
Normalization based Stop-Word approach to Source Code
Plagiarism Detection

Saimadhav Heblikar
PES Institute of Technology

Bangalore, India
saimadhavheblikar@gmail.com

Poorva Sharma
PES Institute of Technology

Bangalore, India
poorvasharma0615@gmail.com

Manogna Munnangi
PES Institute of Technology

Bangalore, India
manogna08@gmail.com

Channa Bankapur
PES University

Bangalore, India
channabankapur@pes.edu

ABSTRACT
This paper is a report of PES Institute of Technology’s par-
ticipation in the Cross Language Detection of Source Code
Reuse (CL-SOCO) task at FIRE 2015 [1]. We approach
this task as text document plagiarism task, without consid-
ering formal programming language grammatical structure.
We use normalization of commonly used identifiers to de-
tect pair of programs which have the same objective. We
also find that entirely removing these normalized operations
improves the system.

CCS Concepts
•Information systems → Similarity measures; Clus-
tering and classification;

Keywords
Source code reuse, Plagiarism detection

1. INTRODUCTION
Vast amounts of software code has become easily avail-

able on the Internet. Sites like Stackoverflow make available
solutions to common problems. In such a scenario, soft-
ware developers are tempted to copy and paste code from
one place to another. This could cause the owners of the
software legal, ethical, licensing and maintenance problems
in the long run. Software plagiarism also affects competi-
tive programming competitions like ACM ICPC. The sheer
scale of available resources to plagiarize from and the pos-
sible number of plagiarized documents makes this a source
code plagiarism detection a daunting task.

Plagiarism detection in software source code is different
from text plagiarism detection task. One of the popular ap-
proaches to text plagiarism detection is bag-of-words model[4].
However, this is not useful in a software source code context
as a small set of programming constructs are bound to be
reused repeatedly, whilst doing altogether different things.

There currently exist tools like MOSS [2] and JPLAG [3]
which try to solve this problem. MOSS stands for “Measure
Of Software Similarity” and is a system for detecting simi-
larity in software. JPLAG is a system for detecting software

similarity considering text features as well as programming
language features. Both JPLag and MOSS are used in aca-
demic environments.

2. TASK DESCRIPTION
Cross language Source code reuse(CL-SOCO) track of FIRE

2015 deals with the detection of plagiarism in software source
code. The cross language aspect deals with detecting pla-
giarism from C to Java sources.

The training set given to us consisted of 599 C and 599
Java files. These files were numbered from 001.C to 599.C
and 001.java to 599.java The files with the same number rep-
resented a plagiarized case. That is, 012.c and 012.java rep-
resents a reuse case, while 012.c and 021.java don’t. Since
some of these files were generated using a tool, they con-
tained parse errors. This was true for both the C and Java
data-set.

The test set given to us consisted of 79 C files and 79
Java files. These files were numbered from 300.c to 378.c
and 000.java to 078.java.

Both the training and test corpus are available at [1].
It is important to note that we do not have to mention

the direction of reuse. That is, whether the reuse was from
C to Java or from Java to C.

3. CURRENT WORK
In this section, we describe the state of research in the

field of plagiarism detection in general, and source code pla-
giarism detection in particular.

3.1 Bag-of-words-model
In this model, the document is represented as a bag-of-

words. In practice, it is a multi-set. It disregards order
or grammar, but accounts for multiplicity. Bag of words
is shown to work well for the text plagiarism detection task
[4]. It’s performance is not satisfactory for the programming
language plagiarism detection task [5]. The reason being
similar programming constructs are bound to be a very high
number of times in programs. However, these programs may
be doing entirely different things.

6

3.2 NLP Techniques
Common Natural Language Processing techniques like word

n-grams are used to detect similarity between documents.
Some works also consider using features of the text like num-
ber of white-spaces, average indentation, and other stylistic
features for evaluation. A popular tool is XPLAG [6].

3.3 Longest common sub-string
Tools like JPLAG[3] make use of the Longest common

substring (LCS) approach. This is a pair wise approach.
The similarity between a pair is decided by the length of the
longest common substring.

4. SYSTEM DESCRIPTION
We build upon the existing work described in Section 3.1.

We work on the bag-of-words model, modifying it to support
term weighting. We then use word 1-grams as features. Our
approach is from XPLAG[6] in the sense that we do not
consider any other NLP techniques which were described in
Section 3.2.

In this section we describe our approach. We present three
iterative runs, each built upon and improving over its pre-
decessor. Only the preprocessing stage varies for each run.
The first run is the baseline run. The second run is the
normalization run. The third run builds upon the second,
and removes any normalized operation or identifier. We call
this third run as using the removal of stopwords, from the
normalized operations or identifiers.

We divide the workflow into four stages :

4.1 Preprocessing
The preprocessing stage is divided into 2 parts. The first

part is same for all approaches and is described below
In the first part of preprocessing, more than one contin-

uous whitespace are converted to a single whitespace. The
code is then converted to lower case. Any accents in the text
are stripped. The source code is then passed to a lexer. The
lexer removes lexemes like +, -, *, / etc. The output of the
lexer is a stream of tokens.

Subsection, 4.1.1 to 4.1.3 provides a detailed description
of approach to the second part of preprocessing stage for
each run.

4.1.1 Baseline
In this stage, no work is done. That is, there is no trans-

formation of the tokenized stream obtained from part one of
preprocessing. This approach serves as a baseline.

4.1.2 Normalization
The input to this approach is the output from baseline ap-

proach. In this stage, we study the language usage features
from the training data. We obtain frequency statistics about
the most commonly used identifiers in both the languages
C and Java. This was sorted based on frequency in non-
increasing order. This list was pruned to consider those in
the top-n positions of the list. We also considered keywords
as identifiers.

We then manually mapped similar identifiers/functions to
new operation identifiers or op-codes. For example, printf
is used as output function in C. System.out.println is used
as a output function in Java. Both these functions perform
similar operations. Therefore, we replace all occurrences of

Table 1: Normalization List
Op-Code Identifiers assigned to Op-Code

op1 len,strlen,length,size
op2 stdio,stdlib,system
op3 size,sizeof
op4 struct,typedef,class,object
op5 string,str,StringFunctions
op6 list,iter
op7 new,malloc
op8 argv,argValue
op9 rand
op10 argc,args
op11 pthis,pthread
op12 print, fprintf, printf, sprintf, println

System.out.println,
System.out.print,
System.out.printf,
puts, putchar,fputs

op13 array,charAt
op14 ret,return
op15 file,fd
op16 int,integer
op17 char,character
op18 bool,Boolean,boolean
op19 float,Float
op20 scanf,scanner,gets,getch,getchar

printf and System.out.println with op1. Refer to Table 1 for
a full list of such replacements. The output from the stage
is fed to the vectorizer.

4.1.3 Removing stopwords
The input to this approach is the output from prepro-

cessing of normalization approach. All op-codes which were
generated in the previous stage are removed. This can also
be seen as using a stop-word list consisting of op-codes gen-
erated earlier.

4.2 Vectorizer
This stage receives as input a set of tokenized documents.

Each document is converted to a vector. The feature cho-
sen to create the vector is word 1-gram and 2-gram. The
weighting factor used is term frequency-inverse document
frequency (tf-idf).

tf(t, d) = 0.5 +
0.5 ∗ f(t, d)

maxf(t, d) : t ∈ d (1)

We know that term frequency(tf) increases proportionally
to the number of times it appears in a document, but is
offset by its frequency in the corpus. We require the offset
weights because certain set of programming language con-
structs are used a very high number of times, almost always
in programs which do very different things. Inverse docu-
ment frequency(idf) serves this purpose. The output of this
stage is a set of tf-idf vectors, each vector representing a
document.

We group the output into training set and a testing set.
The training set is passed to the similarity phase. The test-
ing set is passed to the deciding phase.

7

Table 2: Comparison of mean vs. median for decid-
ing threshold

Mean Median
Threshold(similarity value) 0.644 0.776

False positives 139 88
F1 0.450 0.324

Precision 0.738 0.775

4.3 Similarity Phase
The input to this stage is a set of vectors representing the

documents in the training set. The set of vectors correspond-
ing to the training set was divided into sets corresponding
to C files and Java files. A cross product was taken between
these two sets. This cross product set represents comparing
every C file with every Java file. A cross product was taken
between these two sets. This cross product set represents
every possible (C, Java) pair from training data.

similarity = cos(θ) =
A.B

‖A‖‖B‖ =

n∑
i=1

Ai ∗Bi√√√√ n∑
i=1

(Ai)
2 ∗

√√√√ n∑
i=1

(Bi)
2

(2)
As mentioned in Section 2, we know that a (C, Java) file

pair is plagiarized if and only if they have the same file num-
ber. Any other case they are not plagiarized. We use the
above statistic to record the mean and median cosine simi-
larity values for all plagiarized cases and all non-plagiarized
cases.

4.4 Deciding Phase
The input to this stage is a set of vectors from the test-

ing data and similarity statistics like mean or median for
the plagiarized cases from the similarity phase. The set of
vectors corresponding to the test data was divided into sets
corresponding to C files and Java files. A cross product is
taken between these two sets. This cross product set rep-
resents every possible (C, Java) pair from test data. For
every pair in the cross product set, cosine similarity is com-
puted. The deciding factor to say that a pair is plagiarized
was done by choosing the mean/median obtained from the
similarity phase as threshold. Anything above this thresh-
old was considered as plagiarized. For the 3 runs, we chose
mean value from the previous phase as a threshold. The
reason for choosing mean over median is given below.

4.4.1 Choosing threshold for deciding
The statistics in Table 2 are results from baseline ap-

proach. The input documents were the training set itself.
There were 599x599 (C, Java pairs). The number of plagia-
rized cases were 599. We measured the mean and median
values of cosine similarity for all the plagiarized cases.

We see that using mean as threshold gives us slightly lower
precision, but a far better recall, and therefore a better F1
value. We see that number of false positives is higher using
mean as threshold, but the difference between using mean or
median as threshold is tending to 0(0.00014) when expressed
as percentage.

Table 3: Results for the cross language collection
Preprocessing approach F1 Precision Recall

Baseline 0.683 1.000 0.519
Normalization 0.697 1.000 0.534

Removing stopwords 0.740 1.000 0.603

5. RESULTS AND ANALYSIS
Precision is the fraction of retrieved instances that are

relevant, while recall is the fraction of relevant instances
that are retrieved.

F1 score is the harmonic mean of precision and recall.
Since it takes both precision and recall into equal consider-
ation, it’s an overall measure of relevance.

As we can see in the results in Table 3, precision of all
the three runs is 1. This means all the retrieved results are
relevant i.e., there are no false positives.

Next, we compare the different approaches.
Comparison between baseline and normalization
The reuse cases of <345.c and 033.java>, <351.c and

043.java> and <368.c and 061.java> are there in normal-
ization but not in baseline. Our reasoning about this is as
follows - Since after preprocessing, there is no further trans-
formation of the tokens obtained from the lexer in baseline,
certain tokens in C and Java, although have the same mean-
ing (perform similar actions), might not have been consid-
ered the same. This reduces the cosine similarity between
the files under consideration.

For example, the statements

s t r cpy (ur l , ‘ ‘ ’ ’) (in 345 . c)

and

u r l = ‘ ‘ ’ ’ (in 033 . java)

do the same thing, but they are not considered the same
by the lexer. The reuse case of <312.c and 005.java> is there
in baseline but not in normalization. Since only the top-
n positions of the frequency statistics regarding commonly
used identifiers/keywords in C and Java were considered for
the normalization, it would have missed out on certain iden-
tifiers/keywords that perform the same actions in both C
and Java.

Comparison between baseline and stop-word re-
moval

The reuse case of <337.c and 034.java> is there in base-
line but not in stop word removal, reasons being similar
to above mentioned (we know that output of preprocessing
of normalization is fed to stop word removal preprocessing
stage).

The reuse cases of <321.c and 049.java>, <331.c and
065.java>, <345.c and 033.java>, <351.c and 043.java>,
<359.c and 029.java>, <368.c and 051.java>, <373.c
and 058.java>, <374.c and 006.java>, <375.c and
042.java> and <376.c and 074.java> are all there in
stop-word removal but not in baseline. The possible reason
is since the op-codes are removed and direct mapping be-
tween the identifiers or keywords of both the languages is
done, there is a higher possibility in matching similar con-
structs and identifiers.

Comparison between normalization and stop-word
removal

The reuse cases in bold letters above along with <312.c

8

and 005.java> are all there in stop-word removal but not in
normalization run.

The reuse case of <337.c and 034.java> is there in nor-
malization but not in stop-word removal. This may be be-
cause in normalization, there are certain op-codes for similar
identifiers. In stop-word removal, we remove the op-codes.
Suppose there are many number of identifiers in both the
languages put together that have similar meaning, it might
become difficult/inaccurate to keep track of them without
using op-codes. (If we are using op-codes, all of them will
have a single op-code).

6. FUTURE SCOPE AND CONCLUSION

6.1 Improving recall
In order to improve the recall, we may do the following:

Use a combination of the methods used for normalization
and stop-word removal. In some cases, where a large num-
ber of similar identifiers are there, op-code can be used. In
others, direct mapping can be used. More number of identi-
fiers can be grouped under one op-code. For example, as and
when you encounter an identifier that has the same meaning
as the identifiers in an already defined set, it can be added to
the set. The value of ‘n’ in deciding the top-n by frequency
identifiers can be varied.

6.2 Improving the normalization and stop-word
removal procedure

We mention certain aspects which were lacking in our sys-
tem and possibly suggestions on how it can be improved in
the future. This suggestions are keeping in mind how the
system can be made generic, that is, to support as many
language pairs as possible.

6.2.1 Same language normalization automation
Most programming languages provide many functions or

identifiers to do the same thing. For example, C provides
printf, fprintf and puts to output a string. We use contex-
tual information to automate the process of detecting such
functions or identifiers. Once contextually similar pairs are
detected, they may be assigned op-codes if they are indeed
doing similar things.

6.2.2 Cross language normalization automation
The approach of Section 6.2.1 may be used to decide

whether it would be feasible to automate the process of gen-
erating op-codes across languages for similar operation.

7. REFERENCES
[1] Flores, E. and Rosso, P. and Moreno, L. and Villatoro-

Tello, E.: PAN@FIRE 2015: Overview of CL-SOCO Track
on the Detection of Cross-Language SOurce COde Re-use.
In Proceedings of the Seventh Forum for Information Re-
trieval Evaluation (FIRE 2015), Gandhinagar, India, 4-6
December (2015)

[2] Plagiarism Detection: 2015.
https://theory.stanford.edu/ aiken/moss/. Accessed: 2015-
10- 18.

[3] Prechelt, L. and Malpohl, G. and Philippsen, M. Find-
ing plagiarisms among a set of programs with JPlag. Journal
of Universal Computer Science, 8(11):1016-1038, 2002.

[4] Barrón-Cedeño, A. and Rosso, P. On Automatic Pla-
giarism Detection Based on n-Grams Comparison. In Pro-
ceedings of the 31th European Conference on IR Research
on Advances in Information Retrieval (ECIR ’09), Mohand
Boughanem, Catherine Berrut, Josiane Mothe, and Chantal
Soule-Dupuy (Eds.). Springer-Verlag, Berlin, Heidelberg,
696-700, 2009. DOI=http://dx.doi.org/10.1007/978-3-642-
00958-7 69’)

[5] Ganguly, D., Jones, G.: DCU@FIRE-2014: An In-
formation Retrieval Approach for Source Code Plagiarism
Detection.

[6] Arwin, C., and Tahaghoghi, SMM. ”Plagiarism de-
tection across programming languages.” Proceedings of the
29th Australasian Computer Science Conference-Volume 48.
Australian Computer Society, Inc., 2006.

9

