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Abstract

An agent that adopts a commitment to another agent should act so as
to bring about a state of the world meeting the specifications of the
commitment. Thus, by faithfully pursuing a commitment, an agent
can be trusted to make sequential decisions that it believes can cause
an intended state to arise. In general, though, an agent’s actions will
have uncertain outcomes, and thus reaching an intended state cannot
be guaranteed. For such sequential decision settings with uncertainty,
therefore, commitments can only be probabilistic. We propose a se-
mantics for the trustworthy fulfillment of a probabilistic commitment
that hinges on whether the agent followed a policy that would be ex-
pected to achieve an intended state with sufficient likelihood, rather
than on whether the intended state was actually reached. We have
developed and evaluated algorithms that provably operationalize this
semantics, with different tradeoffs between responsiveness and com-
putational overhead. We also discuss opportunities and challenges in
extending our proposed semantics to richer forms of uncertainty, and
to other agent architectures besides the decision-theoretic agents that
have been our initial focus of study. Finally, we consider the implica-
tions of our semantics on how trust might be established and confirmed
in open agent systems.

1 Motivation

In open systems occupied by multiple (human and/or artificial) agents, where in order to best achieve their
goals the agents need to rely on each other, issues of trust come to the fore. The many important challenges
regarding trust include how to build trust, how to maintain trust, how to utilize trust, how to detect when trust
is misplaced, how to propagate reputations about trustworthiness, and how to incentivize trustworthiness. In
this paper, we consider the case where agents have incentive to be trustworthy, and where they will do everything
in their power to merit the trust of other agents, but where uncertainty inherent in the environment, and the
agents’ uncertainty about the environment, mean that an agent sometimes cannot, or even should not, achieve
outcomes that other agents might be relying upon.

Specifically, we ask the question of whether an agent that has made a (social) commitment to another agent,
and has acted in good faith with respect to the commitment, can be said to have fulfilled the commitment even
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if the outcomes of its actions fail to reach a state that the commitment was intended to bring about. By acting
in good faith, has the agent earned trust despite not delivering the intended outcome? For instance, consider a
physician who is treating a patient for some condition: There is a (perhaps implicit) commitment by the doctor
to improve that condition, but the treatments administered might not be effective for the patient, or the doctor
might even abandon treatment of the condition to address more consequential conditions instead. Has the doctor
violated the trust of the patient and failed to meet the commitment?

To answer such questions about what it means for a computational agent to be trustworthy in its fulfillment
of social commitments, we have been developing a decision-theoretic formulation for framing and studying the
semantics of commitments in settings where the agents’ environment, and/or what the agent knows about the
environment, can be uncertain. To jump to the punchline of this paper, our investigations so far have led us to
advocate a commitment semantics that focuses on whether the agent’s choices of actions were consistent with
the trustworthy fulfillment of its commitments (e.g., whether the physician followed proper standards of patient
care), rather than on whether the state of the world reached by the agent’s actions, coupled with the other
partially-known ongoing processes and factors in the environment, had the intended outcome (e.g., whether the
patient’s condition was cured).

For reasons of publication restrictions we cannot here present a deeper technical treatment of our work, so
our goal in this paper is to summarize the background, context, justification, and implications of adopting our
suggested semantics for the trustworthy fulfillment of commitments, for consideration by the community. In what
follows, we first briefly examine some of the relevant past literature on computational models of commitment, with
a particular focus on commitments in uncertain, probabilistic worlds.1 We then (Section 3) present a decision-
theoretic formulation of the problem, highlighting the representation of the agent’s uncertainty about rewards,
and how the fact that pursuing commitments is a sequential process means that the agent might want to change
its course of actions sometime between when the commitment is made and when the conditions it is trying to
achieve could come about. This formulation then allows us to more formally state the semantics for trustworthy
commitment achievement in the face of uncertain rewards that we advocate, and to summarize computational
strategies for realizing those semantics (Section 4) for reward uncertainty and beyond. In Section 5, we speculate
on how the semantics might apply to other, non-decision-theoretic agent architectures, and in Section 6 we
consider the broader implications of our semantics on the problem of establishing trust.

2 Computational Models of Commitment

Munindar Singh provides a comprehensive overview of computational research into characterizing commitments
using formal (modal and temporal) logic [Sin12], drawing on a broad literature (e.g., [CL90, Cas95, Sin99,
MH03, CMMT13, ASBSEM14]). In brief, these formulations support important objectives such as provable
pursuit of mutually agreed-upon goals, and verification of communication protocols associated with managing
commitments. When commitments are uncertain to be attained, they can have associated conventions and
protocols for managing such uncertainty (e.g., [Jen93, XS01, Win06]). For example, by convention an agent
unable to keep a commitment must inform dependent agents.

Dropping commitments too readily, however, obviates their predictive value for coordination. The logical
formulations above explicitly enumerate the conditions under which an agent is permitted to drop a local com-
ponent of a mutual goal, where these conditions usually amount to either (1) when the agent believes its local
component is unachievable; (2) when the agent believes that the mutual goal is not worth pursuing any longer;
or (3) when the agent believes some other agents have dropped their components of the mutual goal. However,
while logically reasonable, these conditions do not impose a commitment semantics on an agent’s local decisions.
For example, to avoid the first condition, should an agent never take an action that would risk rendering is local
component unachievable? What if every action it can take has some chance of rendering the local component
unachievable? For the second condition, should it really be allowed to unilaterally abandon the mutual goal and
renege on other agents just because it has recognized it can achieve a slightly more preferred goal?

To tighten predictability, commitments can be paired with conditions under which they are sure to
hold [Raf82, Sin12, VKP09, AGJ07]. For example, an agent could commit to providing a good or service
conditioned on first receiving payment. Of course, this representation also admits to weakening commitments to
the point where they are worthless, such as committing to achieving a local component of a mutual goal under
the condition that no better local goal arises in the meantime! Sandholm and Lesser [SL01] noted difficulties

1The material presented in Sections 2 and 3 has appeared in similar form in an unpublished symposium paper [DS15], and
summaries of the algorithms presented in Section 4 appeared in an extended abstract at AAMAS12 [WCDS12].
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in enumerating such conditions, and verifying they hold in decentralized settings. Their leveled-commitment
contracting framework associates a decommitment penalty with each commitment to accommodate uncertainty
but discourage frivolous decommitment. The recipient of a commitment, however, will generally be unable to
know the likelihood that the commitment will be fulfilled, because it will lack knowledge of the internals of the
agent making the commitment, including how likely it is that uncertain action outcomes or evolving local goals
will make paying the decommitment penalty the only/better choice.

An alternative means to quantify uncertainty is to explicitly make probabilistic commitments, where an agent
provides a probability distribution over possible outcomes of the commitment, including how well it will be ful-
filled (if at all) and when [XL99, BLG10, WD09]. Xuan and Lesser [XL99] explain how probabilistic commitments
can improve joint planning by allowing agents to suitably hedge their plans to anticipate possible contingencies,
including anticipating even unlikely outcomes and planning for consequent changes to probabilities of reaching
commitment outcomes. A more myopic (hence more tractable) variation on this approach was developed for
the DARPA Coordinators program [MSB+08], where only as circumstances unfolded would the agents update
probabilistic predictions about future outcomes, and then exchange updates and reactively compute new plans.
These prior approaches however treat commitment probabilities fundamentally as predictions about how what-
ever plan an agent has chosen to follow will affect other agents. In contrast, our treatment of commitments in
uncertain settings is not only to provide predictive information to the recipient of a commitment about what
might happen, but also to impose prescriptive semantics on the provider of a commitment to guide its behavior
into a good faith effort in making those predictions come true.

3 Problem Formulation

Our initial strategy for capturing intuitive, everyday notions of commitment semantics that account for and
respond to model uncertainty is to map these notions into a principled, decision-theoretic framework for agent
use. Here, we present a reward-uncertainty-centered formulation that we use most in this paper, though later we
briefly generalize this to other forms of model uncertainty. In our initial formulation, we restrict our attention
to the class of problems with the following properties. 1) A single intelligent agent interacts with a single human
user (operator). 2) The agent’s actions influence what is possible for the user to achieve but not vice-versa
(though, because the user also derives reward from the agent’s actions, the user’s preferences might influence
what the agent should do). 3) The agent has an accurate2 controlled Markov process model of its environment
dynamics defined by a multidimensional state space, an action space, and a transition probability function. The
state space Φ = Φ1 × Φ1 × · · · × Φn is the cross product of n discrete-valued state variables. The transition
probability T (φ′|φ, a) is the probability of the next state being φ′ given the agent took action a in state φ. 4)
The agent has uncertainty over its reward function expressed via a prior distribution µb0 over possible built-in
reward functions Rb1, R

b
2, . . . , R

b
n, where each Rbi maps Φ → R. Each reward function Rbi captures both the

designed-rewards for the agent (e.g., a large negative reward for exceeding power or memory constraints), and
the uncertain rewards that can arise over time in the environment. From the perspective of the single human-user
in this problem, these multiple sources of reward are “built-in” and the uncertainty over them is summarized
into the distribution over {Rbi}. The agent obtains samples of the true built-in reward-function as it acts in the
world and thus can update its distribution over {Rbi} during execution.

Finally, 5) the user has her own goals and acts in the world, and the agent’s actions may enable the user to
obtain higher reward than she would without the agent’s help. This is where the notions of commitment and
trust come into play. Consider an agent that could make either of two commitments to an operator: commitment
ξ, where it commits to producing an analysis within 2 minutes with probability at least 0.95, and commitment ξ′

where it commits to producing the analysis in 1 minute but with probability only 0.5 (e.g., its faster analysis tool
works in fewer cases). Commitment ξ enables the operator’s optimal policy to prepare for the analysis output
with associated enablement-utility U(ξ), while commitment ξ′ induces an optimal policy where the operator
begins doing the analysis herself (as a backup in case the agent fails) with lower utility U(ξ′). Depending on
the degree of cooperativeness of the agent, solving the agent’s sequential decision problem might require taking
into account these enablement-utility (U) values to the user of candidate enablement-commitments. If the agent
adopts a commitment to the user, the user becomes a “trustor” of the agent and the agent a “trustee” of the
user.

2Because the model is assumed accurate, the agent can be assumed to only formulate policies (and thus commitments) that
it is capable of executing. Permitting inaccurate models (where an agent might make a commitment it is inherently incapable of
fulfilling) is outside the scope of the focus of this paper on trustworthy fulfillment of commitments.
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Some special cases of this formulation help motivate our commitment semantics:

Bayes-MDP. In this special case, the agent is not enabling user actions (no U ’s and hence no need for
commitments), but the agent is uncertain about which of the built-in rewards {Rbi} applies. The agent thus
faces a standard Bayesian-MDP problem (a particular kind of partially-observable MDP, or POMDP, where
partial observability is only with respect to the true reward function in {Rbi}). One can define an extended
belief-state MDP in which the belief-state of the agent at time t is the joint pair (φt, µ

b
t) where µbt is the posterior

belief of the agent over {Rbi} after the first t− 1 observations about reward as it acts in the world. The Bayes-
optimal policy is a mapping from belief-states to actions3 that maximizes the expected cumulative reward for
the agent. Exact algorithms (applicable only to small problems) and approximate algorithms (with increased
applicability) exist to solve the belief-state MDP for (near-Bayes-optimal) policies and we exploit them as one
component in our research [PVHR06].

Commitment-Only. In this case, there are enablement-actions but the built-in reward function is known
to be Rb. Because of stochastic transitions, the agent could find itself in unlikely states from which it cannot
enable the user, and thus commitments are in general only probabilistic. Because the agent can only control
its actions, and not their outcomes, we assert that, in uncertain worlds, the decision-theoretic semantics of what
it means for an agent to faithfully pursue a probabilistic commitment is that it adheres to a policy that meets
the commitment with a probability at least as high as the probability associated with the commitment. Given
that its rewards are fixed (in this special case) the agent will at the outset commit to a policy that maximizes
some function of its expected reward and the user’s enablement utility, and follow that policy unswervingly. In
a cooperative setting (including when a single agent is making a commitment to another facet of itself), the
function could simply sum these. In a self-interested setting, the agent’s reward could predominate (the user is
helped only as a side-effect of the agent’s preferred policy), or in a setting where the agent is subordinate the
user’s utility could be preeminent.

Commitment in the face of Uncertain Rewards. This special case has been the main focus of our
work, where there is uncertainty over the agent’s rewards ({Rbi}), and there is the possibility of enablement (U).
The departure from the previous commitment-only case is that now the agent learns about its built-in reward
function as it acts in the world. As in the previous case, in general commitments are only probabilistic because
transitions are stochastic, so the agent has limitations on its ability to help the user attain the enablement utility
U despite its best efforts. Compounding this problem, the evolving model of the reward function might also
tempt the agent toward redirecting its efforts away from the enablement. What can we expect of an agent in
terms of making sequential decisions that live up to a commitment when it is faced with such limitations and
temptations? For example, perhaps the agent’s modified beliefs about rewards would tempt it to change its
behavior in a way that actually improves the chances of achieving the intended conditions of the commitment,
in a “win-win” way. But would changing its policy even then violate the trust of the user?

4 Commitment Semantics

We argue that a semantics for commitments in sequential-decision settings with stochastic transitions, as was
mentioned in the previous section, should be as follows: The semantics of what it means for an agent to faithfully
pursue a probabilistic commitment is that it adheres to a policy that in expectation meets the commitment.
Remember that “in expectation” in this context means that the probability of meeting the commitment is at
least as high as the probability specified by the probabilistic commitment. So, if the commitment was to reach
an intended state with probability 0.9, the agent would need to follow a policy that in expectation would reach
the state at least 90% of the time, while if the commitment probability was only 0.1 the agent could follow a
policy that in expectation would reach the state only 10% of the time. Thus, “in expectation” does not mean
“as likely has possible.” Nor does it mean “more likely than not” (better than a 50% chance). Instead, it means
“at least as likely as promised by the commitment.”

This semantics sounds straightforward enough, though as the sections that follow will show it is not always
trivial to operationalize. Before considering algorithms for implementing the semantics, however, we first briefly
consider how this semantics departs from prior semantics for computational commitments.

3Recall that a policy is defined over all (belief) states, and so covers every possible contingency that could arise during execution.
We refer to a particular sequence of states and (policy-dictated) actions that might be experienced as a trajectory. Note that a policy
thus differs from a plan, which is typically defined in terms of a specific (nominal) trajectory. Hence, a plan can fail (stimulating
plan repair or replanning) when unintended action outcomes or external events cause a deviation from the plan’s nominal trajectory.
In contrast, a policy never “fails” because it specifies actions for every state (and thus for every possible trajectory).
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4.1 Relationship to Other Commitment Semantics

Probably the most thorough and precise computational semantics for commitments is that of Munindar Singh
and his colleagues. In that vein of work, commitments are expressed in terms of expressions over state variables,
describing what state(s) the agent(s) making the commitment promises to bring about, possibly conditioned on
other agents achieving other aspects of the state. However, as we have discussed, in environments with stochastic
transitions agents cannot commit to assuredly achieving particular states because outcomes of actions are not
fully under their control. Agents however do have control over the actions they take, and hence our semantics
focuses not on states of the world but rather on the actions agents have control over. Agents commit to acting
in ways that, with sufficiently high probability, will lead to outcomes that other agents care about.

In this regard, then, our commitment semantics shares similarities with work on joint policies in cooperative
sequential decision frameworks like Decentralized (Partially-Observable) Markov Decision Processes. In Dec-
(PO)MDP solutions, agents’ joint policies dictate a particular policy for each agent to follow, where the policy of
each agent is (approximately) optimized with respect to the policies to be followed by the others. Thus, optimal
joint behavior is achieved when agents precisely execute their assigned policies. Our commitment semantics
similarly restrict agents’ policy choices, but differ from Dec-POMDPs in that our semantics are agnostic about
cooperation (we treat the reason why agents adopt commitments as orthogonal to what the commitments that
have been adopted mean) and only require that an agent pursue a policy that in expectation will achieve the
commitment: If there are multiple such policies, then the agent is free to select from among them. This is exactly
the kind of flexibility that we seek to exploit when an agent is acting sequentially under reward uncertainty.

Our commitment semantics also hearkens back to some of the earliest work on agent commitments, which
focused not on (social) commitments between agents, but rather on commitments an agent makes to its internal
behavior as part of a meta-control strategy. The work by Kinny and Georgeff [KG91] considered the degree to
which an agent should question continuing to pursue a plan in an uncertain world, where they explored strategies
by which an agent might be “cautious” (reconsidering what plan it should follow every step of the way) or “bold”
(pursuing its current plan until it is either finished, or is impossible to continue). Like that work, our semantics
for commitment concentrates on commitments to action policies rather than outcomes, but unlike that work we
view a (in our case social) commitment as a constraint on possible physical action policy choices rather than as
a meta-construct for controlling reasoning effort.

4.2 Semantics-Respecting Algorithms

Of the algorithms we now summarize, the first can arguably be seen as being “bold” because it presses on with a
policy without being responsive to changing circumstances, and thus avoids the overhead of questioning whether
and how to respond to circumstances every step of the way. The second is “cautious” because it preplans for
every foreseeable change to circumstances. As a result, it is extremely responsive, but incurs high reasoning costs.
The third is a compromise between the first two, striving to be responsive enough without incurring excessive
overhead.

4.2.1 Mean Reward (MR)

This algorithm most simply and directly implements our commitment semantics so that an agent can be trust-
worthy in fulfilling the commitment. Given a commitment and a distribution over the true reward function,
the agent finds its Bayes-optimal policy that meets the probabilistic commitment. Specifically, at the outset,
the agent formulates a commitment-constrained policy that is optimal for its initial reward belief-state, which
equates [RA07] to an optimal policy for the distribution’s Mean Reward (MR). The agent then pursues this
policy without deviation, ignoring temptations and opportunities that arise during execution as it improves its
understanding of the true reward function in its environment. Thus, the MR algorithm implements a “bold”
strategy for commitment attainment using our semantics: The agent adheres to a policy that meets the com-
mitment, and never reconsiders it. This satisfies our commitment semantics, and incurs computational cost only
for computing an optimal policy given a single (mean) reward function; its downside is that it will not take
advantage of serendipity, when new information about rewards would have allowed it to achieve higher reward
while still meeting (or even exceeding) the probabilistic expectations of the commitment.
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4.2.2 Extended Belief State (EBS)

This algorithm implements the most “cautious” of strategies by modeling all possible ways in which the agent’s
beliefs about the reward might change over its sequential actions, and developing a policy that accounts for every
single one of them (while still meeting or exceeding the probabilistic commitment). The Extended Belief State
approach adds directly into the state model a representation of the agent’s beliefs about the reward function.
Thus, as the agent models possible trajectories, it considers not only its choices of actions and their stochastic
outcomes on the physical state, but also the possible reward observations it might make and the consequent
posterior beliefs about the reward function it might have. The branching associated with action choices, action
outcome stochasticity, and uncertainty over reward observations exponentially enlarges the number of trajec-
tories the agent needs to explore, incurring high computational overhead. However, once the EBS policy has
been derived, it is guaranteed to be optimal, not only being responsive to all possible evolving models of the
environment’s rewards, but even leading the agent to acting in ways that anticipate and exploit expected future
reward observations.

4.2.3 Commitment-Constrained Iterative Mean Reward (CCIMR)

This algorithm is a compromise between the previous algorithms, seeking to gain some of the computational
benefits of MR while permitting some degree of responsiveness like EBS, all while being trustworthy in adhering
to the commitment semantics. Conceptually, the algorithm works with a space of policies Πξ that all satisfy the
commitment ξ. If this space is empty, then the agent cannot make a commitment, but otherwise our commitment
semantics allow the agent to commit to following any of these policies, as they are all equally satisfactory given
commitment ξ. The crux of our Commitment-Constrained Iterative Mean Reward (CCIMR) algorithm, then,
is to use a reward observation reactively (unlike EBS that proactively anticipates them) to compute a new
posterior mean reward. It then selects from the current Πξ the policy that optimizes expected reward under the
new reward beliefs and pursues that one. Note, though, that Πξ will shrink over time: as a particular policy has
been followed to the current time, policies that would have chosen different actions in the states up until that
time must be removed from Πξ. (A policy that appends the first half of one element of Πξ with the second half
of another element might not itself be an element of Πξ, and so mustn’t be allowed.)

While this gives the conceptual basis of our CCIMR algorithm, a key aspect of this algorithm is that it does not
explicitly enumerate and manipulate the commitment-constrained set of policies Πξ, as this set can be exceedingly
large. Instead, we have developed a linear programming approach that explicitly captures constraints, including
not just those associated with the commitment(s) but also those associated with the policy pursued so far, so
that the agent can construct, at any given time, only the optimal element of the (possibly shrunken) space of
policies Πξ. This means CCIMR is solving a number of optimal policy calculations that is linear in time (one
for each new mean reward, which at most happens once per time step), whereas MR only performs one optimal
policy calculation (the initial MR policy), and EBS computes one optimal policy but for an exponentially-larger
(belief) state space. CCIMR thus represents a compromise in terms of computation. Meanwhile, because it is
responsive to changing reward beliefs, it is guaranteed to achieve rewards no worse than MR, while achieving
rewards no better than EBS (because EBS is not only responsive but proactive).

4.2.4 Evaluation

Again, the technical details of the algorithms just described, including formal proofs about CCIMR being lower-
bounded by MR and upper-bounded by EBS, and a proof that CCIMR conforms to our commitment semantics,
are excluded from this paper due to publication restrictions. Similarly, we cannot present detailed empirical
results for these algorithms. In brief, though, our experiments have shown that CCIMR can often allow an agent
to achieve rewards close to what EBS permits (and significantly better than MR), and that scaling a problem
to more states and longer time horizons can cause the time needs of EBS to explode while CCIMR’s time needs
increase more manageably.

4.3 Semantics with Other Kinds of Uncertainty

The work we’ve done so far has emphasized the need to account for and respond to an agent’s uncertain rewards.
However, uncertainty can arise in other decision model components too. For example, an agent can apply machine
learning techniques to resolve uncertainty about its transition model: by maintaining statistics about the effects
of actions in various states, it improves its ability to predict the probabilities of action outcomes and thus to
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formulate good policies. Making commitments in the face of transition uncertainty unfortunately appears to be
qualitatively different from the reward uncertainty case. A key observation is that, when uncertainty is only over
rewards, then the agent can always faithfully pursue its commitment by, in the worst case, turning a blind eye
to what it learns about rewards and simply following its initial commitment-fulfilling policy throughout. That
is, what it learns about rewards has no effect on what states of the world it can probabilistically reach, but just
in how happy it is to reach them. In contrast, an agent with transition uncertainty can learn, during execution,
that states it thought likely to be reached when it made its commitment are in fact unlikely, and vice versa.
Hence, in contrast to reward uncertainty where a committed agent was obligated to pursue one of the initial
commitment-constrained policies (limiting its later choices), with transition uncertainty it could be argued that
a faithful agent might be required to shift to a policy outside this initial set under some changes to its updated
beliefs. If unchecked, this latitude renders commitment semantics meaningless. The question of what constitutes
trustworthy pursuit of a commitment by a decision-theoretic agent, in the face of transition uncertainty, is an
open problem that we are starting to tackle.

5 Implications for Non-Decision-Theoretic Agents

By framing the question of trustworthy pursuit of commitments despite uncertainty in a decision-theoretic setting,
we have been able to exploit useful aspects of a decision-theoretic framework, such as explicit models of rewards
and transitions, and of uncertainty over these. However, decision-theoretic approaches have weaknesses too,
and in particular the power of these approaches generally comes at a steep computational cost. As a result,
these techniques are often applied to only small problems, or (for particular classes of problems) approximation
techniques are used to find good, but not necessarily optimal, solutions. Other agent architectures, such as those
based on Belief-Desire-Intention concepts, can often be fruitfully applied to problems where the richness of the
decision-theoretic approach is not needed and where the computational costs cannot be afforded. The question
then arises as to whether our proposed semantics generalizes to other architectures based on more classical
notions of plans and goals. While at this point we can only speculate about this, our initial thinking is that they
can, and we now delve briefly into initial thoughts as to how.

In essence, mapping our commitment semantics to an agent using classical plans and goals would mean that
such an agent is committing not to achieving particular goals (conditions in the world) but rather it is committing
to executing one out of a set of plans. Therefore, before making a commitment, the agent would need to have
identified a non-empty set of plans to commit to. Compared to the decision-theoretic setting, where we could
summarize the space of commitment-satisfying policies based on a small number of parameters, it is less clear
how (without incorporating new annotations to elements of a plan library) we could do the same in a more
classical setting, but assuming such a set is specified (through enumeration if in no other way) then an agent can
commit to executing one of the plans in that space, where each plan is executable when particular preconditions
it depends upon are met.

The operational semantics for pursuing other goals that could conflict (depending on how they are pursued)
with the goal(s) of the committed-to plans could then be patterned after the semantics we’ve outlined. For
example, the semantics could dictate that an agent is not allowed pursue a plan for another goal if that plan
would violate the preconditions for the element of the space of committed-to plans that is currently being
followed. This would be like MR: the agent commits to a particular plan for the commitment, and it must
follow that plan (in that it cannot take actions that preclude following the plan). The exception, however, is
whereas the MR policy would associate an action for all eventualities that could arise, a typical plan will have a
single nominal trajectory. If the world state deviates from this trajectory then the plan fails, triggering possible
repairs or adoption of alternative plans. It is possible, however, that no recourse is possible. Again, based on
our semantics, the agent still met its commitment because it followed the plan as promised.

It could be that, during pursuit of its plan, the agent acquires new or different goals, whose satisfaction would
be incompatible with a plan it had committed to. The challenge then is determining whether it is possible to
change its commitment plan so that it can pursue its new goal(s), while still being trustworthy regarding its
commitment. Like CCIMR, the agent could instead commit to pursuing one plan out of a set of plans, and as its
goals change could dynamically select from among the subset whose preconditions are still met. If the different
plans are differentially susceptible to failure, then a commitment to the set of plans is only as strong as the
most failure-prone of the set. This in turn suggests the need for some sort of “reliability” ordering over plans.
Strategies for determining such orderings could be based on probabilistic knowledge (gravitating back towards
decision-theoretic ideas), or could be based on a form of adversarial analysis to find the worst-case outcome of a
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plan given a purposely adversarial environment.

6 Conclusions

In this paper, we argue in favor of an operational semantics for commitments based on what an agent can
control—its own actions. Thus, fulfilling a commitment corresponds to pursuing an action policy, beginning at
the time the commitment was made, that has sufficient likelihood of coercing the world into an intended state.
In this semantics, by “acting in good faith” an agent fulfills its commitment even if the intended state is not
reached. We have summarized algorithms, based on these semantics, that operationalize foundational concepts
about when an agent is permitted to drop a committed-to goal, and more importantly that guide agents’ decisions
to act in good faith until such a goal is met or dropped. These algorithms represent potential starting points in
a broader exploration of the semantics and utilization of commitments to coordinate sequential decision-making
agents in highly-uncertain environments, and we have speculated as to the transferability of these notions to
agents other than decision-theoretic agents.

As advertised at the beginning of this paper, our emphasis has been on how an agent that is abiding by
its commitments should constrain its behaviors (the space of action policies it considers) to act in good faith
on the commitment. If we connect back to a human example of this, where a doctor is trustworthy if she
follows standards of care even if a particular patient does not do well, then interesting questions arise as to
how external parties, rather than the agent itself, can actually confirm trustworthiness. In the US, questions of
medical trust often rely on an unbiased expert stepping through the decision making of a doctor to assess that
appropriate sequential decision were being made. In open systems where trust needs to be earned, interesting
questions arise as to how easy it would be to know whether to bestow trust on an agent, where the outcomes of
the decisions are observable but the decisions, and the processes used to reach the decisions, are not. Perhaps
notions of certification play a more significant role for this form of trust, where a certifying body has evaluated
and approved the decision-making processes of an agent. These are potentially interesting topics for future
consideration.
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