
A Tool for Staging Mixed-initiative Dialogs⇤

Joshua W. Buck and Saverio Perugini
Department of Computer Science

University of Dayton
300 College Park

Dayton, Ohio 45469–2160 USA
Tel: +001 (937) 229–4079, Fax: +001 (937) 229–2193

E-mail: {jbuck1,saverio}@udayton.edu

Abstract

We discuss and demonstrate a tool for prototyping
dialog-based systems that, given a high-level specifi-
cation of a human-computer dialog, stages the dialog
for interactive use. The tool enables a dialog designer
to evaluate a variety of dialogs without having to pro-
gram each individual dialog, and serves as a proof-
of-concept for our approach to mixed-initiative dia-
log modeling and implementation from a programming
language-based perspective.

Introduction
Mixed-initiative interaction is a flexible interaction strategy
where the user and system engage as equal participants in an
activity and take turns exchanging initiative, thereby shar-
ing initiative. The strategy has been proposed and studied
as a link to bridge artificial intelligence (AI) and human-
computer interaction (Hearst, 1999). Mixed-initiative inter-
action has been studied and applied to keep the human in the
learning feedback loop of an intelligent search, particularly,
in planning, scheduling, and constraint satisfaction (Fergu-
son and Allen, 1998; Fleming and Cohen, 1999, 2001; Frank
et al., 2001; Pu and Lalanne, 2002; Smith et al., 2005; Wolf-
man et al., 2001). This paper specifically addresses mixed-
initiative dialog (Glass and Seneff, 2003; Lee et al., 2010;
Walker and Whittaker, 1990). While “[c]reating an actual
dialog system involves a very intensive programming ef-
fort” (Guinn, 1999), our tool simplifies that effort so that
dialog designers can evaluate a variety of human-computer
dialogs, including mixed-initiative dialogs (see figure 1).

A Language-based Approach to
Mixed-initiative Dialog Modeling

We approach this problem by casting it in a programming
language-based context, using notions from lambda calcu-
lus (Friedman and Wand, 2008). While not the focus of this
paper, we introduce the fundamentals of the approach here
to help orient the reader to the overall idea. As the user
progresses through a dialog, we think of the steps that she

�We thank the four anonymous reviewers of this paper for their
helpful comments and suggestions that helped to improve it.
Copyright held by the author(s).

takes as the evaluation of a function. Changing the evalu-
ation method of the function (or transforming the function)
then corresponds to different interaction policies (Rudnicky
et al., 1999) for the dialog (i.e., ways of mixing initiative).
The overall idea is that different function evaluation strate-
gies correspond to different interaction policies for the di-
alog (i.e., system initiated vs. mixed-initiative) or ways of
mixing initiative. For instance, consider a course schedul-
ing dialog where the user must make selections for depart-
ment, time, and number of credits, among others. We can
model this dialog with a function schedule with type signa-
ture (department ⇥ time ⇥ credits) � course, simpli-
fied for purposes of succinct presentation. Evaluating this
function using the complete, eager (Friedman and Wand,
2008) or applicative-order evaluation (Abelson and Suss-
man, 1996) function application evaluation method common
in most programming languages (e.g., C, Java, Scheme) re-
quires the user to supply arguments for the complete list
of parameters to the function, in one stroke. In interaction
terms, this evaluation method corresponds to a user complet-
ing, for example, an online, web-based form with multiple
input fields (as, e.g., generated by Ajax) and clicking ‘sub-
mit’ once he has provided responses for all of the required
fields. Optional fields correspond to (optional) parameters
with default values (e.g., as in Python; Sebesta 2015). In
general, this evaluation strategy corresponds to providing
(possibly) multiple responses in a single utterance. A single
utterance with only one response (if the function is a unary
function), which is common in confirmation dialog boxes in
application software, can also be modeled with this method.

Currying this function corresponds to spreading the inter-
action required to complete the dialog across a fixed series of
multiple, progressive user-system dialog turns (i.e., system
solicitation followed by user response, and so on). Currying
the function schedule above transforms it into one with type
signature

department � (time � (credits � course))

1,

such that

scheduleuncurried(biology, morning, 3) =

1Parentheses included for purposes of clarity.

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

25

(1) Avatar: Welcome to the Course Registration System.
For which semester would you like to register?

(2) User: Spring 2016.

(3) Avatar: From which department would you like to take
a class? (Example: Mathematics)

(4) User: Actually, I need an afternoon class.

(5) Avatar: Okay, an afternoon class. From which
department would you like to take a class? (Example:
Mathematics)

(6) User: Well that depends on which departments have
courses that satisfy the natural science requirement and
that offer courses without a prerequisite.

(7) Avatar: Chemistry, Biology, Geology and Physics are
the only departments that do so.

(8) User: Physics is the department I want.

(9) Avatar: There is only one course, PHY 100, that
satisfies the natural science requirement and does not
have a prerequisite. Only sections 01 and 02 are offered
in the afternoon.

Figure 1: A mixed-initiative dialog.

((schedulecurried(biology))(morning))(3).

In general, currying (Scott, 2009) transforms a function
funcurried with type signature

funcurried : (p1 ⇥ p2 ⇥ · · · ⇥ pn) � r

into a function fcurried with type signature

fcurried : p1 � (p2 � (· · · � (pn � r) · · ·)),

such that

funcurried(a1, a2, · · · , an) =

(· · · ((fcurried(a1))(a2)) · · ·)(an).

(Uncurrying a curried function inverses the curry operation.)
The function resulting from currying a function modeling
a dialog corresponds to the interaction common in wizards
for installing application software (Hamidi, Andritsos, and
Liaskos, 2014) or in ATMs or airport and train kiosks, where
the user is required to complete a fixed, system-initiated
dialog (Allen, 1999) that involves supplying only one re-
sponse per utterance. (Fixed dialogs have been referred
to as strongly-typed interactions (Lee et al., 2010), under-
scoring a connection to the language concept of strong typ-
ing (Sebesta, 2015).)

Partially applying the function scheduleuncurried corre-
sponds to a fixed dialog where the user is afforded the flex-
ibility to provide more than one response per utterance.
This mode of interaction is common when providing a tele-
phone, credit card, or PIN number through a voice modal-
ity. Partial function application states that for any function
f(p1, p2, . . . , pn),

f(a1, a2, . . . , am) = g(pm+1, pm+2, . . . , pn),

where m � n, such that

g(am+1, am+2, . . . , an) =

f(a1, a2, . . . , am, am+1, am+2, . . . , an).

(Note that currying funcurried and progressively applying
the resulting fcurried function has the same effect as par-
tially applying funcurried.)

Lastly, applying the program transformation partial eval-
uation (Jones, 1996) to scheduleuncurried corresponds to
permitting the user to communicate answers to the set of
questions in the dialog in utterances corresponding to all
possible set partitions of the set of questions, and using all
possible permutations of those partitions. Partial evaluation
generalizes the idea of partial function application from any
prefix of the parameter list to any subset of the parameter list
and formally states that for any function f(p1, p2, . . . , pn),

f(a, b, . . . , r) = g(p1, p2, . . . , pn � a, b, . . . , r),

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

26

where {a, b, . . . , r} � {p1, p2, . . . , pn}, such that

g(s, t, . . . , z) = f(a, b, . . . , z).

Table 1 summaries these associations from programming
language concepts to human-computer dialogs.

We developed a notation employing these function evalu-
ation strategies for specifying mixed-initiative dialogs. A
specification involving multiple functions using different
evaluation strategies corresponds to a dialog involving mul-
tiple sub-dialogs. We refer the reader interested in additional
details to (Perugini, 2015).

System Design and Implementation
While the implementation details are beyond the scope of
this paper, we make some remarks. Figure 2 provides a con-
ceptual overview of the design and execution of our dialog
system construction tool. The left side of the figure depicts
dialog specification and the right side illustrates dialog stag-
ing.

At present, the dialog designer must specify the dialog in a
textual format using a high-level description language that is
a less formal version of our language-based, dialog author-
ing notation that is then compiled into an XML document
(see right side of figure 4). While the visual dialog builder
interface through which the designer specifies the dialog to
be implemented (see figure 4) is still in development, we use
it in scenario 0 below to obviate the need to cover the for-
mal syntax and details of our dialog authoring language. A
specification in either format is then compiled into an XML
document (see right side of figure 4). The XML document is
then parsed into a variety of data structures (see figure 3) for
use by the dialog staging engine, which processes user re-
sponses and stages the turns of the dialog (i.e., structures the
interaction). We use the term staging to refer to the process
by which the progressive turns of the dialog are structured
or layered. For instance, the system starts by soliciting a re-
sponse from the user to a particular question and then awaits
a reply. The user in turn provides a response and the system
makes another solicitation. The user then might respond to
an unsolicited, yet forthcoming, question that the system ac-
cepts, processes, and uses to determine the next prompt to
present. Dialog management, conducted through the stag-
ing engine here, performs system-action prediction (Lee et
al., 2010)—deciding what to prompt for and/or accept next
based on the discourse history and the current utterance. In
this sense, staging operationalizes the dialog modeled by the
specification and can be thought of as an interpreter (in the
programming language sense of the word) for the specifica-
tion.

Though not shown explicitly in figure 2, the dialog de-
signer can also interact directly with the generation engine
and the staging engine, in addition to a visual dialog builder,
which is why the designer is depicted at the center of the
dialog toolkit, especially since the staging engine supports
server commands for interacting with user clients. Figure 3
illustrates the data structures used to represent the human-
computer dialog demonstrated in the following designer and
user scenarios.

Designer and User Scenarios
We use the following six scenarios from student course
scheduling at a university to demonstrate our tool.

Scenario 0: Dialog Design
Using a drag-and-drop, split-screen, visual dialog builder
(see figure 4), a dialog designer specifies a dialog by opening
a new blank dialog project. In a new blank dialog template,
a designer may specify aspects of the dialog such as a wel-
come message and generic (confirmation) responses to user
utterances such as ‘Okay, you answered’ The designer
can then create the first solicitation. Creating a new solicita-
tion launches a set of boxes in the visual panel (left side of
figure 4), by default, prompting the designer for a solicita-
tion (typically a question) and three valid responses to it that
the dialog (client) user may provide in response to that solic-
itation. The first solicitation in a course registration dialog
might be ‘For which semester would you like to register?’
The three valid responses specified by the designer to this
solicitation might be ‘Fall,’ ‘Spring,’ and ‘Summer.’ Using
the tool, the designer can add and remove solicitations and
responses at any time from the dialog specification she is
authoring.

Once the dialog designer has specified more than one so-
licitation, she can establish a total or partial ordering be-
tween responses and solicitations by drawing arrows using
the visual tool. For instance, the dialog designer might draw
a relationship arrow from the ‘Mathematics’ response of the
third solicitation to the fifth solicitation ‘For which class
would you like to register?’ with the mathematics courses
as possible responses. This scenario illustrates how a par-
ticular response can lead to a different path through a dia-
log through the inclusion of relationship arrows to associate
certain responses to forthcoming solicitations. If no rela-
tionships are specified, the default interaction policy is im-
plicit in the visual, top-to-bottom order of the solicitations
in the left pane (i.e., a fixed dialog). In other words, if a
response is listed without a defined relationship to another
solicitation, the next solicitation by default is the solicitation
immediately below the given response. Relationships that
collectively induce a loop in the dialog specification—such
as a relationship between a response and itself—without at
least one path out of the loop are not permissible.

As mentioned above, the dialog designer can also create
the dialog specification using our dialog authoring notation
in a text format. Note that the right pane of the interface
shown in figure 4 is a textual XML representation of the dia-
log specification. The two panes of the split-screen shown in
figure 4 are synchronized in real time to be accurate reflec-
tions of each other, and the dialog designer always has the
option of using either or both, at her discretion. The dialog
designer can also dynamically change the interaction policy
of a dialog or any sub-dialogs (i.e., evaluation order of the
solicitations), as well as perform other operations, by inter-
acting directly with the staging engine though a console, as
mentioned above.

Scenario 1: Fixed Dialog with

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

27

Table 1: Metaphors from programming language evaluation strategies to a variety of human-computer dialogs.
Evaluation strategy Responses per utterance Ordering of utterances Example(s) Scenario

complete, eager evaluation single only one utterance confirmation dialog boxes
common in application software –

complete, eager evaluation multiple only one utterance web forms with multiple fields 2
currying single totally-ordered wizards for

installing application software or
ATMs or airport and train kiosks 1

partial function application multiple totally-ordered communicating a telephone,
credit card, or PIN through voice 4

partial evaluation single partially-ordered online test/quiz or survey 5
partial evaluation multiple partially-ordered making a flight, rental car, or hotel

reservation with a human agent 3

Dialog System

Dialog User Client (.exe)Dialog Toolkit (.exe)

 Staging

Dialog
Designer

Generation
Engine

Staging
Engine

Dialog
UserVisual Dialog Builder

high-level
dialog

specification
visual or textual

(.txt)

generated
XML

specification
(.xml)

Visual
Dialog
Client

tree & hash table
data structures

utterance

prompt

TCP/IP

Figure 2: Conceptual design and execution of our dialog system.

Single Response per Utterance
The system solicits for a semester for which to register and
the user responds with ‘spring 2016.’ In a fixed dialog, the
user must respond to this question. The next solicitation is
for a department in which to register for a course. The user
replies with ‘mathematics department’ and the system solic-
its for the course level: undergraduate or graduate. The user
responds with ‘undergraduate’ and the system prompts for a
course. The user replies ‘168’ and the system responds with
‘Okay, mathematics 168. The course is offered from 3:35pm
to 4:50pm on Tuesdays and Thursdays. Confirm registra-
tion?’ If the user responds with ‘yes,’ the dialog is complete.
This scenario illustrates one complete path through the dia-
log, where the user responds to all of the system solicitations
in the order in which they are presented. This scenario cor-
responds to the third row of table 1 (i.e., currying). Figure 1
illustrates the interface through which the user, in this sce-
nario and all following scenarios, interacts with the system
while participating in the dialog.

Scenario 2: Fixed Dialog with
All Responses in a Single Utterance
We restart the dialog system. This time, when prompted for
a semester, the user responds with ‘spring 2016 mathemat-
ics 168.’ Note that the system accepts utterances containing
responses embedded among other non-essential words. For
instance, an equivalent response is ‘I would like to register
for mathematics 168 in spring 2016, please.’ The system
processes all of the responses in this utterance and responds
with ‘Okay, mathematics 168 in spring 2016. The course is
offered from 3:35pm to 4:50pm on Tuesdays and Thursdays.
Confirm registration?’ If the user responds with ‘yes,’ the di-
alog is complete. This scenario illustrates a complete path
through the dialog where the user provides responses to all
of the solicitations in a single utterance. This scenario cor-
responds to the second row of table 1 (i.e., complete, eager
evaluation).

Scenario 3: Mixed-initiative Dialog,

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

28

Unsolicited Responses
Assume we undo the user utterance in the scenario 2 above.
This causes the system to solicit for a semester again. This
time, the user does not provide a semester but rather a de-
partment in which to register for a course: ‘mathematics
department.’ The system accepts and processes this unso-
licited response instead and again solicits for a semester.
This demonstrates the ability to provide responses for solic-
itations that the system has not made yet but will at some
point in the dialog—a degree of mixed-initiative interac-
tion known as unsolicited reporting (Allen, 1999). The user
completes the dialog in one more turn with the utterance:
‘mathematics 168 spring 2016.’ This scenario corresponds
to the fifth and sixth rows of table 1 (i.e., partial evaluation).

Scenario 4: Fixed Dialog with
Multiple Responses per Utterance
Assume the dialog designer desires to permit the user to re-
spond to multiple solicitations in a single utterance, but also
wants to enforce an ordering on the set of solicitations of the
dialog. Here the user could respond first with ‘spring 2016
mathematics department’ and then with ‘168.’ Responses
given in a single utterance are unordered as they are pro-
cessed at the same time. This scenario illustrates a dialog
supporting multiple responses per utterance, but with a fixed
order on its solicitations, corresponding to the fourth row of
table 1 (i.e., partial function application).

Scenario 5: Unsolicited,
Single-response, Utterances
In contrast, the dialog designer might desire to permit the
user to respond to solicitations in any order, but with only
one response per utterance. In such a dialog, the user could
reply with ‘mathematics 168,’ but could not provide multiple
responses in any single utterance; responses such as ‘spring
2016 mathematics department’ are not permitted. This sce-
nario corresponds to the fifth row of table 1 (i.e., partial eval-
uation).

Practical Considerations
Our dialog engine automatically infers dependencies be-
tween possible dialog responses in an effort to reduce dialog
length. For instance, if the user responds with ‘mathemat-
ics 168,’ the system automatically infers that the user wants
to register for an undergraduate course in the mathematics
department and, thus, it is unnecessary to prompt for course
level and department. The user then only needs to select the
semester in which to register for the course and confirm the
registration.

Our dialog engine uses error recovery strategies (Lee et
al., 2010), including (explicit) confirmation, regarding mis-
matching and/or conflicting user responses. For instance,
assume the user desires to register for a physics course. If
the user responds first with ‘mathematics department’ and
then with ‘physics 168’ in the next utterance, the dialog sys-
tem responds with ‘physics 168 is offered in the physics de-
partment, not the mathematics department. Would you like
to change the department from mathematics to physics? If

not, please choose a mathematics course.’ This feature obvi-
ates the need to undo responses up to the response involving
invalid or inconsistent information (e.g., department) and
dynamically adjusts the response (e.g., to ‘physics depart-
ment’), if confirmed by the user. Also note that if the user
makes an utterance that does not contain any valid responses
for the dialog, such as ‘I would like to book a flight from
New York to Chicago please,’ the system responds with ‘I
am sorry. I did not understand your response. Please reply
to the prompt.’ We designed our dialog engine to be thread-
safe and the data structures that it manipulates to be stateless
to allow multiple users to participate in individual instances
of the same dialog concurrently.

Related Research
One approach to dialog modeling and implementation is
from an artificial intelligence (AI) perspective (Allen et
al., 2001), and involves selectively enumerating only those
flows of control within the implementation which have been
gleaned to be essential through learning algorithms. For in-
stance, researchers have used constraint satisfaction to de-
termine an ordering of dialog prompts (Donaldson and Co-
hen, 1997) and constraint propagation to implement sub-
dialog invocation (Frank et al., 2001). There are a variety
of other learning-based approaches (DeVault, Leuski, and
Sagae, 2011; Misu et al., 2012). In contrast, using language-
based concepts, including partial evaluation (Jones, 1996),
to specify dialogs and to intensionally model multiple paths
through a dialog without extensionally hardcoding each into
the control flow of the implementation, is a fundamentally
different approach to dialog modeling, management, and im-
plementation. It achieves flexible dialog in a cleaner, less
conditionally complex, design.

While there is an array of literature on developing (mixed-
initiative) dialog systems and dialog management and con-
struction frameworks (Hochberg, Kambhatla, and Roukos,
2002), we mention a few research projects due to their
implementation-oriented nature: the DARPA Communica-
tor-funded CMU Sphinx2 project (Rudnicky et al., 1999),
RavenClaw (Bohus and Rudnicky, 2003, 2009; Rudnicky
and Xu, 1999) the TuTalk3 project (Jordan, Ringenberg, and
Hall, 2006), the Atlas dialog management system (Freed-
man, 2000), and the Radiobot-CFF (Leuski and Traum,
2011) and NPCEditor (Leuski and Traum, 2011) systems.

Conclusion
Human-computer dialog implementation is a challenging
problem. Published literature has highlighted this problem,
and discussed how much of a laborious, time-consuming
process it can be (Glass and Seneff, 2003; Guinn, 1999;
Hochberg, Kambhatla, and Roukos, 2002). Casting this
problem on a programming languages landscape has sug-
gested the use of a variety of function evaluation strategies,
corresponding to different dialog interaction flow policies
(i.e., staging methods) and ways of mixing initiative. It

2http://cmusphinx.sourceforge.net/
3An acronym for Tutorial Talk.

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

29

BIO 100

PHY 101

Physics

Biology

Spring 2016

Section 02

Section 01

PHY 100

keys
00
01
02
03
04
05
06
07

buckets

paths: 1 2 3 4
Physics

paths: 5 6
Biology

paths: 1 2 3 4 5 6 7 8 9 10
Spring 2016

Evaluation

Dialog
User

PHY 100

hash
function

11

09

10

07
06

08

00
01 03 05

1009

11

02

paths: 3 4
PHY 101

paths: 1 2
PHY 100 paths: 5 6

BIO 100080706

paths: 1
Section 0100

paths: 2
Section 0201

paths: 3
Section 01

paths: 4
Section 0203

paths: 5
Section 0104

paths: 6
Section 0205

02 04 BIO 100

PHY 101

Physics

Biology

Spring 2016

Section 02

Section 01

PHY 100

keys
00
01
02
03
04
05
06
07

buckets

paths: 1 2
Spring 2016

hash
function

11

00
01

11

paths: 1
Section 0100

paths: 2
Section 0201

Figure 3: Data structures used to represent a human-computer dialog in our implementation.

has also supported our construction of the tool for auto-
matic dialog implementation addressed here. Our tool can
aid human-computer dialog designers in the following ways:
i) no programming is required by the designer; only dia-
log specification is required, and the dialog system is au-
tomatically implemented and ii) the resulting dialog sys-
tem can be reconfigured (e.g., different interaction policies
can be applied/realized) (Glass and Seneff, 2003; Jordan,
Ringenberg, and Hall, 2006; Polifroni, Chung, and Seneff,
2003) through minor modifications to the dialog specifica-
tion. These benefits might help a dialog designer prototype
and evaluate (Jordan, Ringenberg, and Hall, 2006), through
studies with users (Feng et al., 2006), a variety of human-
computer dialogs. For instance, evaluating several com-
peting dialog designs with users and monitoring the paths
taken by users to dialog completion and mining the results
for the most-frequently used can help suggest refinements
to the dialog specification (Spiliopoulou, 2000). Evaluating
the least-frequently used paths might help the designer iden-
tify and isolate aspects of the dialog specification that could
benefit from further attention.

This work can be extended in multiple directions. Lifting
the problem of mixed-initiative dialog modeling, manage-
ment, and implementation to a language-based landscape
opens up opportunities for enriching not only the support-
able dialogs but also the flexibility in interaction afforded
in each as we explore additional language concepts and
study their analogs in mixed-initiative interaction. Specif-
ically, we plan to explore the use of computational reflec-
tion (Maes, 1987), and particularly introspection (i.e., read-
only reflection), to support the user in meta-dialog inquiries,
a higher-order degree of mixed-initiative interaction where
the user may ask the system questions about the status of
the dialog versus the typical reverse—only the system ask-
ing questions (Kronenberg and Regel-Brietzman, 2001). For
instance, a user might inquire: ‘How many more questions
are you going to require me to answer?’ We also intend
to explore meta-dialog operations, such as ‘Let us save the
current status of this dialog and start over.’ The capture,
storage, invocation of first-class continuations (e.g., as pro-
vided by the call/cc facility in Scheme) (Friedman and
Wand, 2008) can support meta-dialog operations such as the
capture and reuse of frequently accessed dialog branches
as macros as discussed by Quan et al. (2003), though in a
slightly different context.

Coroutines and threads, and the actor model of concur-
rency with its message-passing motif, especially as used
in the functional languages Elixir (Thomas, 2014) and Er-
lang (Armstrong, 2013), may help us specify and stage com-
plex, problem-solving dialogs, where the system or user
must engage each other in multiple (sub-)dialogs in paral-
lel to solve the task at hand.

Our long-term goal is to develop a catalog of concepts of
programming languages that are helpful metaphors for spec-
ifying and staging mixed-initiative dialogs, and formalizing
their synergistic effects on dialog management and system
design, and empirically studying the desirability of the in-
teractions they support and enable.

References
Abelson, H., and Sussman, G. 1996. Structure and Interpre-

tation of Computer Programs. Cambridge, MA: The MIT
Press, second edition.

Allen, J.; Byron, D.; Dzikovska, M.; Ferguson, G.; Galescu,
L.; and Stent, A. 2001. Towards conversational human-
computer interaction. AI Magazine 22(4):27–37.

Allen, J. 1999. Mixed-initiative interaction. IEEE Intelligent
Systems 14(5):14–16.

Armstrong, J. 2013. Programming Erlang: Software for
a Concurrent World. Dallas, TX: Pragmatic Bookshelf,
second edition.

Bohus, D., and Rudnicky, A. 2003. RavenClaw: Dialog
management using hierarchical task decomposition and
an expectation agenda. In Proceedings of the Sixth An-
nual INTERSPEECH Conference. International Speech
Communication Association.

Bohus, D., and Rudnicky, A. 2009. The ravenclaw dialog
management framework: Architecture and systems. Com-
puter Speech and Language 23(3):332–361.

DeVault, D.; Leuski, A.; and Sagae, K. 2011. Toward learn-
ing and evaluation of dialogue policies with text exam-
ples. In Proceedings of the Twelfth Association for Com-
putational Linguistics (ACL) SIGDIAL Workshop on Dis-
course and Dialogue, 39–48. Portland, OR: Association
for Computational Linguistics.

Donaldson, T., and Cohen, R. 1997. A constraint satisfac-
tion framework for managing mixed-initiative discourse.

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

30

Visual Dialog Builder

Winter Spring Summer

For which semester would you like to register?

Response 1 Response 2 Response 3

New Solicitation

Mathematics English Computer Science

From which department would you like to take a class?
(Example: Mathematics)

History

Morning Afternoon

What time of day would you like to take the class?

MTH 100 MTH 101 MTH 200

What class would you like to take?

MTH 300

ENG 100 English 101

What class would you like to take?

<Node prompt="For which semester would you like to register?”>
 <Node response=“Winter”>
 <Node response=“Spring”>
 <Node response=“Summer”>
<Node prompt="What time of day would you like to take the class?”>
 <Node response=“Morning”>
 <Node response=“Afternoon”>
<Node prompt="From which department would you like to take a class?
(Example: Mathematics)”>
 <Node response=“Mathematics”>
 <Node response=“English”>
 <Node response=“Computer Science”>
 <Node response=“History”>
<Node prompt="What class would you like to take?”>
 <Node response=“ENG 100”>
 <Node response=“ENG 101”>
<Node prompt="What class would you like to take?”>
 <Node response=“MTH 100”>
 <Node response=“MTH 101”>
 <Node response=“MTH 200”>
 <Node response=“MTH 300”>
<Node prompt="New Solicitation”>
 <Node response=“Response 1”>
 <Node response=“Response 2”>
 <Node response=“Response 3”>

Figure 4: Sketch of a split-screen, visual/textual user interface for dialog specification. An incomplete/partial dialog is shown
here (i.e., what is shown here is not the final representation of the dialog).

In Proceedings of the AAAI Spring Symposium on Compu-
tational Models for Mixed Initiative Interactions, number
SS-97-04, 37–43. Menlo Park, CA: AAAI Press.

Feng, J.; Hakkani-Tür, D.; Fabbrizio, G. D.; Gilbert, M.; and
Beutnagel, M. 2006. Webtalk: Towards automatically
building spoken dialog systems through mining websites.
In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 573–
576. Los Alamitos, CA: IEEE Computer Society Press.

Ferguson, G., and Allen, J. 1998. Trips: An integrated intel-
ligent problem-solving assistant. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(AAAI). Menlo Park, CA: AAAI Press.

Fleming, M., and Cohen, R. 1999. Towards a methodology
for designing and evaluating mixed-initiative AI systems.
In Proceedings of the AAAI Workshop on Mixed-initiative
Intelligence, 130–134. Menlo Park, CA: AAAI Press.

Fleming, M., and Cohen, R. 2001. A user modeling ap-
proach to determining system initiative in mixed-initiative
ai systems. In Bauer, M.; Gmytrasiewicz, P.; and Vas-
sileva, J., eds., Proceedings of the Eighth International
Conference on User Modeling (UM), 54–63. Sonthofen,
Germany: Springer.

Frank, M.; Muslea, M.; Oh, J.; Minton, S.; and Knoblock,
C. 2001. An intelligent user interface for mixed-initiative
multi-source travel planning. In Proceedings of the Sixth

ACM International Conference on Intelligent User Inter-
faces (IUI), 85–86. New York, NY: ACM Press.

Freedman, R. 2000. Using a reactive planner as the basis for
a dialogue agent. In Proceedings of the Thirteenth Inter-
national Florida Artificial Intelligence Research Society
Conference, 203–208.

Friedman, D., and Wand, M. 2008. Essentials of Program-
ming Languages. Cambridge, MA: MIT Press, third edi-
tion.

Glass, J., and Seneff, S. 2003. Flexible and personalizable
mixed-initiative dialogue systems. In Proceedings of the
North American Chapter of the Association for Computa-
tional Linguistics (ACL): Human Language Technologies
(NAACL-HLT) Workshop on Research Directions in Dia-
logue Processing, 19–21. Stroudsburg, PA: Association
for Computational Linguistics.

Guinn, C. 1999. Evaluating mixed-initiative dialog. IEEE
Intelligent Systems 14(5):21–23.

Hamidi, S.; Andritsos, P.; and Liaskos, S. 2014. Construct-
ing adaptive configuration dialogs using crowd data. In
Proceedings of the Twenty-ninth ACM/IEEE International
Conference on Automated Software Engineering (ASE),
485–490. New York, NY: ACM Press.

Hearst, M. 1999. Mixed-initiative interaction. IEEE Intelli-
gent Systems 14(5):14–16.

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

31

Hochberg, J.; Kambhatla, N.; and Roukos, S. 2002. A flexi-
ble framework for developing mixed-initiative dialog sys-
tems. In Proceedings of the Third Association for Com-
putational Linguistics (ACL) SIGDIAL Workshop on Dis-
course and Dialogue, 60–63. Stroudsburg, PA: Associa-
tion for Computational Linguistics.

Jones, N. 1996. An Introduction to Partial Evaluation. ACM
Computing Surveys 28(3):480–503.

Jordan, P.; Ringenberg, M.; and Hall, B. 2006. Rapidly
developing dialogue systems that support learning stud-
ies. In Proceedings of Intelligent Tutoring Systems (ITS)
Workshop on Teaching with Robots, Agents, and NLP, 1–
8.

Kronenberg, S., and Regel-Brietzman, P. 2001. Bridging the
gap between mixed-initiative dialogs and reusable sub-
dialogs. In Proceedings of the IEEE Workshop on Au-
tomatic Speech Recognition and Understanding (ASRU),
276–279. Los Alamitos, CA: IEEE Computer Society
Press.

Lee, C.; Jung, S.; Kim, K.; Lee, D.; and Lee, G. 2010. Re-
cent approaches to dialog management for spoken dialog
systems. Journal of Computing Science and Engineering
4(1):1–22.

Leuski, A., and Traum, D. 2011. NPCEditor: Creating
virtual human dialogue using information retrieval tech-
niques. AI Magazine 32(2):42–56.

Maes, P. 1987. Concepts and experiments in computational
reflection. In Proceedings of the International ACM Con-
ference on Object-Oriented Programming Systems, Lan-
guages and Applications, 147–155. New York, NY: ACM
Press.

Misu, T.; Georgila, K.; Leuski, A.; and Traum, D. 2012.
Reinforcement learning of question-answering dialogue
policies for virtual museum guides. In Proceedings of the
Thirteenth Annual Meeting of the Special Interest Group
on Discourse and Dialogue, 84–93. Stroudsburg, PA: As-
sociation for Computational Linguistics.

Perugini, S. 2015. Staging mixed-initiative dialogs by pro-
gram generation and transformation. Technical Report
arXiv:1108.0476v5 [cs.PL], Computing Research Repos-
itory (CoRR). Available from http://lanl.arXiv.
org/abs/1108.0476v5.

Polifroni, J.; Chung, G.; and Seneff, S. 2003. Towards
the automatic generation of mixed-initiative dialogue sys-
tems from web content. In Proceedings of the Eighth Eu-
ropean Conference on Speech Communication and Tech-
nology (EUROSPEECH), 193–196. International Speech
Communication Association.

Pu, P., and Lalanne, D. 2002. Design visual thinking tools
for mixed-initiative systems. In Proceedings of the Sev-
enth International Conference on Intelligent User Inter-
faces (IUI), 119–126. New York, NY: ACM Press.

Quan, D.; Huynh, D.; Karger, D.; and Miller, R. 2003.
User interface continuations. In Proceedings of the Six-
teenth Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST), 145–148. New York, NY:
ACM Press.

Rudnicky, A., and Xu, W. 1999. An agenda-based dialog
management architecture for spoken language systems.
IEEE Automatic Speech Recognition and Understanding
Workshop 13(4).

Rudnicky, A.; Thayer, E.; Constantinides, P.; Tchou, C.;
Stern, R.; Lenzo, K.; Xu, W.; and Oh, A. 1999. Cre-
ating natural dialogs in the carnegie mellon communica-
tor system. In Proceedings of the Sixth European Con-
ference on Speech Communication and Technology (EU-
ROSPEECH). International Speech Communication As-
sociation.

Scott, M. 2009. Programming Language Pragmatics. Am-
sterdam: Morgan Kaufmann, third edition.

Sebesta, R. 2015. Concepts of Programming Languages.
Boston, MA: Addison Wesley, eleventh edition.

Smith, S.; Cortellessa, G.; Hildum, D.; and Ohler, C. 2005.
Using a scheduling domain ontology to compute user-
oriented explanations. In Castillo, L.; Barrajo, D.; Salido,
M.; and Oddi, A., eds., Planning, Scheduling, and Con-
straint Satisfaction: From Theory to Practice. IOS Press.

Spiliopoulou, M. 2000. Web usage mining for web site
evaluation. Communications of the ACM 43(8):127–134.

Thomas, D. 2014. Programming Elixir: Functional, Con-
current, Pragmatic, Fun. Dallas, TX: Pragmatic Book-
shelf.

Walker, M., and Whittaker, S. 1990. Mixed-initiative in
dialogue: An investigation into discourse segmentation.
In Proceedings of the Twenty-eighth Annual Meeting on
Association for Computational Linguistics (ACL), 70–78.
Stroudsburg, PA: Association for Computational Linguis-
tics.

Wolfman, S.; Lau, T.; Domingos, P.; and Weld, D. 2001.
Mixed initiative interfaces for learning tasks: Smartedit
talks back. In Proceedings of the Sixth ACM International
Conference on Intelligent User Interfaces (IUI), 167–174.
New York, NY: ACM Press.

Joshua W. Buck and Saverio Perugini MAICS 2016 pp. 25–32

32

