
15

(CLSCR) Cross Language Source Code Reuse Detection

using Intermediate Language

Dimpal Shah
Gujarat University,

Ahmedabad,
India.

Dimpalshah38@gmail.com

 Heena Jethani

 Gujarat University,
 Ahmedabad,

India.
heenahjethani@gmail.com

Hardik Joshi

Gujarat University,
Ahmedabad,

India.
joshee@acm.org

ABSTRACT
In today's digital era information access is just a click away. so

computer science students also have easy access to all the source

codes from different websites thus it has become difficult for

academicians to detect source code reuse in students programming

assignments. The new trend in the area of source code reuse is

using the source code by translating it in another programming

language popularly known as cross language plagiarism.

Our CLSCR addresses this problem. CLSCR mainly has two

components: A compiler that compiles and translates the language

specific source code into a tool specific internal format and The

Similarity calculator that computes similarity between internal

formats of different programs.

Keywords
Cross Language; CLSCR; Tokenization; Learning Management

System.

1. INTRODUCTION
Identifying if students programming assignments are their original

work or have been plagiarized from internet is of sole importance

to the academicians. To address this problem many tools have

been developed till date. Some of the tools are Sherlock, MOSS,

JPLAG etc. All of these tools detect mono language plagiarism

Mono language plagiarism:

It is the act of producing source code file from another source

code file of same language just by doing text edit operation and

not understanding the granularities of the program.

With advance developments and research in the field of

information retrieval new techniques of plagiarism have also

emerged. One such technique is cross language plagiarism it is a

modern and smart way of plagiarism.

Cross language plagiarism comes into picture when students want

a source code for particular functionality in language A and while

surfing the internet students come across the exact source code for

the functionality but in language B so student decides to plagiarize

by translating syntax of commands on A to syntax of B without

understanding the working of the code.

Our tool CLSCR detects this type of plagiarism CLSCR basically

works in 3 phases that are language detection, internal format

conversion, similarity computation. All are explained in Section 4.

.

2. DEFINITION
Cross language source code reuse:

Cross language plagiarism is also known as translation plagiarism.

Let A1 and A2 be two programming languages and A1!=A2.

Cross language source code reuse is stated as the translation of a

source code P1 € A1 into P2 € A2.

.

3. RELATED WORK

3.1 Tokenization
It is the preprocessing technique that CLSCR performs before its

actual implementation. It is the process of converting the source

code in to tokens. Token is the smallest unit that holds meaning in

a program. Tokens include:

(1) Identifiers (Variable types, Functions and Labels).

(2) Literals.

(3) Operators (For example +, -, / etc).

(4) Keywords (For example for, While, If etc).

 Figure 1. Example of Java File

16

 Figure 2. Tokenization of java file

4. DESIGN
CLSCR mainly works in 3 phases.

 Figure 3. Design of CLSCR

PHASE 1: Language detection

The tokenized source code file is given as input to phase1. It
detects the programming language of the file by comparing it
with the predefined database consisting of keywords of different
programming languages.

import System.out.println new extends

Figure 3. Comparison between tokens and database

After detecting the programming language in the phase1
automatically moves the input files to specific predefined folders.
For example, it will move C++ language program file to the C++
folder and java files to java folder.

PHASE 2: Intermediate language (Internal Format) Generation.

Phase2 gets its input files from different folders for example C++
folder and java folder. Input files are then processed by compiler.
For example, we have C++ conversion file a part of compiler for
translating C++ folder files and java conversion file for translating
java folder

Files. These translations produce common internal format for
files.

Internal format is the compiler specific language file.

 Figure 4. Intermediate language generation

As shown in figure 4 the internal format files are in monolingual.
In short CLSCR performs translation of different programming
language source codes to an intermediate language.

PHASE 3: Similarity Computation

It is the last phase of CLSCR. Phase2 generated internal format
files is then compared to compute similarity.

This phase uses open source plagiarism detector SHERLOCK for
calculating similarity percentage between internal format files.

4.1 Sherlock
SHERLOCK tool allows an instructor to examine a collection of
submitted programs for similarities. Each program is stored as a
single file, and is written using a specific predefined language [1]
Here our predefined language is our internal format. It uses the
concept of runs and anomalies to detect similarity.

Runs and Anomalies: The Tool defines run as a sequence of

Import

Java

Io

Class

HelloWorld

{

Public

Static

.........

import Java io System.out.println

Language Detection

Intermediate language generation

 Similarity computation

17

common lines in two files, where the sequence might not be
quite contiguous. There may be a number of extra or deleted
lines interrupting the sequence. The allowable size of
interruptions is called anomalies. Similarity Percentage is
calculated on the basis of length of run and anomalies.

Table 1. Runs and anomalies

Sequence1 Sequence2 Sequence3

Begin Begin Begin

Line2 Lin2 Extra line

Line3 Extra line Line3

Line4 Line3 Extra line

Line5 Line4 Line4

Line6 Line5 Extra line

Line 7 Line7 Another line

Line8 Line8 Line7

Sequence 1 and 2 form run with 2 anomalies.

Sherlock Usage: To use Sherlock we downloaded sherlock.C file
which is available online. Then we compiled sherlock.C to
generate exe file. All files that need to be compared for
plagiarism and the exe file are placed in same folder. Then we
run Sherlock a command-line program to generate result file
containing similarity percentage of the files.

sherlock *.java > results.txt

5. EXPERIMENTS AND RESULTS
As our initial effort we have just focused on two object oriented

programming languages C++ and java. but it can be implemented

to detect many other languages. Evaluation of our tool is done

through a data set that is checked for originality and degree of

plagiarism is computed. For testing, the dataset used was collected

from third party organization. Dataset consisted of 1000+ java and

C++ program for now we have tested this tool only on two object

oriented languages java and C++.

But with slight modification this tool can be implemented to

detect plagiarism between many other languages.

After passing all source code files to 3 phases of CLSCR, the

results obtains shows the similarity percentage between various

files.

6. IMPROVED EFFECIENCY
CLSCR by default compares all files of C++ folder with java

folder files. These folders may contain 500+ files resp.

Comparing this large number of files is a tedious task and may

take some amount of time. To improve efficiency addition

processing phase can be introduced.

Preprocessing phase: This phase is implemented before phase 2.

Before converting the source code into intermediate language,

Attribute comparison among different source codes is performed.

Attributes are general properties of source code files. They

include number of classes, number of functions, number of

objects, number of constructers, number of variables etc.

We have assigned weight to all general properties as per their

importance in plagiarism detection.

Weight of class = cl

Weight of constructor = co

Weight of function = f

Weight of variable = v

Weight of object = o

Then we calculate weight total of properties

Weight_total = cl(no of class) + co(no of

constructor) +o(no of object) + v (no of

variable) + f (no of function).

All those files having similar weight total are only compared. As

files with large difference in weight total have different properties

thus the degree of similarity is very less. Thus they are ignored.

7. CONCLUSION
A software system that automatically detects cross language

plagiarism between C++ and java files has been proposed and

presented in this paper. This is basically a desktop application to

detect plagiarism between different language source code files.

Academicians can install the application and by just uploading the

collection of assignments of the students can detect the degree of

plagiarism between the programs.

The system accepts the .txt, .java, .cpp all extensions of the source

code so the overhead of converting the programs to a specific

extension is also removed.

The proposed system has potential for becoming the

comprehensive plagiarism detection system for universities. As

CLSCR being able to detect cross language plagiarism

additionally can even be used to detect mono language plagiarism.

Although some of the processing of CLSCR would be worthless

when in attempt of detecting mono language plagiarism but the

result of detection would be accurate.

Figure 5. Similarity Computation

18

This software has been tested for large number of programming

assignments of all categories with accurate results. This system

can efficiently handle huge data set and can be seamlessly

integrated with any learning management system.

This system can overall improve the quality of education imported

in different computer science institution.

8. ACKNOWLEDGEMENTS
We are grateful to Ms Sangeeta Premani for her guidance

throughout the design and execution of this task. Finally, we thank

FIRE2015 for providing the dataset to test our tool.

9. REFERENCES
[1] Joy, Mike, and Michael Luck. "Plagiarism in programming

assignments." Education, IEEE Transactions on 42.2 (1999):

129-133.

[2] Đurić, Zoran, and Dragan Gašević. "A source code similarity

system for plagiarism detection." The Computer Journal

(2012): bxs018.

[3] Jadalla, Ameera, and Ashraf Elnagar. "PDE4Java: Plagiarism

Detection Engine for Java source code: a clustering

approach." International Journal of Business Intelligence

and Data Mining 3.2 (2008): 121-135

[4] Juričić, Vedran, Tereza Jurić, and Marija Tkalec.

"Performance evaluation of plagiarism detection method

based on the intermediate language." (2011).

[5] Gabel, Mark, and Zhendong Su. "A study of the uniqueness

of source code." Proceedings of the eighteenth ACM

SIGSOFT international symposium on Foundations of

software engineering. ACM, 2010

[6] Chae, Dong-Kyu, et al. "Software plagiarism detection: a

graph-based approach." Proceedings of the 22nd ACM

international conference on Conference on information &

knowledge management. ACM, 2013

[7] Flores, Enrique, et al. "DeSoCoRe: detecting source code re-

use across programming languages." Proceedings of the 2012

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies: Demonstration Session. Association

for Computational Linguistics, 2012.

[8] Flores, Enrique, et al. "Towards the detection of cross-

language source code reuse." Natural Language Processing

and Information Systems. Springer Berlin Heidelberg, 2011.

250-253

[9] Flores, Enrique, Rosso, Paolo, Moreno, Lidia and Villatoro-

Tello, Esaú: PAN@FIRE 2015:” Overview of CL-SOCO

Track on the Detection of Cross-Language SOurce COde Re-

use”. In Proceedings of the Seventh Forum for Information

Retrieval Evaluation (FIRE 2015), Gandhinagar, India, 4-6

December (2015)

