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Abstract 

In this paper, we explore three alternatives for developing a bio-
metric authentication software system. The first approach we will 
consider is a computer vision technique optimized by Genetic and 
Evolutionary Feature Extraction (GEFE); the second is Angle 
Based Metrics (ABM); and the third is Angle Based Metrics 
combined with Genetic and Evolutionary Computation (ABM + 
GEC). Each of these techniques are research areas which show 
promise in regards to being able to authenticate users based on 
their natural mouse movements. When applied to the same data 
set, the results of our experimentation indicate that both the ABM 
and ABM + GEC techniques are more accurate than GEFE in 
correctly verifying genuine users, as well as correctly rejecting 
impostors. 

Keywords – Biometrics, genetic and evolutionary feature extrac-
tion (GEFE), angle based metrics 

Introduction 
Biometric systems are able to authenticate or identify peo-
ple based on physiological or behavioral characteristics 
which are unique for each person [5]. As biometric systems 
become increasingly accurate, they will be selected more 
often as the option of choice for authentication, intrusion 
detection, or access control within software systems. One 
of the most useful applications for biometrics is user au-
thentication.  Authentication is a way to prove that a user is 
who they claim to be.  In most systems, authentication in-
volves asking a person to prove who they are by what they 
know – such as a username and password combination [9].  
Biometric authentication attempts to carry out the verifica-
tion process based on analysis of characteristics that are 
unique to a given individual. Physiological biometrics in-
clude analysis of characteristics such as fingerprint, iris, or 
facial features. Behavioral biometrics focus on the way in 
which users interact with their computer device.  Some 
examples are mouse movements [8], keystroke rhythm, 

and touch screen interaction. The main benefits of biomet-
rics is that they are difficult  to mimic and they have an 
advantage over password authentication in that they are not 
susceptible to being cracked (via dictionary attacks or brute 
force attacks), lost, or stolen [11]. 
     An emerging application of biometrics is active authen-
tication (AA).  Active authentication is a way of continu-
ously authenticating or verifying a user’s identity during a 
session.  Typically, a user is only authenticated at the be-
ginning of a session.  If the user steps away from the com-
puter or if the session is hijacked then the secured assets 
are vulnerable to exploitation.  Active authentication at-
tempts to continually verify that a user’s biometric patterns 
(human to computer interactions) are consistent with those 
demonstrated during their previous sessions [3].  The goal 
is to determine whether or not the current user is an im-
poster or the original authenticated user.  
     In this paper, we compare three different approaches to 
implementing biometric authentication using mouse 
movement. The first approach uses Genetic and Evolution-
ary Feature Extraction (GEFE) [1] to optimize computer 
vision and evolutionary computation techniques.  The sec-
ond approach, called Angle Based Metrics (ABM) [15], 
uses angle analysis in order to extract features and distin-
guish between valid users and impostors. And the third 
approach, called ABM+GEC is an enhanced version of 
ABM which utilizes a genetic and evolutionary computa-
tion (GEC) technique in order to reduce the size of the ex-
tracted feature set.  Though both GEFE and ABM+GEC 
use evolutionary computation as a method of improving 
the efficiency and success of their root techniques, they are 
completely independent approaches.  
     In addition to exploring how these three approaches 
compare, we also present evidence that GEC is a valuable 
method of reducing the complexity of systems like ABM, 
by eliminating irrelevant data from consideration, thus in-
creasing the efficiency and feasibility of Active Authenti-
cation. The true acceptance rate (TAR) and false ac-
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ceptance rate (FAR) results for all three techniques were 
computed using the same data set.  The rest of the paper is 
as follows. The next section describes GEFE.  Following 
the GEFE section, ABM is introduced.  Next, a discussion 
of how the GEC was combined with ABM is presented, 
followed by a section that presents the advantages and dis-
advantages of AMB and GEFE.  The last three sections 
describe how the experiment was conducted,   present a 
comparison of the results and, finally, present conclusions 
and future work.  

GEFE 
The GEFE technique involves the use of algorithms which 
have been adopted from the fields of Evolutionary Compu-
tation and Computer Vision in order to be able to classify 
images [4].  The path of each mouse movement is recorded 
using the (x, y) screen coordinates and then saved as an 
image file.  The image is then analyzed in a similar bio-
metric manner as a facial image. Images are compared by 
using image processing techniques to extract features.  It is 
important that the features extracted are useful in distin-
guishing one image from another. GEFE uses Local Binary 
Pattern (LBP) [10] for extracting features from the images 
and storing them into feature vectors/templates. These fea-
ture vectors allow images to be mathematically compared 
to one another to determine how similar they are. Tradi-
tionally, the comparison is accomplished by utilizing a 
distance metric (e.g. Euclidean Distance or Manhattan Dis-
tance) to determine how close the images are to each other 
[7]. 
     LBP works by dividing an image canvas into rectangu-
lar regions called patches. Within each patch, the LBP al-
gorithm will iteratively select each interior pixel as a center 
pixel. Next, the intensity value of the center pixel is com-
pared with its neighboring pixels in order to generate a 
texture pattern (bit string) for a given pixel. For each 
neighboring pixel, if the grayscale value is greater than the 
center pixel's grayscale value then a 0 bit is generated; oth-
erwise, a 1 bit is generated. For each center pixel, an 8 bit 
binary string is generated that denotes the relationship be-
tween the center pixel's grayscale value and that of the 8 
neighbors (top, top right, right, bottom right, bottom, bot-
tom left, left, top left). Each patch is then treated as a his-
togram where the different bins consist of all the texture 
patterns or bit strings that are possible. The strings for each 
patch are concatenated in order to form feature sets or fea-
ture vectors. 
     It is possible to designate the number of features that 
are included in the extracted feature set of a given mouse 
movement session. For example, GEFE-56 uses feature 
sets of size 56 (per patch) while GEFE-256 uses feature 
sets of size 256 for each patch.  

     GEFE uses a genetic algorithm in order to select the 
best feature extractor no matter how many features are 
designated per patch [12]. This means that the genetic al-
gorithm will be able to optimize the feature set to ensure 
that only the significant features are included in the feature 
vector. The size of the patches, the center of each patch, 
and which patches should be included in the feature vector 
are all decided by the genetic algorithm which evolves the 
feature extractor as the algorithm is run repeatedly.  In con-
trast, the generic LBP method uses non-overlapping, uni-
form sized patches for matching. 
     The process of "evolving" a feature extractor is accom-
plished via the Estimation of Distribution Algorithm 
(EDA). An EDA will select a specified number of elites 
(candidate solutions with the best fitness) to be automati-
cally included in the next population iteration.  The re-
maining offspring in the population will be generated by 
choosing a subset of the current population to be used to 
create a probability distribution function (PDF).  The PDF 
is then sampled to generate the remaining offspring for the 
next population. 
     The feature vectors for each mouse movement session 
of a given user will be stored in a profile, and new move-
ments can be compared to the profile of a user to determine 
if the distance is within a certain threshold. This technique 
allows users to be authenticated (based on their mouse 
movements) with a fairly high accuracy rate. 

ABM 
Angle Based Metrics [15] is an approach to designing a 
biometric system that focuses on the angles that are gener-
ated by the mouse movements of a user. The angles are 
used to derive useful features or metrics which may be 
used to distinguish one user from another.  The main ad-
vantage of this approach is that it works well even if the 
user’s hardware or computing environment changes from 
one session to the next. 
     As with most biometric systems, the Angle Based Met-
rics approach is comprised of four different components: 
Recorder, Preprocessor (feature extractor), Classifier, and 
Decision Maker. The Recorder is the simplest of these 
components and is positioned on the client side of an ap-
plication to capture user mouse movement events and send 
that data to the Pre-processor.  The Preprocessor executes 
on the server side and is responsible for translating the data 
it receives from the Recorder into valuable metrics.  There 
are 3 metrics which our Pre-processor calculates from the 
mouse coordinates and mouse clicks:  the direction angle, 
curvature angle, and the curvature distance ratio.  These 
metrics are calculated by examining groupings of 3 points -
- in the order in which those points were visited by the 
user’s mouse movement. Thus point A is visited before 
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point B, and point B is visited before point C (See figure 
1).    

x The direction angle (1) is the angle measured from 
a horizontal line to the line AB.  Line AB is 
formed by traveling from the first point in the 
group of 3 to the second point. 

x The curvature angle (2) is the angle ABC where A, 
B, and C are consecutive points read into the Pre-
processor from the Recorder. 

x The curvature distance (r) is as follows: for a line 
AC, let point Z be the point located from B to AC 
that is perpendicular to AC. Then the curvature 
distance is the ratio BZ/AC. 

     The metrics calculated in the Preprocessor are orga-
nized as a cumulative distribution function (CDF), with 
intervals of direction angle (x), curvature angle (y), and the 
curvature distance/ratio (r). The CDF is a mathematical 
model that illustrates which percentage of a user’s metrics 
fall within a given range of values.  The percentage values 
within each CDF bin (interval) are what help to distinguish 
one user from another and are referred to as “features”. The 
collection of all the features for a given session of user 
action is referred to as a feature set or template. The feature 
sets are used as input to the Classifier component of the 
ABM system. 
     The main task of the Classifier is to be able to tell 
whether or not a feature set or group of feature sets belong 
to a given user or not. There is more than one way to im-
plement the Classifier.  One way is to utilize a support vec-
tor machine (SVM). A support vector machine is a ma-
chine learning component often used for classification 
[14]. A SVM will take in a group of feature sets derived 
from a user and utilize them to create a training model of 
the user’s mouse movement characteristics. Then, whenev-
er new mouse data arrives, the SVM can compare the fea-

tures of that data in order to determine whether the move-
ments belong in the same grouping/classification with the 
other movements in the user’s training model/profile.   
     Another classification technique utilizes the Normalized 
Manhattan Distance (NMD).  NMD is calculated by taking 
the sum of the differences between two feature-sets (where 
each feature set is simply a list of percentages or floating 
point numbers) divided by the total number of features. For 
the purposes of our own analysis, NMD was the chosen 
method for comparison and classification.  The NMD val-
ue represents how close mathematically a template is to 
those in a user’s profile/training set.  That value is sent to 
the Decision Maker component. 
     The Decision Maker is the component that is tasked 
with deciding whether the actions being generated by a 
user’s session are similar enough to those movements 
saved under the user’s profile to be considered a match. 
One way to do this is to establish a threshold value in order 
to be able to accept or reject a feature set based on the 
NMD value. Another approach is to utilize a SVM to de-
termine whether or not a feature set may be classified with 
the other feature sets known to belong to a given user. The 
SVM will output a decision value to accept or reject, and 
that information may be utilized by the security mecha-
nisms within a larger system in order to determine if a user 
needs to be prompted to re-authenticate or not. 

ABM + GEC 
All of the main components of the ABM + GEC approach 
are consistent with that of ABM. In fact, ABM + GEC can 
be considered an optimized version of ABM.  Upon the 
initial implementation of the ABM system, it was observed 
that the greatest experimental results were achieved when 
the CDF bin sizes for the x, y, and r metrics were set to 
very small values.  However, this presented a practicality 
problem because decreasing the bin sizes results in an in-
crease in the number of features. This is due to an idea 
known as the curse of dimensionality, where it can be said 
that, as the number of dimensions in a vector problem in-
creases, so does the complexity of the problem, and there-
fore, the time devoted to solve the problem increases as 
well. The natural relationship between the interval sizes 
and the magnitude of the feature set is an inversely propor-
tional relationship, and so, as the size of the intervals de-
creased, the size of the feature set grew profoundly. For 
example, when using x and y intervals of .05, the feature 
set contained 2683 features. Because features represent the 
vector dimensionality of the authentication problem, this 
meant the system incorporated 2683 dimensions, and cre-
ated an authentication environment that was very slow and 
difficult to manage. To solve this problem, a genetic algo-
rithm toolset called X-TOOLSS [13] was used. The objec-

Figure 1: Illustration of Angle Based Metrics 
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tive for using X-TOOLSS was to optimize the system by 
evolving new, smaller feature sets with larger intervals that 
could produce similar results -- in terms of authentication 
accuracy -- as the .05 intervals.  In addition, X-TOOLSS 
eliminated redundant features which were non-essential to 
authentication. This process is called feature masking. 

X-TOOLSS uses genetic algorithms (GAs) that, based 
on the “survival of the fitness” concept, develop optimal 
solutions for many types of parametric software systems. 
In this case, the feature masks and interval (bin size) com-
binations were designated as candidates.  The GA evolves 
a population of candidate solutions by first generating ran-
dom candidates and assigning fitness values to feature ex-
tractors implementing different versions of those candi-
dates. Depending on the type of genetic algorithm being 
used, different methods are employed to create offspring 
from high-fitness “parent” candidates, and introduce those 
offspring into the next generation of the candidate popula-
tion as a whole.  Fitness values were calculated using the 
authentication accuracy of the candidate system (explained 
further as the Cumulative Match Curve (CMC) in the 
Comparisons and Results section). For the ABM + GEC 
system, a Steady-State GA was used, which stipulates that 
adding the offspring candidates to the population can only 
occur when those children have a higher fitness value than 
their parents. Therefore, the population size remains con-
stant, or steady, throughout the evolution process.  

The x, y and r intervals were evolved using double-
precision 64-bit floating point values, between a range .5 
and  (large enough intervals to produce a more manageable 
volume of features), a population size of 20 individuals, a 
Crossover Usage Rate of 1.0, a  Mutation Usage Rate of 
1.0, a Mutation Range of .2, with 1000 total evaluations. 
These settings evolved new x, y, and r intervals of 6.024, 
1.0, and 20.0 respectively. As for the feature mask evolu-
tion, the range was limited to the integers 0 and 1, and was 
applied to each feature in the template, representing either 
“on” (1) or “off” (0) for that corresponding feature.  All 
other parameters for the Steady-State GA were the same as 
the interval optimization, save the number of total evalua-
tions, which was 1000. The average results are based off of 
10 runs of the GEC. 

The evolution of the ABM system produced a remarka-
ble complexity reduction from a 2683-dimensional system 
to a 283-dimensional system, using interval evolution, and 
then even further to a 150-dimensional one using the 
evolved feature mask. This resulted in an overall decrease 
in complexity of about 94.4%. The evolved system is far 
faster and more practical for real-world implementation; 
not only did the efficiency of the authentication system 
show improvement, the overall accuracy of the authentica-
tion improved as well (See Comparisons and Results sec-
tion). 

Pros and Cons of ABM and GEFE 
One of the major benefits of both the ABM (including 
ABM+GEC) and GEFE approach to software biometrics 
and active authentication is that these techniques are able 
to effectively verify a user’s mouse movements across dif-
ferent platforms without losing a significant amount of 
accuracy due to differences in hardware devices [15].  This 
is a major benefit over other metric approaches, such as 
speed and acceleration that are affected by the user’s oper-
ating system as well as the mouse or the screen resolution 
[6]. Speed and acceleration are also poor metric choices 
due to the endless possibilities of situational diversity. For 
example, a user may quickly make a decision to advance 
toward and click a submit button, yet the same user may 
slowly advance and then pause before clicking a hyperlink 
on a text-rich web page such as a wiki article.  
     Another benefit of the ABM authentication approach 
over other authentication techniques lies in its generated 
data’s minimal impact on user privacy.  In the hands of a 
malicious culprit, mouse movement data would be of little 
use, as such data would not lend itself to reproduction. The 
mouse dynamics of a user can be compared to a signature; 
however, unlike the forging of a signature, where authenti-
cation is carried out once, an impostor would be required 
to continuously mimic the genuine user’s biometric behav-
ior throughout the duration of the session [2].  
     One possible hindrance that could be encountered by 
ABM authentication involves genuine users who undergo 
sudden biometric behavioral changes that render them un-
able to match up to their former biometric profiles. For 
example, a user could sustain a wrist fracture, causing a 
sudden change in mouse movement dynamics. Such occur-
rences, though rare, would possibly require intervention by 
system administrators to ensure the user is not falsely re-
jected from the system. 

Experiment 
The experiment that we developed was closely related to 
the experiment performed by J. Shelton et al. [12].  The 
mouse pointer was automatically centered on the screen 
and users were instructed to move the mouse in order to 
bring up the login box. The subjects were unaware of the 
purpose of the experiment. 
     We obtained and utilized the same data set used by 
Shelton.  The data consisted of mouse movements collect-
ed for 16 unique subjects.  Each subject had a “profile” 
comprised of 10 different sessions or sequences of mouse 
movements.  Our experiment was to take a sequence (tem-
plate) from any user and compare it with the profiles of all 
other users including the “self” profile to see if we could 
authenticate or verify a user based solely on their move-
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ment pattern. The comparison was based on calculating the 
NMD between a single sequence and all of the other se-
quences in each profile. And based on a certain threshold 
value that we set for the NMD we were able to accept or 
reject each sequence as belonging to the owner of a certain 
profile or not.  We were able to analyze the TAR and the 
FAR for ABM, ABM+GEC, and GEFE.  

Comparison and Results 
Our experimental results consist of the following catego-
ries: FAR, FRR, TAR, and the threshold. Note that the 
threshold is the independent variable but the results are 
also influenced by the interval that we utilized for the x, y, 
and r bins (representing the direction angle, curvature an-
gle, and curvature distances respectively) in the CDF that 
generates the feature vectors.  We selected a single tem-
plate which we designated as a probe and we used all the 
remaining templates as our gallery set.  The probe was then 
compared to every template in the gallery and if the NMD 
for probe and gallery member was less than or equal to the 
threshold value then this would count as an acceptance.  
True acceptances were those cases where both templates 
being compared belonged to the same subject and the 
NMD was below the threshold.  A false acceptance oc-
curred if the NMD for probe and gallery template was be-
low the threshold but the templates did not belong to the 
same subject. And a false reject occurred if the NMD value 
was above the threshold but the templates were both from 
the same subject.  We iterated through and allowed each of 
the 160 templates in our data set to have their chance to act 
as the probe and then designated the remaining 159 tem-
plates as our gallery set for each iteration.  As we increased 
the threshold, the TAR value continued to increase towards 
100%. Our best results were the ones that minimized FAR 
and FRR while maximizing TAR.  When we set the 
threshold at .081, it yielded a TAR of approximately 70%, 
a FAR of approximately 42% and FRR of 30%. Likewise, 
while using a threshold of .0161 we calculated TAR of 
90%, a FAR of 74% and a FRR of 10% (See Figure 2). 
These results are significantly better than what was 
achieved with GEFE. When the TAR for GEFE (specifi-
cally GEFE-256) approaches 80%, it yields a FAR 76%, 
and when the TAR reaches 90% it yields a FAR which is 
close to 90% as well.  

We also computed a Cumulative Match Characteristic 
(CMC) in order to analyze the ABM technique.  The CMC 
uses a single template as a probe and the remainder of the 
templates from all subjects (including self) in the popula-
tion as the gallery.  The CMC applies a rank for each probe 
to determine the percentage of templates which are able to 
find a match which belongs to the same subject on the first 
probe (rank 1), second probe (rank 2), third probe (rank 3), 

etc. The percentages on the CMC chart were calculated by 
letting every template in the population serve as the probe 
exactly one time.  For a given rank, the percentage includes 
all the matches which were produced using x number of 
probes where x is less than or equal to the rank number. So 
rank 3, for example, includes the percentage of probes that 
found a match within 1, 2, or 3 attempts. A match occurs 
when a probe is compared with the population gallery and 
the template discovered to be closest in distance from the 
probe belongs to the same subject as the probe.  If any at-
tempt to find a match results in discovering a template that 
is closest in distance to the probe but belonging to a differ-
ent subject, this is a “miss”.  After any miss, we removed 
all the templates from the population which belong to the 
subject which caused the miss. 

Figure 2: ROC results for ABM, GEFE, and ABM +GEC 
 

Figure 3: CMC results for ABM, GEFE, and ABM +GEC 
 

The CMC results show that though GEFE has a consid-
erably higher rank 1 accuracy of 43.75%, compared to 
ABM’s 25.0% rank 1 accuracy, ABM begins to substan-
tially outrank GEFE from rank 3, and beyond, including 
double digit differences in accuracy beginning with rank 4. 
(See Figure 3 CMC Chart). ABM + GEC further widens 
the accuracy gap, by matching GEFE’s 43.75% rank 1 ac-
curacy and greatly outperforming every other rank for GE-
FE, including double digit percentage leading from rank 3 
and on. 
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Conclusions and Future Work 
Based on the results we have tabulated and displayed in the 
ROC and CMC curves, it appears that the ABM + GEC 
technique is more accurate and more effective as a soft-
ware biometric approach when compared to the GEFE. In 
addition, ABM+GEC is able to accomplish higher accura-
cies than standard ABM although using a significantly 
lower number of features. 

Future work needs to be done in order to improve both 
the GEFE and ABM + GEC techniques if either strategy is 
going to become applicable to the mainstream authentica-
tion. Each approach will have to decrease the FAR while 
maintaining a high TAR.  Also, the entire system needs to 
be modified and tested in a real time environment in order 
to better evaluate the feasibility of the technique for de-
ployment in a production setting.  The evolutionary com-
putation that GEFE and ABM+GEC undergo can both take 
hours to run depending on the algorithm parameters. How-
ever, each system can be viewed as a feature "update" al-
gorithm which would run as a background component to 
an AA system, as new data becomes available, to maintain 
optimal accuracy. Therefore, there should be little impact 
on user experience due to the speed of completion. 

Furthermore, we would like to test the system on a larger 
pool of users in order to see how that affects the accuracy 
measurements.  Some things to consider in a real time ac-
tive authentication (AA) system also include: how many 
templates should be stored in a user’s profile during train-
ing phase; and how long should each template remain in 
profile before being “aged out” by new templates. 
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