainConcept1

Criterion2Criterion_1

C2_Class1C1_Class1

C1_C2_Class1

World2World1

rdf:typerdf:type

aspectaspect

Fig. 4. A transformation by the weaver of multifaceted classification using the View
Inheritance ontology design pattern. The aspect is expressed by a reflexive accessibility
relation in a logic system K. The class expression representing the aspect is attached
to the subclass axioms.

property assertions involving an object property hasContext with the context in-
dividual in the subject role and the two contextualized individuals in the object
role.

In an aspect-oriented ontology the belief of an agent may be expressed using
a doxastic logic with an object property believesi, representing the accessibil-
ity relation between possible worlds. The “actual” world is represented by an
individual Agenti and may be interpreted as the agent believing the axioms as-
sociated with it. Each possible world may be interpreted as a context. A fact
in the ontology may be associated with a context by connecting it to a class
expression. A context individual being of this type may be interpreted as the
fact being true in this context. The agent being connected to at least one context
where the fact is valid means that the agent beliefs the fact to be true.

Figure 5 shows how the weaver transforms the aspects into an ontology by
applying the pattern.

pSubject Object

c1Agent believes

cs:ContextualProjection

pSubject@c1 Object@c1

c1

cs:hasContext cs:hasContext

cs:Context

Subject Object

cs:projectionOf cs:projectionOf

Agent

believes

aspect

cs:Context

Fig. 5. A transformation by the weaver of a context aspect representing an agent’s
belief using the context slices pattern.

4 Related Work

Ontology modularization is an active research field, and there exists a rich body
of related work. D’Aquin [4] distinguishes between different perspectives on the
problem of which two different subfields have emerged. There exist approaches to
ontology partitioning, where a monolithic ontology is decomposed into smaller
fractions. The motivation for ontology partitioning comes from requirements
concerning maintenance and reuse, thus constituting requirements rooted in an
engineering point of view. The second class of approaches is referred to as ontol-
ogy module extraction. The motivation for module extraction is mainly selective
use and reuse [4]. In [11], the authors present a partitioning approach using
so called E-Connections [15, 3]. The criterion for the partitioning process is se-
mantic relatedness. One drawback of this approach, however, is that concept
subsumption or the use of roles across different modules is not possible. Schlicht
et al. propose a semi-automated approach to ontology partitioning based on
application-imposed requirements [21]. The method constructs a dependency
graph of strongly interrelated ontology features, such as sub/super concept hi-
erarchy, concepts using the same relations, or similarly labeled concepts. The
method is parametrizable by the features taken into account for constructing
the dependency graph and the size a module should have. Another class of par-
titioning approaches uses graph-based and social network metrics in order to
determine central concepts and interrelated features which should be part of
the same module [2]. Approaches to ontology module extraction comprise logic-
based extraction methods, for example [10], [13], [24] and [14]. These approaches
are automatic and aim at producing self-contained, consistent ontology modules.
They make use of logical properties such as semantic locality and inseparability.

While the latter two classes comprise approaches for a posteriori modulariza-
tion of existing ontologies, a third arising class of methodological approaches aim
at modular construction of ontologies in an a priori manner. Related work in this
area has been accomplished by [25], proposing a methodological framework for
constructing modular ontologies driven by knowledge granularity. The proposed
approach involves a separation into three levels: an upper ontology, modeling the
theoretical framework, domain ontologies for reusable domain knowledge, and
domain ontologies for application specific knowledge.

The shortcoming of existing modularization approaches is, as already men-
tioned in the introduction, their one-dimensionality, which is also acknowledged
by [6] and [5]. The latter propose more unified approaches to the problem, how-
ever, they are restricted to the (graph-based) RDF model. Moreover, they lack
formalisms of mapping modularizations to requirements, hindering relaying and
re-use of module specifications. In [16], the authors have introduced the idea of
microtheories in order to segment the increasingly large Cyc knowledge base into
easier to handle modules. Microtheories are categories, laid out in a hierarchy,
under which assertions of the knowledge base can be subsumed. An assertion is
true in its associated microtheory and all sub-microtheories. Microtheories differ
from our approach in that they provide a static context, while ontology aspects
have a more dynamic characteristic. They also differ in that each assertion in the

Cyc knowledge base can only exist under one microtheory (and its subtheories),
while assertions can have an arbitrary number of aspects.

5 Conclusion and Outlook

In this paper we presented our approach to weaving context knowledge repre-
sented by the means of metamodelling into OWL 2 ontologies, accomplishing our
aspect-oriented approach to modular ontology development presented in previ-
ous works. Aspects represent modal context, and ontologies may be partitioned
into subsets of axioms, according to which contexts they belong to. While we
have shown earlier that aspect-oriented ontology development facilitates modu-
lar (contextualized) ontology development and modular reuse, the extension of
the syntax and semantics of the OWL language hinders use of aspect-oriented
ontologies in situations where access to the entire ontology along with the context
knowledge is desired.

In this paper, we could show that the approach of an aspect-weaving facil-
ity, as employed in aspect-oriented software development, is appliccable to the
problem. The aspect-weaver presented here is able to identify particular kind of
aspects, using the OPPL selection language and transforming them into valid
OWL 2 constructs, preserving the context knowledge by incorporating it into
the ontology following a selected set of Ontology Design Patterns.

One shortcoming of the approach is its being restricted to structural pat-
terns, which might not catch all possible varieties modal context representing
aspects. For example, the context slices pattern simply relies on the structure
of the networks of possible worlds and the semantic characteristics of the ac-
cessibility relation, which, in this case, must not be reflexive. By considering
these characteristics only, it is not possible to distinguish between an intended
doxastic interpretation and, for example, a deontic interpretation, where frames
are not reflexive either.

One benefit of the approach using ODPs, however, lies in the fact that it
may be extended with additional patterns. It is also possible to extend the
patterns catalog beyond structural patterns and add, for example, content ODPs
in situations where the types used for expressing aspects are known. This way, a
classification of aspect types (as also presented in our earlier work) may provide
additional knowledge about the kind of intended meaning and therefore provide
more fine-grained control over the transformation.

Future work will include extending the list of used patterns and a formal
evaluation.

Acknowledgments

This work has been partially supported by the “InnoProfile-Transfer Corporate
Smart Content" project funded by the German Federal Ministry of Education
and Research (BMBF) and the BMBF Innovation Initiative for the New German
Länder - Entrepreneurial Regions.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

2. Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying community de-
tection algorithms on ontologies for indentifying concept groups. In: Proceedings
of the 5th International Workshop on Modular Ontologies. Ljubljana, Slovenia
(September 2011)

3. Cuenca Grau, B., Parsia, B., Sirin, E.: Combining OWL ontologies using E-
Connections. Web Semantics: Science, Services and Agents on the World Wide
Web 4(1), 40–59 (Jan 2006)

4. d’Aquin, M.: Modularizing Ontologies. In: Suárez-Figueroa, M.C., Gómez-Pérez,
A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World,
pp. 213–233. Springer, Berlin, Heidelberg (2012)

5. d’Aquin, M., Doran, P., Motta, E., Tamma, V.A.M.: Towards a parametric on-
tology modularization framework based on graph transformation. In: Grau, B.C.,
Honavar, V., Schlicht, A., Wolter, F. (eds.) WoMO. CEUR Workshop Proceedings,
vol. 315. CEUR-WS.org (2007)

6. Doran, P., Palmisano, I., Tamma, V.A.M.: Somet: Algorithm and tool for sparql
based ontology module extraction. In: Sattler, U., Tamilin, A. (eds.) WoMO. CEUR
Workshop Proceedings, vol. 348. CEUR-WS.org (2008)

7. Filman, R., Friedman, D.: Aspect-Oriented Programming Is Quantification and
Obliviousness. Workshop on Advanced Separation of Concerns, OOPSLA (2000)

8. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) The Semantic Web – ISWC 2005,
pp. 262–276. No. 3729 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg (Jan 2005)

9. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, pp. 221–243. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

10. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting Modules from On-
tologies: A Logic-Based Approach. In: Stuckenschmidt et al. [23], pp. 159–186

11. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of OWL
Ontologies Using E-Connections (2005)

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP’97 — Object-Oriented Programming, Lecture Notes in Computer Science,
vol. 1241, pp. 220–242. Springer Berlin / Heidelberg (1997)

13. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic Modularity and Module
Extraction in Description Logics. In: Proceedings of the 2008 conference on ECAI
2008: 18th European Conference on Artificial Intelligence. pp. 55–59. IOS Press,
Amsterdam, The Netherlands, The Netherlands (2008)

14. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology compari-
son and module extraction, with an application to DL-Lite. Artificial Intelligence
174(15), 1093–1141 (Oct 2010)

15. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of de-
scription logics. In: Calvanese, D., Giacomo, G.D., Franconi, E. (eds.)
Proceedings of the 2003 International Workshop on Description Logics
(DL2003), Rome, Italy September 5-7, 2003. CEUR Workshop Proceedings,

vol. 81. CEUR-WS.org (2003), http://SunSITE.Informatik.RWTH-Aachen.
de/Publications/CEUR-WS/Vol-81/wolter-1.pdf

16. Lenat, D.B., Guha, R.V.: The Evolution of CycL, the Cyc Representation Lan-
guage. ACM SIGART Bulletin - Special issue on implemented knowledge repre-
sentation and reasoning systems 2(3), 84–87 (Jun 1991)

17. Parent, C., Spaccapietra, S.: An Overview of Modularity. In: Stuckenschmidt et al.
[23], pp. 5–23

18. Schäfermeier, R.: Aspect-Oriented Ontology Development. In: Abramowicz, W.
(ed.) Business Information Systems Workshops, pp. 208–219. No. 160 in Lecture
Notes in Business Information Processing, Springer Berlin Heidelberg (2013)

19. Schäfermeier, R., Paschke, A.: Aspect-Oriented Ontologies: Dynamic Modulariza-
tion Using Ontological Metamodeling. In: Proceedings of the 8th International
Conference on Formal Ontology in Information Systems (FOIS 2014). pp. 199 –
212. IOS Press (2014)

20. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint
Conference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991. pp.
466–471. Morgan Kaufmann (1991)

21. Schlicht, A., Stuckenschmidt, H.: A Flexible Partitioning Tool for Large Ontologies.
In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology - Volume 01. pp. 482—488. WI-IAT
’08, IEEE Computer Society, Washington, DC, USA (2008)

22. Steimann, F.: Domain Models Are Aspect Free. In: Briand, L., Williams, C. (eds.)
Model Driven Engineering Languages and Systems, pp. 171–185. No. 3713 in Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg (Jan 2005)

23. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Con-
cepts, Theories and Techniques for Knowledge Modularization. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg (2009)

24. Suntisrivaraporn, B.: Module Extraction and Incremental Classification: A Prag-
matic Approach for EL Ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) The Semantic Web: Research and Applications, pp. 230–
244. No. 5021 in Lecture Notes in Computer Science, Springer Berlin Heidelberg
(Jan 2008)

25. Thakker, D., Dimitrova, V., Lau, L., Denaux, R., Karanasios, S., Yang-Turner,
F.: A priori ontology modularisation in ill-defined domains. In: Proceedings of the
7th International Conference on Semantic Systems. pp. 167–170. I-Semantics ’11,
ACM, New York, NY, USA (2011)

