
Request confirmation networks
for neuro-symbolic script execution

Joscha Bach∗

Program for Evolutionary Dynamics
Harvard University

Cambridge, MA 02138
joscha@mit.edu

Priska Herger
micropsi industries GmbH

Berlin, Germany
priska@micropsi-industries.com

Abstract

We propose Request Confirmation Networks (ReCoNs) to combine neural learn-
ing with the sequential, hierarchical detection of sensory features, and to facilitate
planning and script execution. ReCoNs are spreading activation networks with
units that contain an activation and a state, and are connected with typed directed
links that indicate partonomic relations and spatial or temporal succession. By
passing activation along the links, ReCoNs can perform both neural computations
and controlled script execution. We demonstrate an application of ReCoNs in the
cognitive architecture MicroPsi2 for an active perception task in a virtual environ-
ment.

1 Introduction

MicroPsi is a cognitive architecture that combines neuro-symbolic representations [1] with situated
perception and a motivational system [2], [3]. MicroPsi agents live in an open environment that
they have to explore and navigate; currently we are using the game environment Minecraft [4]. To
this end, agents require mechanisms for bottom-up/top-down perception, reinforcement learning,
motivation, decision making and action execution. We are using MicroPsi to study how to combine
perceptual and conceptual representations, and to facilitate autonomous learning with full perceptual
grounding.

Cognitive architectures with perceptual grounding require a way to combine symbolic and sub-
symbolic operations: planning, communication and reasoning rely on discrete, symbolic representa-
tions, while fine-grained visual and motor interaction requires distributed representations. The stan-
dard solution consists in a hybrid architecture that combines a neural network layer with a carefully
crafted model that learns to compress the perceptual input, and a layer that facilitates deliberation
and control using symbolic operations and uses the extracted regularities [5]. However, while such
a dual architecture appears to be a straightforward solution from an engineering point of view, we
believe that there is a continuum between perceptual and conceptual representations, i.e. that both
should use the same set of representational mechanisms, and primarily differ in the operations that
are performed upon them. In our view, symbolic/localist representations are best understood as a
special case of subsymbolic/distributed representations, for instance ones where the weights of the
connecting links are close to discrete values. Highly localist features often emerge in neural learn-
ing, and rules expressed as discrete-valued links can be used to initialize a network for capturing
more detailed, distributed features (see KBANN [6]).

MicroPsi’s representations combine neural network principles and symbolic operations via recurrent
spreading activation networks with directed links. The individual nodes in the network process

∗ http://micropsi.com

1

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes.

http://micropsi.com/


information by summing up the activation that enters the nodes through slots, and calculating a
function for each of their gates, which are the origin of links to other nodes. Node types differ by
the number of gates and slots they have and by the functions and parameters of their gates. Typed
links can be expressed by the type of their gate of origin.

The most common node type in earlier MicroPsi implementations is called a concept node. Concept
nodes possess seven gate types (with approximate semantics in parentheses): gen (associated), por
(successor), ret (predecessor), sur (part-of), sub (has-part), exp (is-exemplar-of), cat (is-a). Concept
nodes can be used to express hierarchical scripts [7] by linking sequences of events and actions using
por/ret, and subsuming these sequences into hierarchies using sub/sur.

In MicroPsi2, a perceptual representation amounts to a hierarchical script to test for the presence
of the object in the environment. At each level of the hierarchy, the script contains disjunctions
and subjunctions of substeps, which bottom out in distributed substeps and eventually in sensor
nodes that reflect measurements in the environment and actuator nodes that will move the agent or
its sensors. Recognizing an object requires the execution of this hierarchical script. In the past,
this required a central executive that used a combination of explicit backtracking and activation
propagation. We have replaced this mechanism with a completely distributed mode of execution
called request confirmation network that only requires the propagation of activation along the links
of connected nodes.

2 Request confirmation networks

Modeling perception in a cognitive architecture requires an implementation of top-down/bottom-up
processing, in which sensors delivers cues (bottom-up) to activate higher-level features, while per-
ceptual hypotheses produce predictions of features that have to be verified by active sensing (top-
down). When using a neural network paradigm, the combination of bottom-up and top-down pro-
cessing requires recurrency. Request confirmation networks are a solution to combine constrained
recurrency with the execution of action sequences. They provide a neural solution for the imple-
mentation of sensorimotor scripts.

Request Confirmation Networks (ReCoN) are implemented within MicroPsi2’s formalism but are in
fact a more general paradigm for auto-executable networks of stateful nodes with typed links. We
therefore provide a general definition that is independent of our implementation.

A request confirmation network can be defined as a set of units U and edges E with

U = {script nodes ∪ terminal nodes}
E = {sub, sur, por, ret}

A script node has a state s where

s ∈ {inactive, requested, active, suppressed, waiting, true, confirmed, failed}

and an activation a ∈ Rn, which can be used to store additional state. (In MicroPsi2, the activation
is used to store the results of combining feature activations along the sub links). A terminal node
performs a measurement and has a state s ∈ {inactive, active, confirmed}, and an activation a ∈ Rn,
which represents the value obtained from the measurement. An edge is defined by 〈us, ut, type ∈
{por, ret, sub, sur}, w ∈ Rn〉, whereby us and ut denote the source and target unit, por connects to
a successor node, ret to a predecessor node, sub to a parent node, and sub connects to a child node.
w is a link weight with n dimensions that can be used to perform additional computations. Each
pair of nodes (us, ut) is either unconnected or has exactly one pair of links of the types por/ret, or
sub/sur. Each script node must have at least one link of type sub, i.e. at least one child that is either
a script node or a terminal node. Script nodes can be the source and target of links of all types,
whereas terminal nodes can only be targeted by links of type sub, and be the origin of links of type
sur.

ReCoNs solve the problem of constraining the flow of control in a hierarchical script on the level
of individual units without using topological information, i.e. without a centralized interpreter or
informing individual units about their neighboring elements. To do this, they need to store the exe-
cution state within the script elements in a distributed manner; each of these units is a state machine
with one of eight states (as defined above). Each unit implements connections to its neighbors using

2



directional links. Initially, all units are inactive. The execution of a script starts with sending the
signal ‘request’ to its root node. Semantically, the root node represents a hypothesis that is spelled
out in the script, and that we want to test; we request the validation of the root node. After the
script is executed, it will either be in the state “confirmed” or “failed” (until we turn off the ‘request’
signal, and the unit becomes inactive again).

Figure 1: Example of script execution.

During the validation, it will need to validate all of its children, by sending a ‘request’ signal along
its sub links. These may either form sequences or alternatives, cf. Figure 1. The former are validated
in succession, the latter in parallel. Successive execution requires that units prevent their successors
from becoming “active” until it is their turn; they do this by sending an ‘inhibit request’ signal along
their por links. If a requested unit receives an ‘inhibit request’ signal, it becomes “suppressed”
until its predecessor becomes “true” and turns off the signal. Active elements tell their parent that it
should wait for their validation to finish by sending them a ‘wait’ message. Each active element will
remain in the “waiting” state until either one of its children sends a ‘confirm’ message (in which
case it turns into the state “true”, or no more children ask it to wait (in which case the element will
turn into the state “failed”). In sequences, we also need to ensure that only the last element of a
sequence can confirm the parent request, so each unit sends an ‘inhibit confirm’ signal via ret to its
predecessors. The last unit in a sequence will not receive an ‘inhibit confirm’ signal, and can turn
into the state “confirmed” to send the ‘confirm’ signal to the parent. The execution of the script can
be reset or interrupted at any time, by removing the ‘request’ from its root node.

The ReCoN can be used to execute a script with discrete activations, but it can also perform ad-
ditional operations along the way. This is done by calculating additional activation values during
the request and confirmation steps. During the confirmation step (a node turns into the state “con-
firmed” or “true”), the activation of that node is calculated based on the activations of its children,
and the weights of the sur links from these children. During the requesting step, children may re-
ceive parameters from their parents which are calculated using the parent activation and the weights
of the sub links from their parents. This mechanism can be used to adapt ReCoNs to a variety of
associative classification and learning tasks.

2.1 A message passing definition of a ReCoN unit

The units of a ReCoN implement a finite state machine – as drawn out in Figure 2. This can be
realized by defining the eight discrete states explicitly and using a set of messages that are distributed
along the por, ret, sub and sur links, depending on the current state of each unit. These messages can
be defined as {inhibit request, inhibit confirm, wait, confirm, fail}. They are passed as specified in
Table 1.

In each state, incoming messages are evaluated and nodes either stay in the current state or switch
to the next, if a condition is fulfilled. These conditions are given in Figure 2.

3



Unit state POR RET SUB SUR

inactive (ø) – – – –
requested (R) inhibit request inhibit confirm – wait

active (A) inhibit request inhibit confirm request wait
suppressed (S) inhibit request inhibit confirm – –

waiting (W) inhibit request inhibit confirm request wait
true (T) – inhibit confirm – –

confirmed (C) – inhibit confirm – confirm
failed (F) inhibit request inhibit confirm – –

Table 1: Message passing in ReCoNs.

Figure 2: State transitions.

2.2 A neural definition of a ReCoN unit

It is possible to realize a ReCoN unit with an ensemble of artificial neurons. Figure 3 shows an
arrangement of ten simple threshold elements with only excitatory and inhibitory links that satisfies
these conditions. Let the activation of a neuron be defined as

αj =

{ ∑
(wij · αi) if wij · αi ≥ 0 for allwij , αi

0 otherwise

i.e. any incoming activation on a link with a negative weight is sufficient to entirely inhibit the
neuron. A message is any activation value sent over a link that crosses the boundary between units.
Units may send the message ‘request’ to their children (top-down), ‘wait’ and ‘confirm’ to their
parents (bottom-up), ‘inhibit request’ to their successors, and ‘inhibit confirm’ to their predecessors
(lateral inhibition).

4



We want all activity in a unit to cease as soon as the unit is no longer requested. Thus, all activation
in the unit is derived from the activation of the incoming request message. The request activation is
directly sent to the neurons IC, IR, and W. IC will inhibit confirm signals by predecessor units, and
IR will inhibit requests to child nodes by successor units, before the current unit is confirmed. W
informs the parent node that it has active (non-failed) children, by sending the ‘wait’ message. IR
also prevents the unit from confirming prematurely; i.e. before it has received a ‘confirm’ message
by one of its children.

IC then passes on its activation to R, and R sends out a request to the unit’s children, unless it is
inhibited by the predecessor node. To give predecessor nodes enough time to send the inhibition
signal, the flow of activation between IC and R is delayed by DR. F becomes active as soon as the
unit has no more active children, and represents the failure state of the unit. Like all states, it must
receive its activation from the initial request. It cannot be allowed to fail before the unit has sent a
request to its children, so F is inhibited by the predecessors ‘inhibit request’ message at the neuron
R . F can also not fail before the children cease sending their ‘wait’ message, so it is inhibited by
that message. F must also allow enough time for requested children to respond with this message,
so its activation is delayed by the helper neuron DF. Once F becomes active (i.e. the unit fails), it
stops the ‘request’ to the children by inhibiting R, and the ‘wait’ to the parent, by inhibiting W. (F
cannot get its activation directly from R, because F will later inhibit R and would thus remove its
own activation; therefore it is activated through the helper neuron R ).

The neuron T represents that the unit has been confirmed (true). It receives its activation from the
original request, but is not allowed to become active through the inhibition by IC. Only if IC is
turned off by the ‘confirm’ message of one of its children, T becomes active and will turn off W (the
‘wait’ message to the parent), R (the request of the children) and IR (the inhibition of the successors,
and itself). If the unit has no successors (i.e. receives no ‘inhibit confirm’ message), it will signal
T’s value via C as a ‘confirm’ message to the unit’s parent. This is just one of many possible ways
in which a ReCoN unit could be realized with artificial neurons.

Figure 3: Schematic of a neural ReCoN specification.

In MicroPsi2, the functionality of this circuitry is embedded in a single node, which requires a only
one calculation step and reduces memory usage; cf. section 3.1.

5



3 Implementation

3.1 A compact implementation of ReCoNs

Rather than explicitly modeling the state machine of a ReCoN unit, this implementation makes use
of the fact that the state of a ReCoN unit is fully determined by the activation of connected nodes
in the previous time step. States are implemented as a set of simple arithmetic rules operating on
incoming activation from connected nodes and the node itself. Nodes can link to themselves using
“gen loops” to store the states “true”, “confirmed”, and “failed”. Activation as well as all link
weights are numbers enabling real-value information processing and neural learning.

In this implementation, por/ret activation ∈ {−1, 0, 1} is used to control the flow of sub requests
({0, 1}) and sur confirmation. The real-valued sur activations can be interpreted as probabilistic in
the range [0, 1] or take on the value −1 to indicate a solid fail. They control por/ret activation in the
next higher layer.

Activation is spread in discrete steps. Each step consists of two phases: Propagation and calculation.
Propagation is simply: z = W · a where W is a matrix of link weights and a is the activation
vector. Calculation is fgate(fnode(z)), where fgate is an activation function specified per link type
and fnode implements the ReCoN behavior. The following definitions describe the behavior of the
node functions fnode per link type.

fgennode =

{
zsur if (zgen · zsub = 0) ∨ (∃ linkpor ∧ zpor = 0)

zgen · zsub otherwise

fpornode =

{
0 if zsub ≤ 0 ∨ (∃ linkpor ∧ zpor ≤ 0)

zsur + zgen otherwise

fretnode =

{
1 if zpor < 0

0 otherwise

fsubnode =

{
0 if zgen 6= 0 ∨ (∃ linkpor ∧ zpor ≤ 0)

zsub otherwise

fsurnode =


0 if zsub ≤ 0 ∨ (∃ linkpor ∧ zpor ≤ 0)

(zsur + zgen) · zret if ∃ linkret

zsur + zgen otherwise

An undesirable property of this implementation is that new activation is not solely based on incoming
activation but also depends on local knowledge about the existence of por/ret links1.

3.2 Using ReCoNs for an active perception task

Active perception with ReCoNs is based on learned representations that are encoded in the structure
and weights of links. Whenever the system encounters a new situation (for instance, after a locomo-
tion action) it will form a model of its environment as a combination of verifiable hypotheses. At
higher levels, these hypotheses can contain object representations and geometric relations between
objects, at the lower levels features and eventually input patches that make up the visual structure of
these objects. In the basic variant implemented so far, hypotheses are based on a single autoencoder
that captures features of the scene as a whole.

Hypotheses are verified by activating their top-most node with a request (i.e. sending activation to
its sub slot). From there, activation spreads downwards through the sub-hypotheses defined by the
node’s children, which are verified sequentially. If all existing hypotheses fail, the agent constructs
a new one, scanning its visual field and connecting the localized feature nodes into a hierarchy. We

1 The source code is available from https://github.com/joschabach/micropsi2. Formulas found in the code
are slightly more complex as they include additional features like time-based failing and searchability which
are not relevant in this context.

6

https://github.com/joschabach/micropsi2


built a MicroPsi agent that moves about in a Minecraft world along a transition graph, samples its
visual environment and learns to recognize scenes on the graph with a request confirmation network.

The agent does not process the entire visual field at once, but uses a rectangular fovea with a 16×16
sensor matrix. Using actuators, it can move this fovea to fixate a point (and thus a 16 × 16 patch)
in its field of vision. The possible fixation points are constrained to allow for a 50 percent overlap
between neighboring patches.

These patches are learned using a denoising autoencoder [8] with zero-masking Bernoulli noise and
a corruption level of 0.3. A 2-dimensional perspective projection of the Minecraft block world at
a given position serves as input to the autoencoder. Figure 4b shows, for one such position, the
visual field as the standard Minecraft client would present it to a human player (top), the projection
provided as visual input to the agent (center), and a visualization of the features at that position as
learned by the autoencoder (bottom).

(a) Transition graph of the
agent.

(b) Training data – Minecraft vanilla client (top),
visual input (center), learnt features (bottom).

Figure 4: Action space and input sample of a MicroPsi2 agent in Minecraft

The autoencoder hidden nodes play the role of terminal nodes to the ReCoN units. Features de-
tected by the hidden nodes are fed into a localized feature grid, where each combination of feature
and fixation point is expressed as a pair of por/ret connected ReCoN units. Each pair is sur/sub con-
nected to a parent unit. The first node of the por/ret sequence is sub/sur connected to the actuator
node that was active when the feature was detected, the second has an incoming sur link from one
of the hidden nodes of the autoencoder (see Figure 5a). The grid as a whole associates expected
features with all possible fixation points. Each grid element represents a feature at a given location
in the agent’s visual field, together with the action required to reach that location. Since hypotheses
are constructed as sequences of grid nodes, which contain actuators for moving the fovea, they are
simple sensorimotor scripts. New hypotheses are formed based on those features that are deemed
relevant to the current situation. Here, relevance is simply defined by an activation value exceeding
a threshold of 0.8. Figure 5b shows the structure and connectivity of such a hypothesis.

To evaluate the functionality of this implementation, we let the agent move around in the Minecraft
world using a number of fixed locations. As expected the agent learned hypotheses for all locations,
subsequently stopped forming new hypotheses, and successfully recognized all the locations.

7



sur

ret
por

from autoencoder
hidden node

grid
element

sub

fixation
point feature

actuator

sursur sub

gen

(a) An element of the feature grid.

sur

ret
por

gen

…
ret
por

to and from
grid element

to and from
grid element

to and from
grid element

top node of a hypothesis

sub

(b) Structure and connectivity of a hypothesis.

Figure 5: Connectivity schemas used for scene recognition.

4 Summary and current work

Request confirmation networks (ReCoNs) provide an elegant way to integrate hierarchical scripts
into neuro-symbolic architectures. They combine top-down/bottom-up processing with sequences
to form sensorimotor scripts. We gave a definition of a ReCoN unit as a message passing state
machine and a second, neural definition using simple threshold elements. The implementation in
our cognitive architecture MicroPsi2 uses dedicated nodes as ReCoN units. We tested our model
using an autoencoder over visual input as input layer, and let our agent learn and recognize scenes
in the game Minecraft. The agent also uses these representations for symbolic operations such as
protocol formation and basic policy learning. ReCoNs do not imply a novel way of learning, but
a representational formalism – which also limits the ways in which we can quantitatively evaluate
them. We are currently working towards combining ReCoN units with long short-term memory
[9] to learn the temporal/causal dynamics in Minecraft, for instance, to predict which hypothesis
is the most likely candidate at any given time. We are also working on making hypotheses more
robust against different types of variance: alternative views of a scene or object, presence /absence
of features, and forming hierarchies of hypotheses.

Acknowledgments

We would like to thank Dominik Welland and Ronnie Vuine (micropsi industries) who are vitally
involved in our recent and ongoing research and development of request confirmation networks.

8



References

[1] Ioannis Hatzilygeroudis and Jim Prentzas. Neuro-symbolic approaches for knowledge representation in
expert systems. International Journal of Hybrid Intelligent Systems, 1(3-4):111–126, 2004.

[2] Joscha Bach. Principles of synthetic intelligence PSI: an architecture of motivated cognition, volume 4.
Oxford University Press, 2009.

[3] Joscha Bach. Modeling motivation in micropsi 2. In Artificial General Intelligence, pages 3–13. Springer,
2015.

[4] Daniel Short. Teaching scientific concepts using a virtual world – minecraft. Teaching Science - Journal
of the Australian Science Teachers Association, 58(3):55, 2012.

[5] Stefan Wermter and Ron Sun, editors. Hybrid neural systems. Springer Science & Business Media, 2000.

[6] Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural networks. Artificial intelli-
gence, 70(1):119–165, 1994.

[7] Roger C Schank and Robert P Abelson. Scripts, plans, and knowledge. Yale University, 1975.

[8] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and compos-
ing robust features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103. ACM, 2008.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[10] Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural Networks, 1(4):339–356, 1988.

[11] Ronald J Williams and David Zipser. Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87–111, 1989.

9


	Introduction
	Request confirmation networks
	A message passing definition of a ReCoN unit
	A neural definition of a ReCoN unit

	Implementation
	A compact implementation of ReCoNs
	Using ReCoNs for an active perception task

	Summary and current work

